Delete serialization tests from ieFuncTests (#13804)
* Delete serialization tests from ieFuncTests * Extend visitor tests to improve coverage Co-authored-by: Ilya Churaev <ilya.churaev@intel.com>
This commit is contained in:
parent
7d670c5e5f
commit
7c4b7355e6
@ -26,6 +26,35 @@ TEST(attributes, avg_pool_op) {
|
||||
auto rounding_mode = op::RoundingType::FLOOR;
|
||||
auto auto_pad = op::PadType::EXPLICIT;
|
||||
|
||||
auto avg_pool =
|
||||
make_shared<opset1::AvgPool>(data, strides, pads_begin, pads_end, kernel, exclude_pad, rounding_mode, auto_pad);
|
||||
|
||||
avg_pool->set_pads_begin(pads_begin);
|
||||
avg_pool->set_pads_end(pads_end);
|
||||
|
||||
NodeBuilder builder(avg_pool, {data});
|
||||
auto g_avg_pool = ov::as_type_ptr<opset1::AvgPool>(builder.create());
|
||||
|
||||
EXPECT_EQ(g_avg_pool->get_strides(), avg_pool->get_strides());
|
||||
EXPECT_EQ(g_avg_pool->get_pads_begin(), avg_pool->get_pads_begin());
|
||||
EXPECT_EQ(g_avg_pool->get_pads_end(), avg_pool->get_pads_end());
|
||||
EXPECT_EQ(g_avg_pool->get_kernel(), avg_pool->get_kernel());
|
||||
EXPECT_EQ(g_avg_pool->get_rounding_type(), avg_pool->get_rounding_type());
|
||||
EXPECT_EQ(g_avg_pool->get_auto_pad(), avg_pool->get_auto_pad());
|
||||
}
|
||||
|
||||
TEST(attributes, avg_pool_op_valid) {
|
||||
NodeBuilder::get_ops().register_factory<opset1::AvgPool>();
|
||||
auto data = make_shared<op::Parameter>(element::f32, Shape{64, 3, 5});
|
||||
|
||||
auto strides = Strides{2};
|
||||
auto pads_begin = Shape{1};
|
||||
auto pads_end = Shape{1};
|
||||
auto kernel = Shape{1};
|
||||
bool exclude_pad = false;
|
||||
auto rounding_mode = op::RoundingType::FLOOR;
|
||||
auto auto_pad = op::PadType::VALID;
|
||||
|
||||
auto avg_pool =
|
||||
make_shared<opset1::AvgPool>(data, strides, pads_begin, pads_end, kernel, exclude_pad, rounding_mode, auto_pad);
|
||||
|
||||
|
27
src/core/tests/visitors/op/convert_like.cpp
Normal file
27
src/core/tests/visitors/op/convert_like.cpp
Normal file
@ -0,0 +1,27 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "gtest/gtest.h"
|
||||
#include "ngraph/ngraph.hpp"
|
||||
#include "ngraph/op/util/attr_types.hpp"
|
||||
#include "ngraph/opsets/opset1.hpp"
|
||||
#include "util/visitor.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace ngraph;
|
||||
using ngraph::test::NodeBuilder;
|
||||
using ngraph::test::ValueMap;
|
||||
|
||||
TEST(attributes, convert_like_op) {
|
||||
NodeBuilder::get_ops().register_factory<opset1::ConvertLike>();
|
||||
auto data = make_shared<op::Parameter>(element::i64, Shape{1, 2, 3});
|
||||
auto like = make_shared<op::Parameter>(element::i64, Shape{1, 2, 3});
|
||||
|
||||
auto convertLike = make_shared<opset1::ConvertLike>(data, like);
|
||||
NodeBuilder builder(convertLike, {data, like});
|
||||
auto g_convertLike = ov::as_type_ptr<opset1::Concat>(builder.create());
|
||||
|
||||
const auto expected_attr_count = 0;
|
||||
EXPECT_EQ(builder.get_value_map_size(), expected_attr_count);
|
||||
}
|
@ -49,3 +49,42 @@ TEST(attributes, deformable_psroi_pooling_op) {
|
||||
