diff --git a/docs/ops/detection/RegionYolo_1.md b/docs/ops/detection/RegionYolo_1.md index c4eece6ff8b..ebcc79c2377 100644 --- a/docs/ops/detection/RegionYolo_1.md +++ b/docs/ops/detection/RegionYolo_1.md @@ -6,7 +6,7 @@ **Short description**: *RegionYolo* computes the coordinates of regions with probability for each class. -**Detailed description**: This operation is directly mapped to the original YOLO layer. [Reference](https://arxiv.org/pdf/1612.08242.pdf) +**Detailed description**: This operation is directly mapped to the [YOLO9000: Better, Faster, Stronger](https://arxiv.org/pdf/1612.08242.pdf) paper. **Attributes**: @@ -78,14 +78,17 @@ **Inputs**: -* **1**: `data` - 4D input tensor with floating point elements and shape `[N, C, H, W]`. Required. +* **1**: `data` - 4D tensor of type `T` and shape `[N, C, H, W]`. **Required.** **Outputs**: -* **1**: output tensor of rank 4 or less that codes detected regions. Refer to the original YOLO paper to decode the output as boxes. `anchors` should be used to decode real box coordinates. If `do_softmax` is set to 0, then the output shape is `[N, (classes + coords + 1)*len(mask), H, W]`. If `do_softmax` is set to 1, then output shape is partially flattened and defined in the following way: +* **1**: tensor of type `T` and rank 4 or less that codes detected regions. Refer to the [YOLO9000: Better, Faster, Stronger](https://arxiv.org/pdf/1612.08242.pdf) paper to decode the output as boxes. `anchors` should be used to decode real box coordinates. If `do_softmax` is set to `0`, then the output shape is `[N, (classes + coords + 1) * len(mask), H, W]`. If `do_softmax` is set to `1`, then output shape is partially flattened and defined in the following way: - flat_dim = data.shape[axis] * data.shape[axis+1] * ... * data.shape[end_axis] - output.shape = [data.shape[0], ..., data.shape[axis-1], flat_dim, data.shape[end_axis + 1], ...] + `flat_dim = data.shape[axis] * data.shape[axis+1] * ... * data.shape[end_axis]` + `output.shape = [data.shape[0], ..., data.shape[axis-1], flat_dim, data.shape[end_axis + 1], ...]` + +**Types** +* *T*: any supported floating point type. **Example**