[CPU] Pooling & FakeQuantize cache (#9503)

* [CPUCache]Impl FakeQuantize

* [CPUCache]Impl Pooling

* [CPUCache]Fix Pooling ==

* [CpuCache]apply review comments

* [CpuCache]fix pooling ==
This commit is contained in:
Zhang Yi 2022-01-13 15:25:39 +08:00 committed by GitHub
parent 5b40f381cb
commit 6d3f99c7db
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 602 additions and 493 deletions

View File

@ -23,6 +23,7 @@
#include "memory_desc/dnnl_blocked_memory_desc.h"
#include "utils/ngraph_utils.hpp"
#include "common/cpu_memcpy.h"
#include <common/primitive_hashing_utils.hpp>
// Quantization ranges validation is switched off by default in order to avoid regressions on user side
// #define VALIDATE_QUANTIZATION_RANGES
@ -885,6 +886,31 @@ bool MKLDNNFakeQuantizeNode::isSupportedOperation(const std::shared_ptr<const ng
return true;
}
namespace {
struct FakeQuantKey {
jit_quantize_params jqp;
size_t hash() const {
size_t seed = 0;
seed = hash_combine(seed, jqp.c);
seed = hash_combine(seed, jqp.is_planar);
seed = hash_combine(seed, jqp.src_prc.getPrecVal());
seed = hash_combine(seed, jqp.wei_prc.getPrecVal());
seed = hash_combine(seed, jqp.dst_prc.getPrecVal());
seed = dnnl::impl::primitive_hashing::get_vector_hash(seed, jqp.s_str);
seed = dnnl::impl::primitive_hashing::get_vector_hash(seed, jqp.d_str);
seed = hash_combine(seed, jqp.op_type);
return seed;
}
bool operator==(const FakeQuantKey& rhs) const {
bool result = jqp.c == rhs.jqp.c && jqp.is_planar == rhs.jqp.is_planar && jqp.src_prc == rhs.jqp.src_prc &&
jqp.wei_prc == rhs.jqp.wei_prc && jqp.dst_prc == rhs.jqp.dst_prc &&
jqp.op_type == rhs.jqp.op_type && jqp.s_str == rhs.jqp.s_str && jqp.d_str == rhs.jqp.d_str;
return result;
}
};
} // namespace
MKLDNNFakeQuantizeNode::MKLDNNFakeQuantizeNode(const std::shared_ptr<ngraph::Node>& op, const mkldnn::engine& eng, MKLDNNWeightsSharing::Ptr &cache) :
MKLDNNNode(op, eng, cache) {
std::string errorMessage;
@ -1363,27 +1389,28 @@ void MKLDNNFakeQuantizeNode::prepareParams() {
IE_THROW() << "CPU quantize node with name '" << getName() << "' doesn't have primitive descriptors.";
if (selectedPrimitiveDescriptor->getImplementationType() != impl_desc_type::ref) {
const auto& config = getSelectedPrimitiveDescriptor()->getConfig();
const auto& inDims = getParentEdgesAtPort(0)[0]->getMemory().getStaticDims();
jit_quantize_params jqp = {};
jqp.c = inDims.size() > 1 ? inDims[1] : 1;
jqp.src_prc = config.inConfs[0].desc->getPrecision();
jqp.wei_prc = Precision::FP32;
jqp.dst_prc = config.outConfs[0].desc->getPrecision();
//Form FakeQuanKey
FakeQuantKey key = {};
key.jqp.c = inDims.size() > 1 ? inDims[1] : 1;
key.jqp.src_prc = config.inConfs[0].desc->getPrecision();
key.jqp.wei_prc = Precision::FP32;
key.jqp.dst_prc = config.outConfs[0].desc->getPrecision();
auto srcDesc = getParentEdgeAt(0)->getMemory().GetDescWithType<BlockedMemoryDesc>();
jqp.s_str = srcDesc->getStrides();
key.jqp.s_str = srcDesc->getStrides();
auto dstDesc = getChildEdgeAt(0)->getMemory().GetDescWithType<BlockedMemoryDesc>();
jqp.d_str = dstDesc->getStrides();
jqp.is_planar = srcDesc->hasLayoutType(LayoutType::ncsp) && one_of(srcDesc->getShape().getRank(), 3, 4, 5);
key.jqp.d_str = dstDesc->getStrides();
key.jqp.is_planar = srcDesc->hasLayoutType(LayoutType::ncsp) && one_of(srcDesc->getShape().getRank(), 3, 4, 5);
key.jqp.op_type = getAlgorithm();
jqp.op_type = getAlgorithm();
execPtr = std::make_shared<FakeQuantizeJitExecutor>(jqp);
auto cache = getRuntimeCache();
auto buildExecutor = [](const FakeQuantKey& key) {
return std::make_shared<FakeQuantizeJitExecutor>(key.jqp);
};
auto result = cache->getOrCreate(key, buildExecutor);
execPtr = result.first;
}
}

View File

@ -15,11 +15,111 @@
#include <utils/general_utils.h>
#include <memory_desc/cpu_memory_desc_utils.h>
#include "memory_desc/dnnl_blocked_memory_desc.h"
#include <common/primitive_hashing_utils.hpp>
using namespace mkldnn;
using namespace MKLDNNPlugin;
using namespace InferenceEngine;
namespace {
struct PoolingKey {
DnnlMemoryDescCPtr inp;
DnnlMemoryDescCPtr out;
std::vector<ptrdiff_t> stride;
std::vector<ptrdiff_t> kernel;
/// Effective padding. Used to define correct output shape by MKLDNN
/// reshape formula: (iw - kernel + pad_l + pad_r) / strides[i - 2] + 1
/// should be passed into pooling desc constructor.
std::vector<ptrdiff_t> effective_pad_begin;
std::vector<ptrdiff_t> effective_pad_end;
/// Effective dilation. Used to define correct dilation for OneDNN.