EXPECT_EQ(g_op->get_trans_std(), op->get_trans_std());
|
||||
EXPECT_EQ(g_op->get_part_size(), op->get_part_size());
|
||||
}
|
||||
|
||||
TEST(attributes, deformable_psroi_pooling_op2) {
|
||||
NodeBuilder::get_ops().register_factory<opset1::DeformablePSROIPooling>();
|
||||
auto input = make_shared<op::Parameter>(element::f32, Shape{2, 16, 67, 32});
|
||||
auto coords = make_shared<op::Parameter>(element::f32, Shape{300, 5});
|
||||
auto offset = make_shared<op::Parameter>(element::i64, Shape{300, 2, 2, 2});
|
||||
|
||||
const int output_dim = 4;
|
||||
const float spatial_scale = 0.0625;
|
||||
const int group_size = 2;
|
||||
string mode = "bilinear_deformable";
|
||||
const int spatial_bins_x = 2;
|
||||
const int spatial_bins_y = 3;
|
||||
const float trans_std = 0.1;
|
||||
const int part_size = 3;
|
||||
|
||||
auto op = make_shared<opset1::DeformablePSROIPooling>(input,
|
||||
coords,
|
||||
offset,
|
||||
output_dim,
|
||||
spatial_scale,
|
||||
group_size,
|
||||
mode,
|
||||
spatial_bins_x,
|
||||
spatial_bins_y,
|
||||
trans_std,
|
||||
part_size);
|
||||
NodeBuilder builder(op, {input, coords, offset});
|
||||
auto g_op = ov::as_type_ptr<opset1::DeformablePSROIPooling>(builder.create());
|
||||
|
||||
EXPECT_EQ(g_op->get_output_dim(), op->get_output_dim());
|
||||
EXPECT_EQ(g_op->get_spatial_scale(), op->get_spatial_scale());
|
||||
EXPECT_EQ(g_op->get_group_size(), op->get_group_size());
|
||||
EXPECT_EQ(g_op->get_mode(), op->get_mode());
|
||||
EXPECT_EQ(g_op->get_spatial_bins_x(), op->get_spatial_bins_x());
|
||||
EXPECT_EQ(g_op->get_spatial_bins_y(), op->get_spatial_bins_y());
|
||||
EXPECT_EQ(g_op->get_trans_std(), op->get_trans_std());
|
||||
EXPECT_EQ(g_op->get_part_size(), op->get_part_size());
|
||||
}
|
||||
|
@ -35,3 +35,36 @@ TEST(visitor_without_attribute, embedding_segments_sum_op) {
|
||||
const auto expected_attr_count = 0;
|
||||
EXPECT_EQ(builder.get_value_map_size(), expected_attr_count);
|
||||
}
|
||||
|
||||
TEST(visitor_without_attribute, embedding_segments_sum_op2) {
|
||||
NodeBuilder::get_ops().register_factory<opset3::EmbeddingSegmentsSum>();
|
||||
auto emb_table = make_shared<op::Parameter>(element::f32, Shape{5, 2, 3});
|
||||
|
||||
auto indices = make_shared<op::Parameter>(element::i64, Shape{4});
|
||||
auto segment_ids = make_shared<op::Parameter>(element::i64, Shape{4});
|
||||
auto num_segments = make_shared<op::Parameter>(element::i64, Shape{});
|
||||
auto default_index = make_shared<op::Parameter>(element::i64, Shape{});
|
||||
|
||||
auto ess = make_shared<opset3::EmbeddingSegmentsSum>(emb_table, indices, segment_ids, num_segments, default_index);
|
||||
NodeBuilder builder(ess, {emb_table, indices, segment_ids, num_segments, default_index});
|
||||
EXPECT_NO_THROW(auto g_ess = ov::as_type_ptr<opset3::EmbeddingSegmentsSum>(builder.create()));
|
||||
|
||||
const auto expected_attr_count = 0;
|
||||
EXPECT_EQ(builder.get_value_map_size(), expected_attr_count);
|
||||
}
|
||||
|
||||
TEST(visitor_without_attribute, embedding_segments_sum_op3) {
|
||||
