[IE CLDNN] Added Round-5 operation (#2838)

This commit is contained in:
Roman Lyamin 2020-10-27 10:56:15 +03:00 committed by GitHub
parent dc52ec7880
commit 77365bcb4c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 299 additions and 314 deletions

View File

@ -869,6 +869,7 @@ Program::LayerType Program::LayerTypeFromStr(const std::string &str) {
{ "CTCGreedyDecoder", CTCGreedyDecoder },
{ "PriorBoxClustered", PriorBoxClustered },
{ "CumSum", CumSum },
{ "Round", Round },
{ "EmbeddingBagPackedSum", EmbeddingBagPackedSum },
{ "EmbeddingBagOffsetsSum", EmbeddingBagOffsetsSum },
{ "EmbeddingSegmentsSum", EmbeddingSegmentsSum },
@ -1563,6 +1564,8 @@ void Program::CreateSingleLayerPrimitive(cldnn::topology& topology, InferenceEng
break;
case CumSum: CreateCumSumPrimitive(topology, layer);
break;
case Round: CreateRoundPrimitive(topology, layer);
break;
case EmbeddingBagPackedSum: CreateEmbeddingBagPackedSumPrimitive(topology, layer);
break;
case EmbeddingBagOffsetsSum: CreateEmbeddingBagOffsetsSumPrimitive(topology, layer);
@ -5273,6 +5276,28 @@ void Program::CreateCumSumPrimitive(cldnn::topology& topology, InferenceEngine::
AddPrimitiveToProfiler(layerName, layer);
}
void Program::CreateRoundPrimitive(cldnn::topology& topology, InferenceEngine::CNNLayerPtr& layer) {
ValidateLayer(layer, 1);
auto inputPrimitives = GetPrevLayersPrimitives(layer);
auto layerName = layer_type_name_ID(layer);
std::string mode = layer->GetParamAsString("mode", "half_to_even");
if ((mode != "half_to_even") && (mode != "half_away_from_zero")) {
THROW_CLDNN_EXCEPTION("Unsupported mode (" + mode + ") in layer " + layerName);
}
auto func = mode == "half_to_even" ? cldnn::activation_func::round_half_to_even : cldnn::activation_func::round_half_away_from_zero;
auto primitive = cldnn::activation(
layerName,
inputPrimitives[0],
func);
topology.add(primitive);
AddPrimitiveToProfiler(layerName, layer);
}
void Program::CreatePriorBoxClusteredPrimitive(cldnn::topology& topology, InferenceEngine::CNNLayerPtr& layer) {
ValidateLayer(layer, 2);
auto pbcLayer = as<InferenceEngine::GenericLayer*>(layer);

View File

@ -224,6 +224,7 @@ public:
CTCGreedyDecoder,
PriorBoxClustered,
CumSum,
Round,
EmbeddingBagPackedSum,
EmbeddingBagOffsetsSum,
EmbeddingSegmentsSum,
@ -387,6 +388,7 @@ private:
void CreateCTCGreedyDecoderPrimitive(cldnn::topology& topology, InferenceEngine::CNNLayerPtr& layer);
void CreatePriorBoxClusteredPrimitive(cldnn::topology& topology, InferenceEngine::CNNLayerPtr& layer);
void CreateCumSumPrimitive(cldnn::topology& topology, InferenceEngine::CNNLayerPtr& layer);
void CreateRoundPrimitive(cldnn::topology& topology, InferenceEngine::CNNLayerPtr& layer);
void CreateEmbeddingBagPackedSumPrimitive(cldnn::topology& topology, InferenceEngine::CNNLayerPtr& layer);
void CreateEmbeddingBagOffsetsSumPrimitive(cldnn::topology& topology, InferenceEngine::CNNLayerPtr& layer);
void CreateEmbeddingSegmentsSumPrimitive(cldnn::topology& topology, InferenceEngine::CNNLayerPtr& layer);