/// For OneDNN default dilation is vector of zero
std::vector<ptrdiff_t> effective_dilation;
std::vector<ptrdiff_t> data_pad_end;
mkldnn::primitive_attr attr;
algorithm alg;
impl_desc_type implType;
size_t hash() const {
using namespace dnnl::impl;
using namespace dnnl::impl::primitive_hashing;
size_t seed = 0;
seed = hash_combine(seed, get_md_hash(inp->getDnnlDesc().data));
seed = get_vector_hash(seed, stride);
seed = get_vector_hash(seed, kernel);
seed = get_vector_hash(seed, effective_pad_begin);
seed = get_vector_hash(seed, effective_pad_end);
seed = get_vector_hash(seed, effective_dilation);
seed = get_vector_hash(seed, data_pad_end);
seed = hash_combine(seed, get_md_hash(out->getDnnlDesc().data));
seed = hash_combine(seed, get_attr_hash(*attr.get()));
seed = hash_combine(seed, alg);
seed = hash_combine(seed, implType);
return seed;
}
bool operator==(const PoolingKey& rhs) const {
bool result = true;
if (inp != rhs.inp) {
result = result && inp && rhs.inp && (inp->getDnnlDesc() == rhs.inp->getDnnlDesc());
}
if (out != rhs.out) {
result = result && out && rhs.out && (out->getDnnlDesc() == rhs.out->getDnnlDesc());
}
result = result && stride == rhs.stride && kernel == rhs.kernel &&
effective_pad_begin == rhs.effective_pad_begin && effective_pad_end == rhs.effective_pad_end &&
effective_dilation == rhs.effective_dilation && data_pad_end == rhs.data_pad_end &&
*attr.get() == *rhs.attr.get() && alg == rhs.alg && implType == rhs.implType;
return result;
}
};
std::shared_ptr<pooling_v2_forward::desc> createDescriptorHelper(const mkldnn::memory::desc& in_candidate,
const mkldnn::memory::desc& out_candidate,
const mkldnn::algorithm alg,
const std::vector<ptrdiff_t>& stride,
const std::vector<ptrdiff_t>& kernel,
const std::vector<ptrdiff_t>& effective_pad_begin,
const std::vector<ptrdiff_t>& effective_pad_end,
const std::vector<ptrdiff_t>& effective_dilation,
const std::vector<ptrdiff_t>& data_pad_end) {
if (alg == mkldnn::algorithm::undef) {
IE_THROW() << "Unsupported pooling type";
}
auto convert = [](std::vector<ptrdiff_t> orig_dims) {
return memory::dims(orig_dims.begin(), orig_dims.end());
};
std::shared_ptr<pooling_v2_forward::desc> desc_ptr(new pooling_v2_forward::desc(prop_kind::forward_scoring,
alg,
in_candidate,
out_candidate,
convert(stride),
convert(kernel),
convert(effective_dilation),
convert(effective_pad_begin),
convert(effective_pad_end)));
if (alg == mkldnn::algorithm::pooling_avg_include_padding) {
// In case of AVG including paddings the norm coeff should be calculated
// with tacking into account original pads. So we need to restore
// original values for end paddings.
//
// WA. Because mkldnn uses different formula to calculate AVG norm coeff
// in compare with Caffe. In mkldnn coeff is always 1/(KH*KW)
for (int i = 0; i < data_pad_end.size(); i++) {
if (data_pad_end[i] != effective_pad_end[i])
desc_ptr->data.padding[1][i] = static_cast<ptrdiff_t>(data_pad_end[i]);
}
}
return desc_ptr;
}
} // namespace
bool MKLDNNPoolingNode::isSupportedOperation(const std::shared_ptr<const ov::Node>& op, std::string& errorMessage) noexcept {
try {
if (ov::is_type<const ov::op::v8::MaxPool>(op)) {
@ -239,9 +339,7 @@ void MKLDNNPoolingNode::prepareParams() {
}
auto inDesc = getParentEdgesAtPort(0)[0]->getMemory().GetDescWithType<DnnlMemoryDesc>();
const auto& in_candidate = inDesc->getDnnlDesc();
auto outDesc = getChildEdgesAtPort(0)[0]->getMemory().GetDescWithType<DnnlMemoryDesc>();
const auto& out_candidate = outDesc->getDnnlDesc();
if (isDynamicNode()) {
if (auto_pad) {
@ -251,22 +349,52 @@ void MKLDNNPoolingNode::prepareParams() {
}
mkldnn::algorithm alg = getPoolingAlgorithm();
MKLDNNDescriptor desc{createDescriptorInternal(in_candidate, out_candidate, alg)};
pooling_v2_forward::primitive_desc prim_desc;
primitive_desc_iterator itpd = desc.createPrimitiveDescriptorIterator(getEngine(), *attr);
PoolingKey key = {inDesc,
outDesc,
stride,
kernel,
effective_pad_begin,
effective_pad_end,
effective_dilation,
data_pad_end,
*attr,
alg,
selected_pd->getImplementationType()};
auto engine = getEngine();
auto builder = [&engine](const PoolingKey& key) -> std::shared_ptr<mkldnn::primitive> {
auto desc_ptr = createDescriptorHelper(key.inp->getDnnlDesc(),
key.out->getDnnlDesc(),
key.alg,
key.stride,
key.kernel,
key.effective_pad_begin,
key.effective_pad_end,
key.effective_dilation,
key.data_pad_end);
MKLDNNDescriptor desc{desc_ptr};
pooling_v2_forward::primitive_desc prim_desc;
primitive_desc_iterator itpd = desc.createPrimitiveDescriptorIterator(engine, key.attr);
while (static_cast<bool>(itpd)) {
impl_desc_type impl_type = parse_impl_name(itpd.impl_info_str());
while (static_cast<bool>(itpd)) {
impl_desc_type impl_type = parse_impl_name(itpd.impl_info_str());
if (impl_type == selected_pd->getImplementationType()) {
prim_desc = itpd.get();
break;
if (impl_type == key.implType) {
prim_desc = itpd.get();
break;
}
if (!itpd.next_impl())
return nullptr;
}
if (!itpd.next_impl())
IE_THROW() << "Primitive descriptor was not found for node " << getName() << ".";
return std::make_shared<pooling_v2_forward>(prim_desc);
};
auto cache = getRuntimeCache();
auto result = cache->getOrCreate(key, builder);
if (!result.first) {
IE_THROW() << "Primitive descriptor was not found for node " << getName() << ".";
}
prim.reset(new pooling_v2_forward(prim_desc));
prim = result.first;
auto src = getParentEdgesAtPort(0)[0]->getMemoryPtr()->GetPrimitive();
auto dst = getChildEdgesAtPort(0)[0]->getMemoryPtr()->GetPrimitive();
@ -308,39 +436,19 @@ mkldnn::algorithm MKLDNNPoolingNode::getPoolingAlgorithm() const {
}
}
std::shared_ptr<pooling_v2_forward::desc> MKLDNNPoolingNode::createDescriptorInternal(const mkldnn::memory::desc& in_candidate,
const mkldnn::memory::desc& out_candidate,
const mkldnn::algorithm alg) const {
if (alg == mkldnn::algorithm::undef) {
IE_THROW() << "Unsupported pooling type";
}
auto convert = [] (std::vector<ptrdiff_t> orig_dims) {
return memory::dims(orig_dims.begin(), orig_dims.end());
};
std::shared_ptr<pooling_v2_forward::desc> desc_ptr(
new pooling_v2_forward::desc(prop_kind::forward_scoring, alg,
in_candidate, out_candidate,
convert(stride),
convert(kernel),
convert(effective_dilation),
convert(effective_pad_begin),
convert(effective_pad_end)));
if (alg == mkldnn::algorithm::pooling_avg_include_padding) {
// In case of AVG including paddings the norm coeff should be calculated
// with tacking into account original pads. So we need to restore
// original values for end paddings.