NodeBuilder::get_ops().register_factory<opset3::EmbeddingSegmentsSum>();
|
||||
auto emb_table = make_shared<op::Parameter>(element::f32, Shape{5, 2, 3});
|
||||
|
||||
auto indices = make_shared<op::Parameter>(element::i64, Shape{4});
|
||||
auto segment_ids = make_shared<op::Parameter>(element::i64, Shape{4});
|
||||
auto num_segments = make_shared<op::Parameter>(element::i64, Shape{});
|
||||
|
||||
auto ess = make_shared<opset3::EmbeddingSegmentsSum>(emb_table, indices, segment_ids, num_segments);
|
||||
NodeBuilder builder(ess, {emb_table, indices, segment_ids, num_segments});
|
||||
EXPECT_NO_THROW(auto g_ess = ov::as_type_ptr<opset3::EmbeddingSegmentsSum>(builder.create()));
|
||||
|
||||
const auto expected_attr_count = 0;
|
||||
EXPECT_EQ(builder.get_value_map_size(), expected_attr_count);
|
||||
}
|
||||
|
@ -30,3 +30,34 @@ TEST(visitor_without_attribute, embedding_bag_offsets_sum_op) {
|
||||
const auto expected_attr_count = 0;
|
||||
EXPECT_EQ(builder.get_value_map_size(), expected_attr_count);
|
||||
}
|
||||
|
||||
TEST(visitor_without_attribute, embedding_bag_offsets_sum_op2) {
|
||||
NodeBuilder::get_ops().register_factory<opset3::EmbeddingBagOffsetsSum>();
|
||||
auto emb_table = make_shared<op::Parameter>(element::f32, Shape{5, 2, 3});
|
||||
|
||||
auto indices = make_shared<op::Parameter>(element::i64, Shape{4});
|
||||
auto offsets = make_shared<op::Parameter>(element::i64, Shape{4});
|
||||
auto default_index = make_shared<op::Parameter>(element::i64, Shape{});
|
||||
|
||||
auto ebos = make_shared<opset3::EmbeddingBagOffsetsSum>(emb_table, indices, offsets, default_index);
|
||||
NodeBuilder builder(ebos, {emb_table, indices, offsets, default_index});
|
||||
EXPECT_NO_THROW(auto g_ebos = ov::as_type_ptr<opset3::EmbeddingBagOffsetsSum>(builder.create()));
|
||||
|
||||
const auto expected_attr_count = 0;
|
||||
EXPECT_EQ(builder.get_value_map_size(), expected_attr_count);
|
||||
}
|
||||
|
||||
TEST(visitor_without_attribute, embedding_bag_offsets_sum_op3) {
|
||||
NodeBuilder::get_ops().register_factory<opset3::EmbeddingBagOffsetsSum>();
|
||||
auto emb_table = make_shared<op::Parameter>(element::f32, Shape{5, 2, 3});
|
||||
|
||||
auto indices = make_shared<op::Parameter>(element::i64, Shape{4});
|
||||
auto offsets = make_shared<op::Parameter>(element::i64, Shape{4});
|
||||
|
||||
auto ebos = make_shared<opset3::EmbeddingBagOffsetsSum>(emb_table, indices, offsets);
|
||||
NodeBuilder builder(ebos, {emb_table, indices, offsets});
|
||||
EXPECT_NO_THROW(auto g_ebos = ov::as_type_ptr<opset3::EmbeddingBagOffsetsSum>(builder.create()));
|
||||
|
||||
const auto expected_attr_count = 0;
|
||||
EXPECT_EQ(builder.get_value_map_size(), expected_attr_count);
|
||||
}
|
||||
|
@ -26,3 +26,16 @@ TEST(visitor_without_attribute, embedding_bag_packed_sum_op) {
|
||||
const auto expected_attr_count = 0;
|
||||
EXPECT_EQ(builder.get_value_map_size(), expected_attr_count);
|
||||
}
|
||||
|
||||
TEST(visitor_without_attribute, embedding_bag_packed_sum_op2) {
|
||||
NodeBuilder::get_ops().register_factory<opset3::EmbeddingBagOffsetsSum>();