View File

@ -17,35 +17,37 @@ const std::vector<InferenceEngine::Precision> netPrecisions = {
};
const std::map<ActivationTypes, std::vector<std::vector<float>>> activationTypes = {
{Sigmoid, {}},
{Tanh, {}},
{Relu, {}},
{Exp, {}},
{Log, {}},
{Sign, {}},
{Abs, {}},
{Gelu, {}},
{Clamp, {{-2.0f, 2.0f}}},
{Negative, {}},
{Acos, {}},
{Asin, {}},
{Atan, {}},
{Cos, {}},
{Cosh, {}},
{Floor, {}},
{Sin, {}},
{Sinh, {}},
{Sqrt, {}},
{Tan, {}},
{Elu, {{0.1f}}},
{Erf, {}},
{HardSigmoid, {{0.2f, 0.5f}}},
{Selu, {{1.6732f, 1.0507f}}},
{Ceiling, {}},
{Mish, {}},
{HSwish, {}},
{SoftPlus, {}},
{HSigmoid, {}}
{Sigmoid, {}},
{Tanh, {}},
{Relu, {}},
{Exp, {}},
{Log, {}},
{Sign, {}},
{Abs, {}},
{Gelu, {}},
{Clamp, {{-2.0f, 2.0f}}},
{Negative, {}},
{Acos, {}},
{Asin, {}},
{Atan, {}},
{Cos, {}},
{Cosh, {}},
{Floor, {}},
{Sin, {}},
{Sinh, {}},
{Sqrt, {}},
{Tan, {}},
{Elu, {{0.1f}}},
{Erf, {}},
{HardSigmoid, {{0.2f, 0.5f}}},
{Selu, {{1.6732f, 1.0507f}}},
{Ceiling, {}},
{Mish, {}},
{HSwish, {}},
{SoftPlus, {}},
{HSigmoid, {}},
{RoundHalfToEven, {}},
{RoundHalfAwayFromZero, {}}
};
std::map<std::vector<size_t>, std::vector<std::vector<size_t>>> basic = {

View File

@ -31,47 +31,49 @@
namespace LayerTestsDefinitions {
static std::map<ngraph::helpers::ActivationTypes, std::string> activationNames = {
{ngraph::helpers::ActivationTypes::Sigmoid, "Sigmoid"},
{ngraph::helpers::ActivationTypes::Tanh, "Tanh"},
{ngraph::helpers::ActivationTypes::Relu, "Relu"},
{ngraph::helpers::ActivationTypes::LeakyRelu, "LeakyRelu"},
{ngraph::helpers::ActivationTypes::Exp, "Exp"},
{ngraph::helpers::ActivationTypes::Log, "Log"},
{ngraph::helpers::ActivationTypes::Sign, "Sign"},
{ngraph::helpers::ActivationTypes::Abs, "Abs"},
{ngraph::helpers::ActivationTypes::Gelu, "Gelu"},
{ngraph::helpers::ActivationTypes::Clamp, "Clamp"},
{ngraph::helpers::ActivationTypes::Negative, "Negative"},
{ngraph::helpers::ActivationTypes::Acos, "Acos"},
{ngraph::helpers::ActivationTypes::Asin, "Asin"},
{ngraph::helpers::ActivationTypes::Atan, "Atan"},
{ngraph::helpers::ActivationTypes::Cos, "Cos"},
{ngraph::helpers::ActivationTypes::Cosh, "Cosh"},
{ngraph::helpers::ActivationTypes::Floor, "Floor"},
{ngraph::helpers::ActivationTypes::Sin, "Sin"},
{ngraph::helpers::ActivationTypes::Sinh, "Sinh"},
{ngraph::helpers::ActivationTypes::Sqrt, "Sqrt"},
{ngraph::helpers::ActivationTypes::Tan, "Tan"},
{ngraph::helpers::ActivationTypes::Elu, "Elu"},
{ngraph::helpers::ActivationTypes::Erf, "Erf"},
{ngraph::helpers::ActivationTypes::HardSigmoid, "HardSigmoid"},
{ngraph::helpers::ActivationTypes::Selu, "Selu"},
{ngraph::helpers::ActivationTypes::Sigmoid, "Sigmoid"},
{ngraph::helpers::ActivationTypes::Tanh, "Tanh"},
{ngraph::helpers::ActivationTypes::Relu, "Relu"},
{ngraph::helpers::ActivationTypes::LeakyRelu, "LeakyRelu"},
{ngraph::helpers::ActivationTypes::Exp, "Exp"},