//
// WA. Because mkldnn uses different formula to calculate AVG norm coeff
// in compare with Caffe. In mkldnn coeff is always 1/(KH*KW)
for (int i = 0; i < data_pad_end.size(); i++) {
if (data_pad_end[i] != effective_pad_end[i])
desc_ptr->data.padding[1][i] = static_cast<ptrdiff_t>(data_pad_end[i]);
}
}
return desc_ptr;
std::shared_ptr<pooling_v2_forward::desc> MKLDNNPoolingNode::createDescriptorInternal(
const mkldnn::memory::desc& in_candidate,
const mkldnn::memory::desc& out_candidate,
const mkldnn::algorithm alg) const {
return createDescriptorHelper(in_candidate,
out_candidate,
alg,
stride,
kernel,
effective_pad_begin,
effective_pad_end,
effective_dilation,
data_pad_end);
}
void MKLDNNPoolingNode::createDescriptor(const std::vector<MemoryDescPtr> &inputDesc,

View File

@ -1,427 +1,397 @@
//// Copyright (C) 2018-2021 Intel Corporation
//// SPDX-License-Identifier: Apache-2.0
////
//
//#include "shared_test_classes/base/layer_test_utils.hpp"
//#include "test_utils/cpu_test_utils.hpp"
//#include "ngraph_functions/builders.hpp"
//
//using namespace InferenceEngine;
//using namespace ngraph;
//using namespace CPUTestUtils;
//
//namespace CPULayerTestsDefinitions {
//
//using inputShapes = std::tuple<std::vector<ngraph::PartialShape>, // dynamic input shapes
// std::vector<ngraph::Shape>, // target input shapes
// std::vector<SizeVector>>; // range input shapes
//
//using fqSpecificParams = std::tuple<int64_t, // 'data' input low bounds
// int64_t, // 'data' input high bounds
// std::vector<float>, // output low
// std::vector<float>, // output high
// size_t>; // levels
//
//using fqLayerTestParamsSet = std::tuple<fqSpecificParams,
// inputShapes, // input shapes
// Precision, // input precision
// std::pair<std::vector<float>, std::vector<float>>, // il and ih values
// bool, // should be decomposed
// CPUSpecificParams>;
//
//class FakeQuantizeLayerCPUTest : public testing::WithParamInterface<fqLayerTestParamsSet>,
// virtual public LayerTestsUtils::LayerTestsCommon, public CPUTestsBase {
//public:
// static std::string getTestCaseName(testing::TestParamInfo<fqLayerTestParamsSet> obj) {
// fqSpecificParams fqParams;
// inputShapes testShapes;
// Precision inPrec;
// std::pair<std::vector<float>, std::vector<float>> inputRangesValues;
// bool shouldBeDecomposed;
// CPUSpecificParams cpuParams;
// std::tie(fqParams, testShapes, inPrec, inputRangesValues, shouldBeDecomposed, cpuParams) = obj.param;
//
// std::vector<ngraph::PartialShape> dynamicShapes;
// std::vector<ngraph::Shape> targetShapes;
// std::vector<SizeVector> ranges;
// std::tie(dynamicShapes, targetShapes, ranges) = testShapes;
//
// int64_t inDataLowBounds, inDataHighBounds;
// std::vector<float> inputLow, inputHigh, outputLow, outputHigh;
// size_t levels;
// inputLow = inputRangesValues.first;
// inputHigh = inputRangesValues.second;
// std::tie(inDataLowBounds, inDataHighBounds, outputLow, outputHigh, levels) = fqParams;
//
// std::ostringstream result;
// if (!dynamicShapes.empty()) {
// result << "IS=" << CommonTestUtils::partialShape2str(dynamicShapes) << "_";
// }
// result << "TS=";
// for (const auto& shape : targetShapes) {
// result << "(" << CommonTestUtils::vec2str(shape) << ")_";
// }
// result << "RS=";
// for (const auto& data : ranges) {
// result << "(" << CommonTestUtils::vec2str(data) << ")_";
// }
// result << "inPrec=" << inPrec.name() << "_";
//
// result << "LOW_BOUNDS=" << inDataLowBounds << "_";
// result << "HIGH_BOUNDS=" << inDataHighBounds << "_";
// result << "IL=" << CommonTestUtils::vec2str(inputLow) << "_";
// result << "IH=" << CommonTestUtils::vec2str(inputHigh) << "_";
// result << "OL=" << CommonTestUtils::vec2str(outputLow) << "_";
// result << "OH=" << CommonTestUtils::vec2str(outputHigh) << "_";
// result << "LEVELS=" << levels;
//
// result << CPUTestsBase::getTestCaseName(cpuParams);
//
// return result.str();
// }
//
// void Infer() override {
// inferRequest = executableNetwork.CreateInferRequest();
// inputs.clear();
//
// const InputsDataMap &inDataMap = cnnNetwork.getInputsInfo();
// auto input = inDataMap.begin();
//
// const auto td = input->second->getTensorDesc();
// Blob::Ptr blob = FuncTestUtils::createAndFillBlob(InferenceEngine::TensorDesc(td.getPrecision(), targetStaticShapes[index][0], td.getLayout()),
// inDataHighBounds - inDataLowBounds, inDataLowBounds);
// inferRequest.SetBlob(input->second->name(), blob);
// inputs.push_back(blob);
//
// inferRequest.Infer();
// }
//
//protected:
// std::string layerName;
//
// void SetUp() override {
// targetDevice = CommonTestUtils::DEVICE_CPU;
// fqSpecificParams fqParams;
// inputShapes testShapes;
// Precision inPrec;
// std::pair<std::vector<float>, std::vector<float>> inputRangesValues;
// bool shouldBeDecomposed;
// CPUSpecificParams cpuParams;
// std::tie(fqParams, testShapes, inPrec, inputRangesValues, shouldBeDecomposed, cpuParams) = this->GetParam();
//
// std::tie(inFmts, outFmts, priority, selectedType) = cpuParams;
