[docs] corrected link in one billion convert doc, added DEPRECATED to dlrm (#5931)
* DEPRECATED dlrm convert instructions, corrected link in one billion model * added DEPRECATED to dlrm title
This commit is contained in:
parent
d65778b6d9
commit
7a239c3856
@ -1,10 +1,13 @@
|
||||
# Convert ONNX* DLRM to the Intermediate Representation {#openvino_docs_MO_DG_prepare_model_convert_model_onnx_specific_Convert_DLRM}
|
||||
[DEPRECATED] Convert ONNX* DLRM to the Intermediate Representation {#openvino_docs_MO_DG_prepare_model_convert_model_onnx_specific_Convert_DLRM}
|
||||
===============================
|
||||
|
||||
> **NOTE**: These instructions are currently deprecated. Since OpenVINO™ 2020.4 version, no specific steps are needed to convert ONNX\* DLRM models. For general instructions on converting ONNX models, please refer to [Converting a ONNX* Model](../Convert_Model_From_ONNX.md) topic.
|
||||
|
||||
These instructions are applicable only to the DLRM converted to the ONNX* file format from the [facebookresearch/dlrm model](https://github.com/facebookresearch/dlrm).
|
||||
|
||||
**Step 1**. Save trained Pytorch* model to ONNX* format. If you train the model using the [script provided in model repository](https://github.com/facebookresearch/dlrm/blob/master/dlrm_s_pytorch.py), just add the `--save-onnx` flag to the command line parameters and you'll get the `dlrm_s_pytorch.onnx` file containing the model serialized in ONNX* format.
|
||||
**Step 1**. Save trained Pytorch* model to ONNX* format or download pretrained ONNX* from
|
||||
[MLCommons/inference/recommendation/dlrm](https://github.com/mlcommons/inference/tree/r1.0/recommendation/dlrm/pytorch#supported-models) repository.
|
||||
If you train the model using the [script provided in model repository](https://github.com/facebookresearch/dlrm/blob/master/dlrm_s_pytorch.py), just add the `--save-onnx` flag to the command line parameters and you'll get the `dlrm_s_pytorch.onnx` file containing the model serialized in ONNX* format.
|
||||
|
||||
**Step 2**. To generate the Intermediate Representation (IR) of the model, change your current working directory to the Model Optimizer installation directory and run the Model Optimizer with the following parameters:
|
||||
```sh
|
||||
|
@ -2,7 +2,7 @@
|
||||
|
||||
## Download the Pre-trained Language Model on One Billion Word Benchmark
|
||||
|
||||
TensorFlow* provides [a pre-trained Language Model on One Billion Word Benchmark](https://github.com/tensorflow/models/tree/master/research/lm_1b).
|
||||
TensorFlow* provides [a pre-trained Language Model on One Billion Word Benchmark](https://github.com/tensorflow/models/tree/r2.3.0/research/lm_1b).
|
||||
|
||||
To download the model for IR conversion, please follow the instruction:
|
||||
1. Create new directory to store the model:
|
||||
|
@ -53,12 +53,12 @@ limitations under the License.
|
||||
<tab type="user" title="Convert ONNX* Faster R-CNN Model to the Intermediate Representation" url="@ref openvino_docs_MO_DG_prepare_model_convert_model_onnx_specific_Convert_Faster_RCNN"/>
|
||||
<tab type="user" title="Convert ONNX* Mask R-CNN Model to the Intermediate Representation" url="@ref openvino_docs_MO_DG_prepare_model_convert_model_onnx_specific_Convert_Mask_RCNN"/>
|
||||
<tab type="user" title="Convert ONNX* GPT-2 Model to the Intermediate Representation" url="@ref openvino_docs_MO_DG_prepare_model_convert_model_onnx_specific_Convert_GPT2"/>
|
||||
<tab type="user" title="Convert DLRM ONNX* Model to the Intermediate Representation" url="@ref openvino_docs_MO_DG_prepare_model_convert_model_onnx_specific_Convert_DLRM"/>
|
||||
<tab type="user" title="[DEPRECATED] Convert DLRM ONNX* Model to the Intermediate Representation" url="@ref openvino_docs_MO_DG_prepare_model_convert_model_onnx_specific_Convert_DLRM"/>
|
||||
<tab type="usergroup" title="Converting Your PyTorch* Model" url="@ref openvino_docs_MO_DG_prepare_model_convert_model_Convert_Model_From_PyTorch">
|
||||
<tab type="user" title="Convert PyTorch* QuartzNet Model" url="@ref openvino_docs_MO_DG_prepare_model_convert_model_pytorch_specific_Convert_QuartzNet"/>
|
||||
<tab type="user" title="Convert PyTorch* RNN-T Model " url="@ref openvino_docs_MO_DG_prepare_model_convert_model_pytorch_specific_Convert_RNNT"/>
|
||||
<tab type="user" title="Convert PyTorch* YOLACT Model" url="@ref openvino_docs_MO_DG_prepare_model_convert_model_pytorch_specific_Convert_YOLACT"/>
|
||||
<tab type="user" title="Convert PyTorch* F3Net Model" url="@ref openvino_docs_MO_DG_prepare_model_convert_model_pytorch_specific_Convert_F3Net"/>
|
||||
<tab type="user" title="Convert PyTorch* QuartzNet Model" url="@ref openvino_docs_MO_DG_prepare_model_convert_model_pytorch_specific_Convert_QuartzNet"/>
|
||||
<tab type="user" title="Convert PyTorch* RNN-T Model " url="@ref openvino_docs_MO_DG_prepare_model_convert_model_pytorch_specific_Convert_RNNT"/>
|
||||
<tab type="user" title="Convert PyTorch* YOLACT Model" url="@ref openvino_docs_MO_DG_prepare_model_convert_model_pytorch_specific_Convert_YOLACT"/>
|
||||
<tab type="user" title="Convert PyTorch* F3Net Model" url="@ref openvino_docs_MO_DG_prepare_model_convert_model_pytorch_specific_Convert_F3Net"/>
|
||||
</tab>
|
||||
</tab>
|
||||
<tab type="user" title="Model Optimizations Techniques" url="@ref openvino_docs_MO_DG_prepare_model_Model_Optimization_Techniques"/>
|
||||
|
Loading…
Reference in New Issue
Block a user