{ngraph::helpers::ActivationTypes::Log, "Log"},
{ngraph::helpers::ActivationTypes::Sign, "Sign"},
{ngraph::helpers::ActivationTypes::Abs, "Abs"},
{ngraph::helpers::ActivationTypes::Gelu, "Gelu"},
{ngraph::helpers::ActivationTypes::Ceiling, "Ceiling"},
{ngraph::helpers::ActivationTypes::PReLu, "PReLu"},
{ngraph::helpers::ActivationTypes::Mish, "Mish"},
{ngraph::helpers::ActivationTypes::HSwish, "HSwish"},
{ngraph::helpers::ActivationTypes::SoftPlus, "SoftPlus"},
{ngraph::helpers::ActivationTypes::Swish, "Swish"},
{ngraph::helpers::ActivationTypes::HSigmoid, "HSigmoid"},
{ngraph::helpers::ActivationTypes::Sigmoid, "Sigmoid"},
{ngraph::helpers::ActivationTypes::Tanh, "Tanh"},
{ngraph::helpers::ActivationTypes::Relu, "Relu"},
{ngraph::helpers::ActivationTypes::LeakyRelu, "LeakyRelu"},
{ngraph::helpers::ActivationTypes::Exp, "Exp"},
{ngraph::helpers::ActivationTypes::Log, "Log"},
{ngraph::helpers::ActivationTypes::Sign, "Sign"},
{ngraph::helpers::ActivationTypes::Abs, "Abs"},
{ngraph::helpers::ActivationTypes::Gelu, "Gelu"},
{ngraph::helpers::ActivationTypes::Clamp, "Clamp"},
{ngraph::helpers::ActivationTypes::Negative, "Negative"},
{ngraph::helpers::ActivationTypes::Acos, "Acos"},
{ngraph::helpers::ActivationTypes::Asin, "Asin"},
{ngraph::helpers::ActivationTypes::Atan, "Atan"},
{ngraph::helpers::ActivationTypes::Cos, "Cos"},
{ngraph::helpers::ActivationTypes::Cosh, "Cosh"},
{ngraph::helpers::ActivationTypes::Floor, "Floor"},
{ngraph::helpers::ActivationTypes::Sin, "Sin"},
{ngraph::helpers::ActivationTypes::Sinh, "Sinh"},
{ngraph::helpers::ActivationTypes::Sqrt, "Sqrt"},
{ngraph::helpers::ActivationTypes::Tan, "Tan"},
{ngraph::helpers::ActivationTypes::Elu, "Elu"},
{ngraph::helpers::ActivationTypes::Erf, "Erf"},
{ngraph::helpers::ActivationTypes::HardSigmoid, "HardSigmoid"},
{ngraph::helpers::ActivationTypes::Selu, "Selu"},
{ngraph::helpers::ActivationTypes::Sigmoid, "Sigmoid"},
{ngraph::helpers::ActivationTypes::Tanh, "Tanh"},
{ngraph::helpers::ActivationTypes::Relu, "Relu"},
{ngraph::helpers::ActivationTypes::LeakyRelu, "LeakyRelu"},
{ngraph::helpers::ActivationTypes::Exp, "Exp"},
{ngraph::helpers::ActivationTypes::Log, "Log"},
{ngraph::helpers::ActivationTypes::Sign, "Sign"},
{ngraph::helpers::ActivationTypes::Abs, "Abs"},
{ngraph::helpers::ActivationTypes::Gelu, "Gelu"},
{ngraph::helpers::ActivationTypes::Ceiling, "Ceiling"},
{ngraph::helpers::ActivationTypes::PReLu, "PReLu"},
{ngraph::helpers::ActivationTypes::Mish, "Mish"},
{ngraph::helpers::ActivationTypes::HSwish, "HSwish"},
{ngraph::helpers::ActivationTypes::SoftPlus, "SoftPlus"},
{ngraph::helpers::ActivationTypes::Swish, "Swish"},
{ngraph::helpers::ActivationTypes::HSigmoid, "HSigmoid"},
{ngraph::helpers::ActivationTypes::RoundHalfToEven, "RoundHalfToEven"},
{ngraph::helpers::ActivationTypes::RoundHalfAwayFromZero, "RoundHalfAwayFromZero"}
};
typedef std::tuple<