//
// std::vector<ngraph::Shape> targetShapes;
// std::vector<SizeVector> ranges;
// std::tie(inputDynamicShapes, targetShapes, ranges) = testShapes;
//
// for (size_t i = 0; i < targetShapes.size(); i++) {
// targetStaticShapes.push_back(std::vector<ov::Shape>{targetShapes});
// }
//
// size_t levels;
// std::vector<std::vector<float>> rangesBounds(RANGES_INPUT_NUMBER);
// rangesBounds[0] = inputRangesValues.first;
// rangesBounds[1] = inputRangesValues.second;
// std::tie(inDataLowBounds, inDataHighBounds, rangesBounds[2], rangesBounds[3], levels) = fqParams;
//
// auto ngInPrec = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(inPrec);
// ParameterVector params = builder::makeParams(ngInPrec, {targetStaticShapes[0][0]});
// auto paramOuts = helpers::convert2OutputVector(helpers::castOps2Nodes<opset5::Parameter>(params));
//
// auto il = builder::makeConstant(ngInPrec, ranges[0], rangesBounds[0], rangesBounds[0].empty());
// auto ih = builder::makeConstant(ngInPrec, ranges[1], rangesBounds[1], rangesBounds[1].empty());
// auto ol = builder::makeConstant(ngInPrec, ranges[2], rangesBounds[2], rangesBounds[2].empty());
// auto oh = builder::makeConstant(ngInPrec, ranges[3], rangesBounds[3], rangesBounds[3].empty());
// auto fq = std::make_shared<opset5::FakeQuantize>(paramOuts[0], il, ih, ol, oh, levels);
//
// layerName = shouldBeDecomposed ? "" : "FakeQuantize";
//
// if (selectedType.empty()) {
// selectedType = getPrimitiveType() + "_" + inPrec.name();
// }
//
// function = makeNgraphFunction(ngInPrec, params, fq, "FakeQuantizeCPU");
// }
//
//private:
// const size_t RANGES_INPUT_NUMBER = 4;
//
// int64_t inDataLowBounds, inDataHighBounds;
//};
//
//TEST_P(FakeQuantizeLayerCPUTest, CompareWithRefs) {
// SKIP_IF_CURRENT_TEST_IS_DISABLED()
// Run();
//
// CheckPluginRelatedResults(executableNetwork, layerName);
//}
//
//
//const std::vector<size_t> levels = {16, 255, 256};
//
//int64_t dataLowBounds{-10}, dataHighBounds{10};
//
//const std::vector<std::pair<std::vector<float>, std::vector<float>>> input_ranges = {
// {{0.0f}, {5.f}},
// {{-10.0f}, {-5.f}}
//};
//
//const std::vector<float> outputLow{5.0f}, outputHigh{25.0f};
//
//const auto specificParams = ::testing::Combine(::testing::Values(dataLowBounds),
// ::testing::Values(dataHighBounds),
// ::testing::Values(outputLow),
// ::testing::Values(outputHigh),
// ::testing::ValuesIn(levels));
//
//namespace fqImpl {
//
//std::vector<CPUSpecificParams> memForm4D_jit = {
// CPUSpecificParams({nchw}, {nchw}, {}, {}),
// CPUSpecificParams({nhwc}, {nhwc}, {}, {}),
// CPUSpecificParams({nChw16c}, {nChw16c}, {}, {})
//};
//
//std::vector<inputShapes> rangesShapes4D_jit = {
// inputShapes{
// {},
// {{4, 5, 6, 7}},
// {{1, 5, 1, 1}, {1, 5, 1, 1}, {1, 5, 1, 1}, {1, 5, 1, 1}}
// },
// inputShapes{
// {},
// {{4, 5, 6, 7}},
// {{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}}
// },
// inputShapes{
// {{-1, -1, -1, -1}},
// {{4, 5, 6, 7}, {1, 12, 1, 1}, {4, 1, 8, 2}, {1, 16, 6, 1}},
// {{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}}
// },
// inputShapes{
// {{-1, -1, -1, -1}},
// {{4, 16, 6, 7}, {1, 16, 1, 1}, {7, 16, 1, 2}, {1, 16, 6, 1}},
// {{1, 16, 1, 1}, {1, 16, 1, 1}, {1, 16, 1, 1}, {1, 16, 1, 1}}
// },
//};
//
//const auto testParams4D_jit = ::testing::Combine(specificParams,
// ::testing::ValuesIn(rangesShapes4D_jit),
// ::testing::Values(Precision::FP32),
// ::testing::ValuesIn(input_ranges),
// ::testing::Values(false),
// ::testing::ValuesIn(filterCPUSpecificParams(memForm4D_jit)));
//INSTANTIATE_TEST_SUITE_P(smoke_FakeQuantizeLayerCPUTest_4D_jit, FakeQuantizeLayerCPUTest, testParams4D_jit, FakeQuantizeLayerCPUTest::getTestCaseName);
//
//
//std::vector<CPUSpecificParams> memForm4D_ref = {
// CPUSpecificParams({nchw}, {nchw}, {"ref_FP32"}, {"ref_FP32"})
//};
//
//std::vector<inputShapes> rangesShapes4D_ref = {
// inputShapes{
// {},
// {{4, 5, 6, 7}},
// {{4, 1, 1, 1}, {4, 1, 1, 1}, {4, 1, 1, 1}, {4, 1, 1, 1}}
// },
// inputShapes{
// {{-1, -1, -1, -1}},
// {{4, 16, 6, 7}, {4, 1, 1, 1}, {4, 16, 1, 2}, {4, 16, 6, 1}},
// {{4, 1, 1, 1}, {4, 1, 1, 1}, {4, 1, 1, 1}, {4, 1, 1, 1}}
// },
//};
//
//const auto testParams4D_ref = ::testing::Combine(specificParams,
// ::testing::ValuesIn(rangesShapes4D_ref),
// ::testing::Values(Precision::FP32),
// ::testing::ValuesIn(input_ranges),
// ::testing::Values(false),
// ::testing::ValuesIn(memForm4D_ref));
//INSTANTIATE_TEST_SUITE_P(smoke_FakeQuantizeLayerCPUTest_4D_ref, FakeQuantizeLayerCPUTest, testParams4D_ref, FakeQuantizeLayerCPUTest::getTestCaseName);
//
//
//std::vector<CPUSpecificParams> memForm5D_jit = {
// CPUSpecificParams({ncdhw}, {ncdhw}, {}, {}),
// CPUSpecificParams({ndhwc}, {ndhwc}, {}, {}),
// CPUSpecificParams({nCdhw16c}, {nCdhw16c}, {}, {})
//};
//
//std::vector<inputShapes> rangesShapes5D_jit = {
// inputShapes{
// {},
// {{3, 4, 5, 6, 7}},
// {{1, 4, 1, 1, 1}, {1, 4, 1, 1, 1}, {1, 4, 1, 1, 1}, {1, 4, 1, 1, 1}}