|
||||
auto emb_table = make_shared<op::Parameter>(element::f32, Shape{5, 2});
|
||||
auto indices = make_shared<op::Parameter>(element::i64, Shape{3, 4});
|
||||
|
||||
auto ebps = make_shared<opset3::EmbeddingBagPackedSum>(emb_table, indices);
|
||||
NodeBuilder builder(ebps, {emb_table, indices});
|
||||
EXPECT_NO_THROW(auto g_ebps = ov::as_type_ptr<opset3::EmbeddingBagPackedSum>(builder.create()));
|
||||
|
||||
const auto expected_attr_count = 0;
|
||||
EXPECT_EQ(builder.get_value_map_size(), expected_attr_count);
|
||||
}
|
||||
|
@ -19,7 +19,6 @@ using ngraph::test::ValueMap;
|
||||
TEST(attributes, gru_cell_op) {
|
||||
NodeBuilder::get_ops().register_factory<opset5::GRUCell>();
|
||||
auto X = make_shared<op::Parameter>(element::f32, Shape{2, 3});
|
||||
auto H = make_shared<op::Parameter>(element::f32, Shape{2, 3});
|
||||
auto W = make_shared<op::Parameter>(element::f32, Shape{9, 3});
|
||||
auto R = make_shared<op::Parameter>(element::f32, Shape{9, 3});
|
||||
const auto initial_hidden_state = make_shared<op::Parameter>(element::f32, Shape{2, 3});
|
||||
@ -49,3 +48,38 @@ TEST(attributes, gru_cell_op) {
|
||||
EXPECT_EQ(g_gru_cell->get_clip(), gru_cell->get_clip());
|
||||
EXPECT_EQ(g_gru_cell->get_linear_before_reset(), gru_cell->get_linear_before_reset());
|
||||
}
|
||||
|
||||
TEST(attributes, gru_cell_op2) {
|
||||
NodeBuilder::get_ops().register_factory<opset5::GRUCell>();
|
||||
auto X = make_shared<op::Parameter>(element::f32, Shape{2, 3});
|
||||
auto W = make_shared<op::Parameter>(element::f32, Shape{9, 3});
|
||||
auto R = make_shared<op::Parameter>(element::f32, Shape{9, 3});
|
||||
const auto initial_hidden_state = make_shared<op::Parameter>(element::f32, Shape{2, 3});
|
||||
auto B = make_shared<op::Parameter>(element::f32, Shape{9});
|
||||
|
||||
const auto hidden_size = 3;
|
||||
const std::vector<std::string> activations = {"tanh", "sigmoid"};
|
||||
auto activations_alpha = std::vector<float>{1.0, 1.5};
|
||||
auto activations_beta = std::vector<float>{2.0, 1.0};
|
||||
const float clip = 0.5f;
|
||||
const auto gru_cell = make_shared<opset5::GRUCell>(X,
|
||||
initial_hidden_state,
|
||||
W,
|
||||
R,
|
||||
B,
|
||||
hidden_size,
|
||||
activations,
|
||||
activations_alpha,
|
||||
activations_beta,
|
||||
clip,
|
||||
false);
|
||||
NodeBuilder builder(gru_cell, {X, initial_hidden_state, W, R, B});
|
||||
auto g_gru_cell = ov::as_type_ptr<opset5::GRUCell>(builder.create());
|
||||
|
||||
EXPECT_EQ(g_gru_cell->get_hidden_size(), gru_cell->get_hidden_size());
|
||||
EXPECT_EQ(g_gru_cell->get_activations(), gru_cell->get_activations());
|
||||
EXPECT_EQ(g_gru_cell->get_activations_alpha(), gru_cell->get_activations_alpha());
|
||||
EXPECT_EQ(g_gru_cell->get_activations_beta(), gru_cell->get_activations_beta());
|
||||
EXPECT_EQ(g_gru_cell->get_clip(), gru_cell->get_clip());
|
||||
EXPECT_EQ(g_gru_cell->get_linear_before_reset(), gru_cell->get_linear_before_reset());
|
||||
}
|
||||
|
@ -87,3 +87,39 @@ TEST(attributes, lstm_cell_v4_op) {
|
||||