View File

@ -112,7 +112,9 @@ enum ActivationTypes {
HSwish,
SoftPlus,
Swish,
HSigmoid
HSigmoid,
RoundHalfToEven,
RoundHalfAwayFromZero
};
enum EltwiseTypes {

View File

@ -104,6 +104,10 @@ std::shared_ptr<ngraph::Node> makeActivation(const ngraph::Output<Node> &in,
}
case ngraph::helpers::ActivationTypes::HSigmoid:
return std::make_shared<ngraph::op::v5::HSigmoid>(in);
case ngraph::helpers::ActivationTypes::RoundHalfToEven:
return std::make_shared<ngraph::op::v5::Round>(in, ngraph::op::v5::Round::RoundMode::HALF_TO_EVEN);
case ngraph::helpers::ActivationTypes::RoundHalfAwayFromZero:
return std::make_shared<ngraph::op::v5::Round>(in, ngraph::op::v5::Round::RoundMode::HALF_AWAY_FROM_ZERO);
default:
throw std::runtime_error("Can't create layer for this activation type");
}

View File

@ -29,49 +29,51 @@ namespace cldnn {
/// @brief activation functions
enum class activation_func {
none, // val
logistic, // 1/(1 + exp(-val))
hyperbolic_tan, // tanh(val)
relu, // max(0, val)
relu_negative_slope, // max(0, val) + a * min(0, val) (a is additional param)
clamp, // max(a, min(b, val) (a,b are additional param)
softrelu, // log(1 + exp(val))
abs, // abs(val)
linear, // a*val + b (a,b are additional params)
square, // val*val
sqrt, // sqrt(val)
elu, // max(0, val) + a * (exp(min(0, val) - 1) (a is additional param)
sin, // sin(val)
asin, // asin(val)
sinh, // sinh(val)
asinh, // asinh(val)
cos, // cos(val)
acos, // acos(val)
cosh, // cosh(val)
acosh, // acosh(val)
log, // log(val)
log2, // log2(val)
exp, // exp(val)
tan, // tan(val)
atan, // atan(val)
atanh, // atanh(val)
floor, // floor(val)
ceil, // ceil(val)
negative, // -val
negation, // !val
pow, // pow(val, a)
reciprocal, // (1/val)
erf, // Gauss error function
hard_sigmoid, // max(0, min(1, a * val + b)) (a,b are additional params)
hsigmoid, // min(max(val + 3, 0), 6) / 6
selu, // for val <= 0: b * (a * e^val - a); for val > 0: b * val (a,b are additional params)
sign, // val > 0: 1; val < 0: -1; val == 0: 0
softplus, // ln(exp(val) + 1)
softsign, // (val/(1+|val|))
swish, // (val*sigmoid(val))
hswish, // val * min(max(0, val + 3), 6) / 6
mish, // val*tanh(ln(1 + exp(val)))
gelu // (0.5*val*(1 + erf(val / sqrt(2)))
none, // val
logistic, // 1/(1 + exp(-val))
hyperbolic_tan, // tanh(val)
relu, // max(0, val)
relu_negative_slope, // max(0, val) + a * min(0, val) (a is additional param)
clamp, // max(a, min(b, val) (a,b are additional param)
softrelu, // log(1 + exp(val))
abs, // abs(val)
linear, // a*val + b (a,b are additional params)
square, // val*val
sqrt, // sqrt(val)
elu, // max(0, val) + a * (exp(min(0, val) - 1) (a is additional param)
sin, // sin(val)
asin, // asin(val)
sinh, // sinh(val)
asinh, // asinh(val)
cos, // cos(val)
acos, // acos(val)
cosh, // cosh(val)
acosh, // acosh(val)
log, // log(val)
log2, // log2(val)
exp, // exp(val)
tan, // tan(val)
atan, // atan(val)
atanh, // atanh(val)
floor, // floor(val)
ceil, // ceil(val)
negative, // -val
negation, // !val
pow, // pow(val, a)
reciprocal, // (1/val)
erf, // Gauss error function
hard_sigmoid, // max(0, min(1, a * val + b)) (a,b are additional params)
hsigmoid, // min(max(val + 3, 0), 6) / 6
selu, // for val <= 0: b * (a * e^val - a); for val > 0: b * val (a,b are additional params)
sign, // val > 0: 1; val < 0: -1; val == 0: 0
softplus, // ln(exp(val) + 1)
softsign, // (val/(1+|val|))
swish, // (val*sigmoid(val))
hswish, // val * min(max(0, val + 3), 6) / 6
mish, // val*tanh(ln(1 + exp(val)))
gelu, // (0.5*val*(1 + erf(val / sqrt(2)))
round_half_to_even, // round halfs to the nearest even integer
round_half_away_from_zero // round the number so it's further away from zero
};
/// @brief activation additional params

View File

@ -154,7 +154,9 @@ enum class ActivationFunction {
SWISH,
HSWISH,
MISH,
GELU
GELU,
ROUND_HALF_TO_EVEN,
ROUND_HALF_AWAY_FROM_ZERO
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -1095,6 +1095,12 @@ JitConstants MakeActivationJitConstants(ActivationFunction activation_function,
ternary(input.eq(zero), one, zero)
.str())); // the workaround for OpenCL's vector type result (!input)
break;
case ActivationFunction::ROUND_HALF_TO_EVEN:
jitConstants.AddConstant(MakeJitConstant( macro_def, "rint(input)"));
break;
case ActivationFunction::ROUND_HALF_AWAY_FROM_ZERO:
jitConstants.AddConstant(MakeJitConstant(macro_def, "(round(input))"));
break;
case ActivationFunction::NONE:
default:
jitConstants.AddConstant(MakeJitConstant(macro_def, "input"));