// },
// inputShapes{
// {},
// {{3, 4, 5, 6, 7}},
// {{1, 1, 1, 1, 1}, {1, 1, 1, 1, 1}, {1, 1, 1, 1, 1}, {1, 1, 1, 1, 1}}
// },
// inputShapes{
// {{-1, -1, -1, -1, -1}},
// {{3, 4, 5, 6, 7}, {1, 12, 1, 1, 1}, {4, 1, 8, 2, 7}, {1, 16, 6, 5, 1}},
// {{1, 1, 1, 1, 1}, {1, 1, 1, 1, 1}, {1, 1, 1, 1, 1}, {1, 1, 1, 1, 1}}
// },
// inputShapes{
// {{-1, -1, -1, -1, -1}},
// {{4, 16, 6, 7, 8}, {1, 16, 1, 1, 1}, {7, 16, 1, 2, 5}, {1, 16, 6, 1, 7}},
// {{1, 16, 1, 1, 1}, {1, 16, 1, 1, 1}, {1, 16, 1, 1, 1}, {1, 16, 1, 1, 1}}
// },
//};
//
//const auto testParams5D_jit = ::testing::Combine(specificParams,
// ::testing::ValuesIn(rangesShapes5D_jit),
// ::testing::Values(Precision::FP32),
// ::testing::ValuesIn(input_ranges),
// ::testing::Values(false),
// ::testing::ValuesIn(filterCPUSpecificParams(memForm5D_jit)));
//
//INSTANTIATE_TEST_SUITE_P(smoke_FakeQuantizeLayerCPUTest_5D_jit, FakeQuantizeLayerCPUTest, testParams5D_jit, FakeQuantizeLayerCPUTest::getTestCaseName);
//
//
//std::vector<CPUSpecificParams> memForm5D_ref = {
// CPUSpecificParams({ncdhw}, {ncdhw}, {"ref_FP32"}, {"ref_FP32"})
//};
//
//std::vector<inputShapes> rangesShapes5D_ref = {
// inputShapes{
// {},
// {{3, 4, 5, 6, 7}},
// {{3, 1, 1, 1, 1}, {3, 1, 1, 1, 1}, {3, 1, 1, 1, 1}, {3, 1, 1, 1, 1}}
// },
// inputShapes{
// {{-1, -1, -1, -1, -1}},
// {{3, 16, 6, 7, 8}, {3, 16, 1, 1, 1}, {3, 16, 1, 2, 5}, {3, 16, 6, 1, 7}},
// {{3, 1, 1, 1, 1}, {3, 1, 1, 1, 1}, {3, 1, 1, 1, 1}, {3, 1, 1, 1, 1}}
// },
//};
//
//const auto testParams5D_ref = ::testing::Combine(specificParams,
// ::testing::ValuesIn(rangesShapes5D_ref),
// ::testing::Values(Precision::FP32),
// ::testing::ValuesIn(input_ranges),
// ::testing::Values(false),
// ::testing::ValuesIn(memForm5D_ref));
//
//INSTANTIATE_TEST_SUITE_P(smoke_FakeQuantizeLayerCPUTest_5D_ref, FakeQuantizeLayerCPUTest, testParams5D_ref, FakeQuantizeLayerCPUTest::getTestCaseName);
//
//const auto specificParamsBin = ::testing::Combine(::testing::Values(dataLowBounds),
// ::testing::Values(dataHighBounds),
// ::testing::Values(std::vector<float>{0.0f}),
// ::testing::Values(std::vector<float>{1.0f}),
// ::testing::Values(2));
//
//const auto testParamsBin4D = ::testing::Combine(specificParamsBin,
// ::testing::ValuesIn(rangesShapes4D_jit),
// ::testing::Values(Precision::FP32),
// ::testing::Values(std::pair<std::vector<float>, std::vector<float>>{{3.0f}, {3.f}}),
// ::testing::Values(false),
// ::testing::Values(CPUSpecificParams()));
//
//INSTANTIATE_TEST_SUITE_P(smoke_FakeQuantizeLayerCPUTest_4D_bin, FakeQuantizeLayerCPUTest, testParamsBin4D, FakeQuantizeLayerCPUTest::getTestCaseName);
//
//} // namespace fqImpl
//
//namespace fqDecompos {
//
//std::vector<inputShapes> decomposeShapes = {
// inputShapes{
// {},
// {{4, 5, 6, 7}},
// {{4, 5, 6, 7}, {4, 5, 6, 7}, {4, 5, 6, 7}, {4, 5, 6, 7}}
// },
// inputShapes{
// {},
// {{4, 5, 6, 7}},
// {{1, 5, 1, 1}, {1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 6, 7}}
// },
// inputShapes{
// {},
// {{4, 5, 6, 7}},
// {{1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 6, 7}}
// },
// inputShapes{
// {},
// {{4, 5, 6, 7}},
// {{1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 1, 1}, {1, 1, 1, 1}}
// },
// inputShapes{
// {},
// {{4, 5, 6, 7}},
// {{1, 1, 6, 1}, {1, 5, 6, 7}, {1, 1, 6, 1}, {1, 1, 6, 1}}
// },
// inputShapes{
// {},
// {{3, 4, 5, 6, 7}},
// {{4, 5, 6, 7}, {4, 5, 6, 7}, {4, 5, 6, 7}, {4, 5, 6, 7}}
// },
// inputShapes{
// {},
// {{3, 4, 5, 6, 7}},
// {{1, 5, 1, 1}, {1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 6, 7}}
// },
// inputShapes{
// {},
// {{3, 4, 5, 6, 7}},
// {{1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 6, 7}}
// },
// inputShapes{
// {},
// {{3, 4, 5, 6, 7}},
// {{1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 1, 1}, {1, 1, 1, 1}}
// },
// inputShapes{
// {},
// {{3, 4, 5, 6, 7}},
// {{1, 1, 6, 1}, {1, 5, 6, 7}, {1, 1, 6, 1}, {1, 1, 6, 1}}
// },
// inputShapes{
// {},
// {{2, 3, 4, 5, 6, 7}},
// {{4, 5, 6, 7}, {4, 5, 6, 7}, {4, 5, 6, 7}, {4, 5, 6, 7}}
// },
// inputShapes{
// {},
// {{2, 3, 4, 5, 6, 7}},
// {{1, 5, 1, 1}, {1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 6, 7}}
// },
// inputShapes{
// {},
// {{2, 3, 4, 5, 6, 7}},
// {{1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 6, 7}}
// },
// inputShapes{
// {},
// {{2, 3, 4, 5, 6, 7}},
// {{1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 1, 1}, {1, 1, 1, 1}}
// },
// inputShapes{
// {},
// {{2, 3, 4, 5, 6, 7}},
// {{1, 1, 6, 1}, {1, 5, 6, 7}, {1, 1, 6, 1}, {1, 1, 6, 1}}
// },
// inputShapes{
// {{-1, -1, -1, -1}},
// {{4, 5, 6, 7}, {1, 5, 6, 7}, {7, 5, 6, 7}},
// {{1, 1, 6, 1}, {1, 5, 6, 7}, {1, 1, 6, 1}, {1, 1, 6, 1}}
// },
// inputShapes{
// {{-1, -1, -1, -1, -1}},
// {{8, 4, 5, 6, 7}, {1, 1, 5, 6, 7}, {1, 1, 1, 6, 7}},
// {{1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 1, 1}, {1, 1, 1, 1}}
// },
//};
//
//const auto testParams = ::testing::Combine(specificParams,