EXPECT_EQ(g_lstm_cell->get_activations_beta(), lstm_cell->get_activations_beta());
|
||||
EXPECT_EQ(g_lstm_cell->get_clip(), lstm_cell->get_clip());
|
||||
}
|
||||
|
||||
TEST(attributes, lstm_cell_v4_op2) {
|
||||
NodeBuilder::get_ops().register_factory<opset4::LSTMCell>();
|
||||
auto X = make_shared<op::Parameter>(element::f32, Shape{2, 3});
|
||||
auto H = make_shared<op::Parameter>(element::f32, Shape{2, 3});
|
||||
auto W = make_shared<op::Parameter>(element::f32, Shape{12, 3});
|
||||
auto R = make_shared<op::Parameter>(element::f32, Shape{12, 3});
|
||||
const auto initial_hidden_state = make_shared<op::Parameter>(element::f32, Shape{2, 3});
|
||||
const auto initial_cell_state = make_shared<op::Parameter>(element::f32, Shape{2, 3});
|
||||
auto B = make_shared<op::Parameter>(element::f32, Shape{12});
|
||||
|
||||
const auto hidden_size = 3;
|
||||
const std::vector<std::string> activations = {"tanh", "sigmoid", "tanh"};
|
||||
auto activations_alpha = std::vector<float>{1.0, 1.5};
|
||||
auto activations_beta = std::vector<float>{2.0, 1.0};
|
||||
const float clip = 0.5f;
|
||||
const auto lstm_cell = make_shared<opset4::LSTMCell>(X,
|
||||
initial_hidden_state,
|
||||
initial_cell_state,
|
||||
W,
|
||||
R,
|
||||
B,
|
||||
hidden_size,
|
||||
activations,
|
||||
activations_alpha,
|
||||
activations_beta,
|
||||
clip);
|
||||
NodeBuilder builder(lstm_cell, {X, initial_hidden_state, initial_cell_state, W, R, B});
|
||||
auto g_lstm_cell = ov::as_type_ptr<opset4::LSTMCell>(builder.create());
|
||||
|
||||
EXPECT_EQ(g_lstm_cell->get_hidden_size(), lstm_cell->get_hidden_size());
|
||||
EXPECT_EQ(g_lstm_cell->get_activations(), lstm_cell->get_activations());
|
||||
EXPECT_EQ(g_lstm_cell->get_activations_alpha(), lstm_cell->get_activations_alpha());
|
||||
EXPECT_EQ(g_lstm_cell->get_activations_beta(), lstm_cell->get_activations_beta());
|
||||
EXPECT_EQ(g_lstm_cell->get_clip(), lstm_cell->get_clip());
|
||||
}
|
||||
|
@ -166,3 +166,29 @@ TEST(attributes, multiclass_nms_v9_op_default_attributes) {
|
||||
EXPECT_EQ(g_nms_attrs.nms_eta, nms_attrs.nms_eta);
|
||||
EXPECT_EQ(g_nms_attrs.normalized, nms_attrs.normalized);
|
||||
}
|
||||
|
||||
TEST(attributes, multiclass_nms_v9_op_default_attributes2) {
|
||||
NodeBuilder::get_ops().register_factory<opset9::MulticlassNms>();
|
||||
auto boxes = make_shared<op::Parameter>(element::f32, Shape{3, 2, 4});
|
||||
auto scores = make_shared<op::Parameter>(element::f32, Shape{3, 3, 2});
|
||||
|
||||
auto nms = make_shared<opset9::MulticlassNms>(boxes, scores, opset9::MulticlassNms::Attributes());
|
||||
NodeBuilder builder(nms, {boxes, scores});
|
||||
auto g_nms = ov::as_type_ptr<opset9::MulticlassNms>(builder.create());
|
||||
const auto expected_attr_count = 10;
|
||||
EXPECT_EQ(builder.get_value_map_size(), expected_attr_count);
|
||||
|
||||
auto& g_nms_attrs = g_nms->get_attrs();
|
||||
auto& nms_attrs = nms->get_attrs();
|
||||
|
||||
EXPECT_EQ(g_nms_attrs.sort_result_type, nms_attrs.sort_result_type);
|
||||
EXPECT_EQ(g_nms_attrs.sort_result_across_batch, nms_attrs.sort_result_across_batch);
|
||||