View File

@ -43,49 +43,51 @@ std::string GetStringEnv(const char* varName) {
std::string toString(ActivationFunction activation) {
std::string method("LINEAR");
switch (activation) {
case ActivationFunction::LOGISTIC: method = "LOGISTIC"; break;
case ActivationFunction::HYPERBOLIC_TAN: method = "HYPERBOLIC_TAN"; break;
case ActivationFunction::RELU: method = "RELU"; break;
case ActivationFunction::RELU_NEGATIVE_SLOPE: method = "RELU_NEGATIVE_SLOPE"; break;
case ActivationFunction::CLAMP: method = "CLAMP"; break;
case ActivationFunction::SOFTRELU: method = "SOFTRELU"; break;
case ActivationFunction::ABS: method = "ABS"; break;
case ActivationFunction::SQUARE: method = "SQUARE"; break;
case ActivationFunction::SQRT: method = "SQRT"; break;
case ActivationFunction::LINEAR: method = "LINEAR"; break;
case ActivationFunction::ELU: method = "ELU"; break;
case ActivationFunction::SIN: method = "SIN"; break;
case ActivationFunction::ASIN: method = "ASIN"; break;
case ActivationFunction::SINH: method = "SINH"; break;
case ActivationFunction::ASINH: method = "ASINH"; break;
case ActivationFunction::COS: method = "COS"; break;
case ActivationFunction::ACOS: method = "ACOS"; break;
case ActivationFunction::COSH: method = "COSH"; break;
case ActivationFunction::ACOSH: method = "ACOSH"; break;
case ActivationFunction::LOG: method = "LOG"; break;
case ActivationFunction::LOG2: method = "LOG2"; break;
case ActivationFunction::EXP: method = "EXP"; break;
case ActivationFunction::NOT: method = "NOT"; break;
case ActivationFunction::POW: method = "POW"; break;
case ActivationFunction::NONE: method = "NONE"; break;
case ActivationFunction::TAN: method = "TAN"; break;
case ActivationFunction::ATAN: method = "ATAN"; break;
case ActivationFunction::ATANH: method = "ATANH"; break;
case ActivationFunction::FLOOR: method = "FLOOR"; break;
case ActivationFunction::CEIL: method = "CEIL"; break;
case ActivationFunction::NEGATIVE: method = "NEGATIVE"; break;
case ActivationFunction::ERF: method = "ERF"; break;
case ActivationFunction::HARD_SIGMOID: method = "HARD_SIGMOID"; break;
case ActivationFunction::HSIGMOID: method = "HSIGMOID"; break;
case ActivationFunction::RECIPROCAL: method = "RECIPROCAL"; break;
case ActivationFunction::SELU: method = "SELU"; break;
case ActivationFunction::SIGN: method = "SIGN"; break;
case ActivationFunction::SOFTPLUS: method = "SOFTPLUS"; break;
case ActivationFunction::SOFTSIGN: method = "SOFTSIGN"; break;
case ActivationFunction::SWISH: method = "SWISH"; break;
case ActivationFunction::HSWISH: method = "HSWISH"; break;
case ActivationFunction::MISH: method = "MISH"; break;
case ActivationFunction::GELU: method = "GELU"; break;
case ActivationFunction::LOGISTIC: method = "LOGISTIC"; break;
case ActivationFunction::HYPERBOLIC_TAN: method = "HYPERBOLIC_TAN"; break;
case ActivationFunction::RELU: method = "RELU"; break;
case ActivationFunction::RELU_NEGATIVE_SLOPE: method = "RELU_NEGATIVE_SLOPE"; break;
case ActivationFunction::CLAMP: method = "CLAMP"; break;
case ActivationFunction::SOFTRELU: method = "SOFTRELU"; break;
case ActivationFunction::ABS: method = "ABS"; break;
case ActivationFunction::SQUARE: method = "SQUARE"; break;
case ActivationFunction::SQRT: method = "SQRT"; break;
case ActivationFunction::LINEAR: method = "LINEAR"; break;
case ActivationFunction::ELU: method = "ELU"; break;
case ActivationFunction::SIN: method = "SIN"; break;
case ActivationFunction::ASIN: method = "ASIN"; break;
case ActivationFunction::SINH: method = "SINH"; break;
case ActivationFunction::ASINH: method = "ASINH"; break;
case ActivationFunction::COS: method = "COS"; break;
case ActivationFunction::ACOS: method = "ACOS"; break;
case ActivationFunction::COSH: method = "COSH"; break;
case ActivationFunction::ACOSH: method = "ACOSH"; break;
case ActivationFunction::LOG: method = "LOG"; break;
case ActivationFunction::LOG2: method = "LOG2"; break;
case ActivationFunction::EXP: method = "EXP"; break;
case ActivationFunction::NOT: method = "NOT"; break;
case ActivationFunction::POW: method = "POW"; break;
case ActivationFunction::NONE: method = "NONE"; break;
case ActivationFunction::TAN: method = "TAN"; break;
case ActivationFunction::ATAN: method = "ATAN"; break;
case ActivationFunction::ATANH: method = "ATANH"; break;
case ActivationFunction::FLOOR: method = "FLOOR"; break;
case ActivationFunction::CEIL: method = "CEIL"; break;
case ActivationFunction::NEGATIVE: method = "NEGATIVE"; break;
case ActivationFunction::ERF: method = "ERF"; break;
case ActivationFunction::HARD_SIGMOID: method = "HARD_SIGMOID"; break;
case ActivationFunction::HSIGMOID: method = "HSIGMOID"; break;
case ActivationFunction::RECIPROCAL: method = "RECIPROCAL"; break;
case ActivationFunction::SELU: method = "SELU"; break;
case ActivationFunction::SIGN: method = "SIGN"; break;
case ActivationFunction::SOFTPLUS: method = "SOFTPLUS"; break;
case ActivationFunction::SOFTSIGN: method = "SOFTSIGN"; break;
case ActivationFunction::SWISH: method = "SWISH"; break;
case ActivationFunction::HSWISH: method = "HSWISH"; break;
case ActivationFunction::MISH: method = "MISH"; break;
case ActivationFunction::GELU: method = "GELU"; break;
case ActivationFunction::ROUND_HALF_TO_EVEN: method = "ROUND_HALF_TO_EVEN"; break;
case ActivationFunction::ROUND_HALF_AWAY_FROM_ZERO: method = "ROUND_HALF_AWAY_FROM_ZERO"; break;
default: break;
}
return method;