// ::testing::ValuesIn(decomposeShapes),
// ::testing::Values(Precision::FP32),
// ::testing::ValuesIn(input_ranges),
// ::testing::Values(true),
// ::testing::Values(CPUSpecificParams{}));
//
//INSTANTIATE_TEST_SUITE_P(smoke_FakeQuantizeLayerCPUTest_Decompos, FakeQuantizeLayerCPUTest, testParams, FakeQuantizeLayerCPUTest::getTestCaseName);
//
//} // namespace fqDecompos
//
//} // namespace CPULayerTestsDefinitions
// Copyright (C) 2018-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include "test_utils/cpu_test_utils.hpp"
#include "ngraph_functions/builders.hpp"
#include "shared_test_classes/base/ov_subgraph.hpp"
#include <functional_test_utils/ov_tensor_utils.hpp>
using namespace InferenceEngine;
using namespace ngraph;
using namespace CPUTestUtils;
using namespace ov::test;
namespace CPULayerTestsDefinitions {
using inputShapes = std::tuple<ov::test::InputShape, // dynamic data shape
std::vector<SizeVector>>; // range input shapes
using fqSpecificParams = std::tuple<int64_t, // 'data' input low bounds
int64_t, // 'data' input high bounds
std::vector<float>, // output low
std::vector<float>, // output high
size_t>; // levels
using fqLayerTestParamsSet = std::tuple<fqSpecificParams,
inputShapes, // input shapes
Precision, // input precision
std::pair<std::vector<float>, std::vector<float>>, // il and ih values
bool, // should be decomposed
CPUSpecificParams>;
class FakeQuantizeLayerCPUTest : public testing::WithParamInterface<fqLayerTestParamsSet>,
virtual public SubgraphBaseTest, public CPUTestsBase {
public:
static std::string getTestCaseName(testing::TestParamInfo<fqLayerTestParamsSet> obj) {
fqSpecificParams fqParams;
inputShapes testShapes;
Precision inPrec;
std::pair<std::vector<float>, std::vector<float>> inputRangesValues;
bool shouldBeDecomposed;
CPUSpecificParams cpuParams;
std::tie(fqParams, testShapes, inPrec, inputRangesValues, shouldBeDecomposed, cpuParams) = obj.param;
InputShape shapes;
std::vector<SizeVector> ranges;
std::tie(shapes, ranges) = testShapes;
int64_t inDataLowBounds, inDataHighBounds;
std::vector<float> inputLow, inputHigh, outputLow, outputHigh;
size_t levels;
inputLow = inputRangesValues.first;
inputHigh = inputRangesValues.second;
std::tie(inDataLowBounds, inDataHighBounds, outputLow, outputHigh, levels) = fqParams;
std::ostringstream result;
result << "IS=" << CommonTestUtils::partialShape2str({shapes.first}) << "_";
result << "TS=";
for (const auto& shape : shapes.second) {
result << "(" << CommonTestUtils::vec2str(shape) << ")_";
}
result << "RS=";
for (const auto& data : ranges) {
result << "(" << CommonTestUtils::vec2str(data) << ")_";
}
result << "inPrec=" << inPrec.name() << "_";
result << "LOW_BOUNDS=" << inDataLowBounds << "_";
result << "HIGH_BOUNDS=" << inDataHighBounds << "_";
result << "IL=" << CommonTestUtils::vec2str(inputLow) << "_";
result << "IH=" << CommonTestUtils::vec2str(inputHigh) << "_";
result << "OL=" << CommonTestUtils::vec2str(outputLow) << "_";
result << "OH=" << CommonTestUtils::vec2str(outputHigh) << "_";
result << "LEVELS=" << levels;
result << CPUTestsBase::getTestCaseName(cpuParams);
return result.str();
}
protected:
std::string layerName;
void SetUp() override {
targetDevice = CommonTestUtils::DEVICE_CPU;
fqSpecificParams fqParams;
inputShapes testShapes;
Precision inPrec;
std::pair<std::vector<float>, std::vector<float>> inputRangesValues;
bool shouldBeDecomposed;
CPUSpecificParams cpuParams;
std::tie(fqParams, testShapes, inPrec, inputRangesValues, shouldBeDecomposed, cpuParams) = this->GetParam();
std::tie(inFmts, outFmts, priority, selectedType) = cpuParams;
InputShape shapes;
std::vector<SizeVector> ranges;
std::tie(shapes, ranges) = testShapes;
inputDynamicShapes.push_back(shapes.first);
for (size_t i = 0; i < shapes.second.size(); i++) {
targetStaticShapes.push_back(std::vector<ov::Shape>{shapes.second[i]});
}
size_t levels;
std::vector<std::vector<float>> rangesBounds(RANGES_INPUT_NUMBER);
rangesBounds[0] = inputRangesValues.first;
rangesBounds[1] = inputRangesValues.second;
std::tie(inDataLowBounds, inDataHighBounds, rangesBounds[2], rangesBounds[3], levels) = fqParams;
auto ngInPrec = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(inPrec);
ParameterVector params = builder::makeDynamicParams(ngInPrec, inputDynamicShapes);
auto paramOuts = helpers::convert2OutputVector(helpers::castOps2Nodes<opset5::Parameter>(params));
auto il = builder::makeConstant(ngInPrec, ranges[0], rangesBounds[0], rangesBounds[0].empty());
auto ih = builder::makeConstant(ngInPrec, ranges[1], rangesBounds[1], rangesBounds[1].empty());
auto ol = builder::makeConstant(ngInPrec, ranges[2], rangesBounds[2], rangesBounds[2].empty());
auto oh = builder::makeConstant(ngInPrec, ranges[3], rangesBounds[3], rangesBounds[3].empty());
auto fq = std::make_shared<opset5::FakeQuantize>(paramOuts[0], il, ih, ol, oh, levels);
layerName = shouldBeDecomposed ? "" : "FakeQuantize";
if (selectedType.empty()) {