View File

@ -703,6 +703,10 @@ kernel_selector::activation_function get_kernel_selector_activation_param(activa
return kernel_selector::activation_function::MISH;
case cldnn::activation_func::gelu:
return kernel_selector::activation_function::GELU;
case cldnn::activation_func::round_half_to_even:
return kernel_selector::activation_function::ROUND_HALF_TO_EVEN;
case cldnn::activation_func::round_half_away_from_zero:
return kernel_selector::activation_function::ROUND_HALF_AWAY_FROM_ZERO;
default:
throw std::runtime_error("Unknown activation function");
break;

View File

@ -484,42 +484,6 @@ TEST(activation_f16_fw_gpu, pow_basic_yxfb) {
}
}
TEST(activation_f16_fw_gpu, linear_basic_yxfb) {
const auto& engine = get_test_engine();
auto input = memory::allocate(engine, {data_types::f16, format::yxfb, {1, 1, 2, 2}});
set_values(input,
{FLOAT16(1.0f), FLOAT16(2.0f), FLOAT16(3.0f), FLOAT16(4.5f)});
VF<FLOAT16> output_vec = {FLOAT16(5.0f), FLOAT16(8.0f), FLOAT16(11.0f), FLOAT16(15.5f)};
topology topology(
input_layout("input", input.get_layout()),
activation("linear", "input", activation_func::linear, {FLOAT16(3.0f), FLOAT16(2.0f)}));
network network(engine, topology);
network.set_input_data("input", input);
auto outputs = network.execute();
EXPECT_EQ(outputs.size(), size_t(1));
EXPECT_EQ(outputs.begin()->first, "linear");
auto output_memory = outputs.at("linear").get_memory();
auto output_layout = output_memory.get_layout();
auto output_ptr = output_memory.pointer<FLOAT16>();
int y_size = output_layout.size.spatial[1];
int x_size = output_layout.size.spatial[0];
int f_size = output_layout.size.feature[0];
int b_size = output_layout.size.batch[0];
EXPECT_EQ(output_layout.format, format::yxfb);
EXPECT_EQ(y_size, 2);
EXPECT_EQ(x_size, 2);
EXPECT_EQ(f_size, 1);
EXPECT_EQ(b_size, 1);
for (size_t i = 0; i < output_vec.size(); ++i) {
EXPECT_FLOAT_EQ(output_vec[i], output_ptr[i]);
}
}
TEST(activation_f32_fw_gpu, relu_basic_yxfb) {
// Input:
// 1 -2 -3 4 5
@ -655,126 +619,6 @@ TEST(activation_f32_fw_gpu, relu_basic_bfzyx) {
}
}
TEST(activation_f16_fw_gpu, basic_yxfb_mish) {
const auto& engine = get_test_engine();
auto input = memory::allocate(engine, { data_types::f16, format::yxfb, { 1, 1, 5, 4 } });
set_values(input,
{ FLOAT16(0.0f), FLOAT16(-2.0f), FLOAT16(-3.0f), FLOAT16(4.0f), FLOAT16(5.0f),
FLOAT16(2.0f), FLOAT16(2.0f), FLOAT16(3.0f), FLOAT16(4.0f), FLOAT16(-6.0f),
FLOAT16(3.0f), FLOAT16(-3.0f), FLOAT16(3.0f), FLOAT16(5.0f), FLOAT16(1.0f),
FLOAT16(1.0f), FLOAT16(1.0f), FLOAT16(1.0f), FLOAT16(-1.0f), FLOAT16(1.0f) });
topology topology(
input_layout("input", input.get_layout()),
activation("mish", "input", activation_func::mish));
network network(engine, topology);
network.set_input_data("input", input);
auto outputs = network.execute();
EXPECT_EQ(outputs.size(), size_t(1));
EXPECT_EQ(outputs.begin()->first, "mish");
auto output_memory = outputs.at("mish").get_memory();
auto output_layout = output_memory.get_layout();
auto output_ptr = output_memory.pointer<FLOAT16>();
auto input_ptr = input.pointer<FLOAT16>();
int y_size = output_layout.size.spatial[1];
int x_size = output_layout.size.spatial[0];
int f_size = output_layout.size.feature[0];
int b_size = output_layout.size.batch[0];
EXPECT_EQ(output_layout.format, format::yxfb);
EXPECT_EQ(y_size, 4);
EXPECT_EQ(x_size, 5);
EXPECT_EQ(f_size, 1);
EXPECT_EQ(b_size, 1);
for (size_t i = 0; i < output_layout.get_linear_size(); ++i) {
EXPECT_NEAR((FLOAT16)((float)input_ptr[i] * std::tanh(std::log(1.f + std::exp((float)input_ptr[i])))),
output_ptr[i], 1e-2f);
}
}
TEST(activation_f16_fw_gpu, basic_yxfb_hswish) {
const auto& engine = get_test_engine();
auto input = memory::allocate(engine, { data_types::f16, format::yxfb, { 1, 2, 5, 2 } });
set_values(input,
{ FLOAT16(0.0f), FLOAT16(-2.0f), FLOAT16(-3.0f), FLOAT16(4.0f), FLOAT16(5.0f),
FLOAT16(2.0f), FLOAT16(2.0f), FLOAT16(3.0f), FLOAT16(4.0f), FLOAT16(-6.0f),
FLOAT16(3.0f), FLOAT16(-3.0f), FLOAT16(3.0f), FLOAT16(5.0f), FLOAT16(1.0f),
FLOAT16(1.0f), FLOAT16(1.0f), FLOAT16(1.0f), FLOAT16(-1.0f), FLOAT16(1.0f) });
topology topology(
input_layout("input", input.get_layout()),
activation("hswish", "input", activation_func::hswish));
network network(engine, topology);
network.set_input_data("input", input);
auto outputs = network.execute();
EXPECT_EQ(outputs.size(), size_t(1));
EXPECT_EQ(outputs.begin()->first, "hswish");
auto output_memory = outputs.at("hswish").get_memory();
auto output_layout = output_memory.get_layout();
auto output_ptr = output_memory.pointer<FLOAT16>();
auto input_ptr = input.pointer<FLOAT16>();
int y_size = output_layout.size.spatial[1];
int x_size = output_layout.size.spatial[0];
int f_size = output_layout.size.feature[0];
int b_size = output_layout.size.batch[0];
EXPECT_EQ(output_layout.format, format::yxfb);
EXPECT_EQ(y_size, 2);
EXPECT_EQ(x_size, 5);
EXPECT_EQ(f_size, 2);
EXPECT_EQ(b_size, 1);
for (size_t i = 0; i < output_layout.get_linear_size(); ++i) {
EXPECT_NEAR((FLOAT16)((float)input_ptr[i] * std::fmin(std::fmax(0.f, (float)input_ptr[i] + 3.f), 6.f) / 6.f),
output_ptr[i], 1e-3f);
}
}
TEST(activation_f16_fw_gpu, basic_yxfb_hsigmoid) {
const auto& engine = get_test_engine();
auto input = memory::allocate(engine, { data_types::f16, format::yxfb, { 1, 2, 5, 2 } });
set_values(input,
{ FLOAT16(0.0f), FLOAT16(-2.0f), FLOAT16(-3.0f), FLOAT16(4.0f), FLOAT16(5.0f),
FLOAT16(2.0f), FLOAT16(2.0f), FLOAT16(3.0f), FLOAT16(4.0f), FLOAT16(-6.0f),
FLOAT16(3.0f), FLOAT16(-3.0f), FLOAT16(3.0f), FLOAT16(5.0f), FLOAT16(1.0f),
FLOAT16(1.0f), FLOAT16(1.0f), FLOAT16(1.0f), FLOAT16(-1.0f), FLOAT16(1.0f) });
topology topology(
input_layout("input", input.get_layout()),
activation("hsigmoid", "input", activation_func::hsigmoid));
network network(engine, topology);
network.set_input_data("input", input);
auto outputs = network.execute();
EXPECT_EQ(outputs.size(), size_t(1));
EXPECT_EQ(outputs.begin()->first, "hsigmoid");
auto output_memory = outputs.at("hsigmoid").get_memory();
auto output_layout = output_memory.get_layout();
auto output_ptr = output_memory.pointer<FLOAT16>();
auto input_ptr = input.pointer<FLOAT16>();
int y_size = output_layout.size.spatial[1];
int x_size = output_layout.size.spatial[0];
int f_size = output_layout.size.feature[0];
int b_size = output_layout.size.batch[0];
EXPECT_EQ(output_layout.format, format::yxfb);
EXPECT_EQ(y_size, 2);
EXPECT_EQ(x_size, 5);
EXPECT_EQ(f_size, 2);
EXPECT_EQ(b_size, 1);
for (size_t i = 0; i < output_layout.get_linear_size(); ++i) {