selectedType = getPrimitiveType() + "_" + inPrec.name();
}
function = makeNgraphFunction(ngInPrec, params, fq, "FakeQuantizeCPU");
}
void generate_inputs(const std::vector<ov::Shape>& targetInputStaticShapes) override {
inputs.clear();
const auto& funcInputs = function->inputs();
ASSERT_EQ(funcInputs.size(), 1);
const auto& funcInput = funcInputs[0];
ov::runtime::Tensor tensor;
tensor = ov::test::utils::create_and_fill_tensor(funcInput.get_element_type(),
targetInputStaticShapes[0],
inDataHighBounds - inDataLowBounds,
inDataLowBounds);
inputs.insert({funcInput.get_node_shared_ptr(), tensor});
}
private:
const size_t RANGES_INPUT_NUMBER = 4;
int64_t inDataLowBounds, inDataHighBounds;
};
TEST_P(FakeQuantizeLayerCPUTest, CompareWithRefs) {
SKIP_IF_CURRENT_TEST_IS_DISABLED()
run();
CheckPluginRelatedResults(executableNetwork, layerName);
}
const std::vector<size_t> levels = {16, 255, 256};
int64_t dataLowBounds{-10}, dataHighBounds{10};
const std::vector<std::pair<std::vector<float>, std::vector<float>>> input_ranges = {
{{0.0f}, {5.f}},
{{0.0f}, {}},
{{-10.0f}, {-5.f}}
};
const std::vector<float> outputLow{5.0f}, outputHigh{25.0f};
const auto specificParams = ::testing::Combine(::testing::Values(dataLowBounds),
::testing::Values(dataHighBounds),
::testing::Values(outputLow),
::testing::Values(outputHigh),
::testing::ValuesIn(levels));
namespace fqImpl {
std::vector<CPUSpecificParams> memForm4D_jit = {
CPUSpecificParams({nchw}, {nchw}, {}, {}),
CPUSpecificParams({nhwc}, {nhwc}, {}, {}),
CPUSpecificParams({nChw16c}, {nChw16c}, {}, {})
};
std::vector<inputShapes> rangesShapes4D_jit = {
inputShapes{
InputShape{{{4, 5, 6, 7}}, {{4, 5, 6, 7}}},
{{1, 5, 1, 1}, {1, 5, 1, 1}, {1, 5, 1, 1}, {1, 5, 1, 1}}
},
inputShapes{
InputShape{{{4, 5, 6, 7}}, {{4, 5, 6, 7}}},
{{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}}
},
inputShapes{
InputShape{{-1, -1, -1, -1}, {{4, 5, 6, 7}, {1, 12, 1, 1}, {4, 1, 8, 2}, {1, 16, 6, 1}, {4, 5, 6, 7}}},
{{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}}
},
inputShapes{
InputShape{{-1, -1, -1, -1}, {{4, 16, 6, 7}, {1, 16, 1, 1}, {7, 16, 1, 2}, {1, 16, 6, 1}, {4, 16, 6, 7}}},
{{1, 16, 1, 1}, {1, 16, 1, 1}, {1, 16, 1, 1}, {1, 16, 1, 1}}
},
};
const auto testParams4D_jit = ::testing::Combine(specificParams,
::testing::ValuesIn(rangesShapes4D_jit),
::testing::Values(Precision::FP32),
::testing::ValuesIn(input_ranges),
::testing::Values(false),
::testing::ValuesIn(filterCPUSpecificParams(memForm4D_jit)));
INSTANTIATE_TEST_SUITE_P(smoke_FakeQuantizeLayerCPUTest_4D_jit, FakeQuantizeLayerCPUTest, testParams4D_jit, FakeQuantizeLayerCPUTest::getTestCaseName);
std::vector<CPUSpecificParams> memForm4D_ref = {
CPUSpecificParams({nchw}, {nchw}, {"ref_FP32"}, {"ref_FP32"})
};
std::vector<inputShapes> rangesShapes4D_ref = {
inputShapes{
InputShape{{{4, 5, 6, 7}}, {{4, 5, 6, 7}}},
{{4, 1, 1, 1}, {4, 1, 1, 1}, {4, 1, 1, 1}, {4, 1, 1, 1}}
},
inputShapes{
InputShape{{-1, -1, -1, -1}, {{4, 16, 6, 7}, {4, 1, 1, 1}, {4, 16, 1, 2}, {4, 16, 6, 1}, {4, 16, 6, 7}}},
{{4, 1, 1, 1}, {4, 1, 1, 1}, {4, 1, 1, 1}, {4, 1, 1, 1}}
},
};
const auto testParams4D_ref = ::testing::Combine(specificParams,
::testing::ValuesIn(rangesShapes4D_ref),
::testing::Values(Precision::FP32),
::testing::ValuesIn(input_ranges),
::testing::Values(false),
::testing::ValuesIn(memForm4D_ref));
INSTANTIATE_TEST_SUITE_P(smoke_FakeQuantizeLayerCPUTest_4D_ref, FakeQuantizeLayerCPUTest, testParams4D_ref, FakeQuantizeLayerCPUTest::getTestCaseName);
std::vector<CPUSpecificParams> memForm5D_jit = {
CPUSpecificParams({ncdhw}, {ncdhw}, {}, {}),
CPUSpecificParams({ndhwc}, {ndhwc}, {}, {}),
CPUSpecificParams({nCdhw16c}, {nCdhw16c}, {}, {})
};
std::vector<inputShapes> rangesShapes5D_jit = {
inputShapes{
InputShape{{3, 4, 5, 6, 7}, {{3, 4, 5, 6, 7}}},
{{1, 4, 1, 1, 1}, {1, 4, 1, 1, 1}, {1, 4, 1, 1, 1}, {1, 4, 1, 1, 1}}
},
inputShapes{
InputShape{{3, 4, 5, 6, 7}, {{3, 4, 5, 6, 7}}},
{{1, 1, 1, 1, 1}, {1, 1, 1, 1, 1}, {1, 1, 1, 1, 1}, {1, 1, 1, 1, 1}}
},
inputShapes{
InputShape{{-1, -1, -1, -1, -1}, {{3, 4, 5, 6, 7}, {1, 12, 1, 1, 1}, {4, 1, 8, 2, 7}, {3, 4, 5, 6, 7}, {1, 16, 6, 5, 1}}},
{{1, 1, 1, 1, 1}, {1, 1, 1, 1, 1}, {1, 1, 1, 1, 1}, {1, 1, 1, 1, 1}}
},
inputShapes{
InputShape{{-1, -1, -1, -1, -1}, {{4, 16, 6, 7, 8}, {1, 16, 1, 1, 1}, {7, 16, 1, 2, 5}, {4, 16, 6, 7, 8}, {1, 16, 6, 1, 7}}},
{{1, 16, 1, 1, 1}, {1, 16, 1, 1, 1}, {1, 16, 1, 1, 1}, {1, 16, 1, 1, 1}}
},
};
const auto testParams5D_jit = ::testing::Combine(specificParams,
::testing::ValuesIn(rangesShapes5D_jit),
::testing::Values(Precision::FP32),
::testing::ValuesIn(input_ranges),
::testing::Values(false),
::testing::ValuesIn(filterCPUSpecificParams(memForm5D_jit)));
INSTANTIATE_TEST_SUITE_P(smoke_FakeQuantizeLayerCPUTest_5D_jit, FakeQuantizeLayerCPUTest, testParams5D_jit, FakeQuantizeLayerCPUTest::getTestCaseName);
std::vector<CPUSpecificParams> memForm5D_ref = {
CPUSpecificParams({ncdhw}, {ncdhw}, {"ref_FP32"}, {"ref_FP32"})
};
std::vector<inputShapes> rangesShapes5D_ref = {