EXPECT_NEAR((FLOAT16)(std::fmin(std::fmax(0.f, (float)input_ptr[i] + 3.f), 6.f) / 6.f),
output_ptr[i], 1e-3f);
}
}
TEST(activation_f32_fw_gpu, basic_yxfb_all_functions)
{
// Input:
@ -962,6 +806,94 @@ TEST(activation_f32_fw_gpu, basic_yxfb_all_functions)
}
}
TEST(activation_f16_fw_gpu, basic_bfyx_all_functions)
{
const auto& engine = get_test_engine();
auto input = memory::allocate(engine, { data_types::f16, format::bfyx, { 1, 1, 2, 4 } });
auto input_params = memory::allocate(engine, { data_types::f16, format::bfyx, { 1, 2, 1, 1 } });
set_values(input, { FLOAT16(-4.5f), FLOAT16(-2.5f), FLOAT16(-1.5f), FLOAT16(0.5f),
FLOAT16(0.9f), FLOAT16(1.5f), FLOAT16(2.0f), FLOAT16(2.5f) });
std::vector<activation_func> funcs = {
activation_func::linear,
activation_func::mish,
activation_func::hswish,
activation_func::hsigmoid,
activation_func::round_half_to_even,
activation_func::round_half_away_from_zero
};
activation_additional_params params = { 3.f, 2.f };
set_values(input_params, { FLOAT16(params.a), FLOAT16(params.b) });
for (uint8_t i = 0 ; i < 2 ; i++) {
for (auto func : funcs) {
topology topology(input_layout("input", input.get_layout()));
if (i == 0) {
topology.add(activation("activation", "input", func, params));
} else {
topology.add(data("input_params", input_params));
topology.add(activation("activation", "input", "input_params", func));
}
network network(engine, topology);
network.set_input_data("input", input);
auto outputs = network.execute();
EXPECT_EQ(outputs.size(), size_t(1));
EXPECT_EQ(outputs.begin()->first, "activation");
auto output_memory = outputs.at("activation").get_memory();
auto output_layout = output_memory.get_layout();
auto output_ptr = output_memory.pointer<FLOAT16>();
auto input_ptr = input.pointer<FLOAT16>();
int y_size = output_layout.size.spatial[1];
int x_size = output_layout.size.spatial[0];
int f_size = output_layout.size.feature[0];
int b_size = output_layout.size.batch[0];
EXPECT_EQ(output_layout.format, format::bfyx);
EXPECT_EQ(y_size, 4);
EXPECT_EQ(x_size, 2);
EXPECT_EQ(f_size, 1);
EXPECT_EQ(b_size, 1);
for (size_t i = 0; i < output_layout.get_linear_size(); ++i) {
switch (func) {
case activation_func::linear: {
VF<FLOAT16> output_vec = {FLOAT16(-11.5f), FLOAT16(-5.5f), FLOAT16(-2.5f), FLOAT16(3.5f),
FLOAT16(4.7f), FLOAT16(6.5f), FLOAT16(8.0f), FLOAT16(9.5f)};
EXPECT_FLOAT_EQ(output_vec[i], output_ptr[i]);
break;
}
case activation_func::mish:
EXPECT_NEAR((FLOAT16)((float)input_ptr[i] * std::tanh(std::log(1.f + std::exp((float)input_ptr[i])))),
output_ptr[i], 1e-2f);
break;
case activation_func::hswish:
EXPECT_NEAR((FLOAT16)((float)input_ptr[i] * std::fmin(std::fmax(0.f, (float)input_ptr[i] + 3.f), 6.f) / 6.f),
output_ptr[i], 1e-3f);
break;
case activation_func::hard_sigmoid:
EXPECT_NEAR((FLOAT16)(std::fmin(std::fmax(0.f, (float)input_ptr[i] + 3.f), 6.f) / 6.f),
output_ptr[i], 1e-3f);
break;
case activation_func::round_half_to_even:
EXPECT_FLOAT_EQ((FLOAT16)std::rint((float)input_ptr[i]), output_ptr[i]);
break;
case activation_func::round_half_away_from_zero:
EXPECT_FLOAT_EQ((FLOAT16)std::round((float)input_ptr[i]), output_ptr[i]);
break;
default:
break;
}
}
}
}
}
TEST(activation_f32_fw_gpu, basic_yxfb_asin_acos_log_atan)
{
const auto& engine = get_test_engine();