inputShapes{
InputShape{{3, 4, 5, 6, 7}, {{3, 4, 5, 6, 7}}},
{{3, 1, 1, 1, 1}, {3, 1, 1, 1, 1}, {3, 1, 1, 1, 1}, {3, 1, 1, 1, 1}}
},
inputShapes{
InputShape{{-1, -1, -1, -1, -1}, {{3, 16, 6, 7, 8}, {3, 16, 1, 1, 1}, {3, 16, 1, 2, 5}, {3, 16, 6, 1, 7}, {3, 16, 6, 7, 8}}},
{{3, 1, 1, 1, 1}, {3, 1, 1, 1, 1}, {3, 1, 1, 1, 1}, {3, 1, 1, 1, 1}}
},
};
const auto testParams5D_ref = ::testing::Combine(specificParams,
::testing::ValuesIn(rangesShapes5D_ref),
::testing::Values(Precision::FP32),
::testing::ValuesIn(input_ranges),
::testing::Values(false),
::testing::ValuesIn(memForm5D_ref));
INSTANTIATE_TEST_SUITE_P(smoke_FakeQuantizeLayerCPUTest_5D_ref, FakeQuantizeLayerCPUTest, testParams5D_ref, FakeQuantizeLayerCPUTest::getTestCaseName);
const auto specificParamsBin = ::testing::Combine(::testing::Values(dataLowBounds),
::testing::Values(dataHighBounds),
::testing::Values(std::vector<float>{0.0f}),
::testing::Values(std::vector<float>{1.0f}),
::testing::Values(2));
const auto testParamsBin4D = ::testing::Combine(specificParamsBin,
::testing::ValuesIn(rangesShapes4D_jit),
::testing::Values(Precision::FP32),
::testing::Values(std::pair<std::vector<float>, std::vector<float>>{{3.0f}, {3.f}}),
::testing::Values(false),
::testing::Values(CPUSpecificParams()));
INSTANTIATE_TEST_SUITE_P(smoke_FakeQuantizeLayerCPUTest_4D_bin, FakeQuantizeLayerCPUTest, testParamsBin4D, FakeQuantizeLayerCPUTest::getTestCaseName);
} // namespace fqImpl
namespace fqDecompos {
std::vector<inputShapes> decomposeShapes = {
inputShapes{
InputShape{{4, 5, 6, 7}, {{4, 5, 6, 7}}},
{{4, 5, 6, 7}, {4, 5, 6, 7}, {4, 5, 6, 7}, {4, 5, 6, 7}}
},
inputShapes{
InputShape{{4, 5, 6, 7}, {{4, 5, 6, 7}}},
{{1, 5, 1, 1}, {1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 6, 7}}
},
inputShapes{
InputShape{{4, 5, 6, 7}, {{4, 5, 6, 7}}},
{{1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 6, 7}}
},
inputShapes{
InputShape{{4, 5, 6, 7}, {{4, 5, 6, 7}}},
{{1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 1, 1}, {1, 1, 1, 1}}
},
inputShapes{
InputShape{{4, 5, 6, 7}, {{4, 5, 6, 7}}},
{{1, 1, 6, 1}, {1, 5, 6, 7}, {1, 1, 6, 1}, {1, 1, 6, 1}}
},
inputShapes{
InputShape{{3, 4, 5, 6, 7}, {{3, 4, 5, 6, 7}}},
{{4, 5, 6, 7}, {4, 5, 6, 7}, {4, 5, 6, 7}, {4, 5, 6, 7}}
},
inputShapes{
InputShape{{3, 4, 5, 6, 7}, {{3, 4, 5, 6, 7}}},
{{1, 5, 1, 1}, {1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 6, 7}}
},
inputShapes{
InputShape{{3, 4, 5, 6, 7}, {{3, 4, 5, 6, 7}}},
{{1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 6, 7}}
},
inputShapes{
InputShape{{3, 4, 5, 6, 7}, {{3, 4, 5, 6, 7}}},
{{1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 1, 1}, {1, 1, 1, 1}}
},
inputShapes{
InputShape{{3, 4, 5, 6, 7}, {{3, 4, 5, 6, 7}}},
{{1, 1, 6, 1}, {1, 5, 6, 7}, {1, 1, 6, 1}, {1, 1, 6, 1}}
},
inputShapes{
InputShape{{2, 3, 4, 5, 6, 7}, {{2, 3, 4, 5, 6, 7}}},
{{4, 5, 6, 7}, {4, 5, 6, 7}, {4, 5, 6, 7}, {4, 5, 6, 7}}
},
inputShapes{
InputShape{{2, 3, 4, 5, 6, 7}, {{2, 3, 4, 5, 6, 7}}},
{{1, 5, 1, 1}, {1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 6, 7}}
},
inputShapes{
InputShape{{2, 3, 4, 5, 6, 7}, {{2, 3, 4, 5, 6, 7}}},
{{1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 6, 7}}
},
inputShapes{
InputShape{{2, 3, 4, 5, 6, 7}, {{2, 3, 4, 5, 6, 7}}},
{{1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 1, 1}, {1, 1, 1, 1}}
},
inputShapes{
InputShape{{2, 3, 4, 5, 6, 7}, {{2, 3, 4, 5, 6, 7}}},
{{1, 1, 6, 1}, {1, 5, 6, 7}, {1, 1, 6, 1}, {1, 1, 6, 1}}
},
inputShapes{
InputShape{{-1, -1, -1, -1}, {{4, 5, 6, 7}, {1, 5, 6, 7}, {7, 5, 6, 7}, {4, 5, 6, 7}}},
{{1, 1, 6, 1}, {1, 5, 6, 7}, {1, 1, 6, 1}, {1, 1, 6, 1}}
},
inputShapes{
InputShape{{-1, -1, -1, -1, -1}, {{8, 4, 5, 6, 7}, {1, 1, 5, 6, 7}, {1, 1, 1, 6, 7}, {8, 4, 5, 6, 7}}},
{{1, 1, 6, 7}, {1, 1, 6, 7}, {1, 1, 1, 1}, {1, 1, 1, 1}}
},
};
const auto testParams = ::testing::Combine(specificParams,
::testing::ValuesIn(decomposeShapes),
::testing::Values(Precision::FP32),
::testing::ValuesIn(input_ranges),
::testing::Values(true),
::testing::Values(CPUSpecificParams{}));
INSTANTIATE_TEST_SUITE_P(smoke_FakeQuantizeLayerCPUTest_Decompos, FakeQuantizeLayerCPUTest, testParams, FakeQuantizeLayerCPUTest::getTestCaseName);
} // namespace fqDecompos
} // namespace CPULayerTestsDefinitions

View File

@ -593,7 +593,8 @@ const std::vector<InputShape> inputShapes4D_int8 = {
{
{1, 32, 8, 8},
{1, 32, 8, 4},
{2, 32, 8, 12}
{2, 32, 8, 12},
{1, 32, 8, 8}
}
},
{
@ -603,7 +604,8 @@ const std::vector<InputShape> inputShapes4D_int8 = {
{
{3, 16, 32, 32},
{1, 16, 16, 12},
{1, 16, 8, 8}
{1, 16, 8, 8},
{3, 16, 32, 32},
}
}
};
@ -631,7 +633,8 @@ const std::vector<InputShape> inputShapes5D_int8 = {
{
{2, 32, 8, 8, 8},
{1, 32, 16, 20, 8},
{1, 32, 16, 16, 16}
{1, 32, 16, 16, 16},
{2, 32, 8, 8, 8}
}
},
{
@ -641,7 +644,8 @@ const std::vector<InputShape> inputShapes5D_int8 = {
{
{1, 16, 16, 16, 16},
{1, 16, 16, 8, 12},
{2, 16, 8, 8, 8}
{2, 16, 8, 8, 8},
{1, 16, 16, 16, 16},
}
}
};