EXPECT_EQ(g_nms_attrs.output_type, nms_attrs.output_type);
|
||||
EXPECT_EQ(g_nms_attrs.nms_top_k, nms_attrs.nms_top_k);
|
||||
EXPECT_EQ(g_nms_attrs.keep_top_k, nms_attrs.keep_top_k);
|
||||
EXPECT_EQ(g_nms_attrs.iou_threshold, nms_attrs.iou_threshold);
|
||||
EXPECT_EQ(g_nms_attrs.score_threshold, nms_attrs.score_threshold);
|
||||
EXPECT_EQ(g_nms_attrs.background_class, nms_attrs.background_class);
|
||||
EXPECT_EQ(g_nms_attrs.nms_eta, nms_attrs.nms_eta);
|
||||
EXPECT_EQ(g_nms_attrs.normalized, nms_attrs.normalized);
|
||||
}
|
||||
|
@ -10,6 +10,7 @@
|
||||
#include "ngraph/opsets/opset4.hpp"
|
||||
#include "ngraph/opsets/opset5.hpp"
|
||||
#include "ngraph/opsets/opset8.hpp"
|
||||
#include "ngraph_functions/builders.hpp"
|
||||
#include "util/visitor.hpp"
|
||||
|
||||
using namespace std;
|
||||
@ -147,3 +148,50 @@ TEST(attributes, prior_box_v8_op) {
|
||||
EXPECT_EQ(g_prior_box_attrs.min_max_aspect_ratios_order, prior_box_attrs.min_max_aspect_ratios_order);
|
||||
EXPECT_EQ(g_prior_box->has_evaluate(), prior_box->has_evaluate());
|
||||
}
|
||||
|
||||
TEST(attributes, prior_box_v8_op2) {
|
||||
NodeBuilder::get_ops().register_factory<opset8::PriorBox>();
|
||||
|
||||
auto params = ngraph::builder::makeParams(ov::element::Type_t::i32, {{128, 128}, {32, 32}});
|
||||
auto shape_of_1 = std::make_shared<ngraph::opset3::ShapeOf>(params[0]);
|
||||
auto shape_of_2 = std::make_shared<ngraph::opset3::ShapeOf>(params[1]);
|
||||
|
||||
op::v8::PriorBox::Attributes attrs;
|
||||
attrs.min_size = vector<float>{16.f, 32.f};
|
||||
attrs.max_size = vector<float>{256.f, 512.f};
|
||||
attrs.aspect_ratio = vector<float>{0.66f, 1.56f};
|
||||
attrs.density = vector<float>{0.55f};
|
||||
attrs.fixed_ratio = vector<float>{0.88f};
|
||||
attrs.fixed_size = vector<float>{1.25f};
|
||||
attrs.clip = true;
|
||||
attrs.flip = false;
|
||||
attrs.step = 1.0f;
|
||||
attrs.offset = 0.0f;
|
||||
attrs.variance = vector<float>{2.22f, 3.14f};
|
||||
attrs.scale_all_sizes = true;
|
||||
attrs.min_max_aspect_ratios_order = false;
|
||||
|
||||
auto prior_box = make_shared<opset8::PriorBox>(shape_of_1, shape_of_2, attrs);
|
||||
NodeBuilder builder(prior_box, {shape_of_1, shape_of_2});
|
||||
auto g_prior_box = ov::as_type_ptr<opset8::PriorBox>(builder.create());
|
||||
|
||||
const auto prior_box_attrs = prior_box->get_attrs();
|
||||
const auto g_prior_box_attrs = g_prior_box->get_attrs();
|
||||
|
||||
const auto expected_attr_count = 13;
|
||||
EXPECT_EQ(builder.get_value_map_size(), expected_attr_count);
|
||||
EXPECT_EQ(g_prior_box_attrs.min_size, prior_box_attrs.min_size);
|
||||
EXPECT_EQ(g_prior_box_attrs.max_size, prior_box_attrs.max_size);
|
||||
EXPECT_EQ(g_prior_box_attrs.aspect_ratio, prior_box_attrs.aspect_ratio);
|
||||
EXPECT_EQ(g_prior_box_attrs.density, prior_box_attrs.density);
|
||||
EXPECT_EQ(g_prior_box_attrs.fixed_ratio, prior_box_attrs.fixed_ratio);
|
||||
EXPECT_EQ(g_prior_box_attrs.fixed_size, prior_box_attrs.fixed_size);
|
||||
EXPECT_EQ(g_prior_box_attrs.clip, prior_box_attrs.clip);
|
||||
EXPECT_EQ(g_prior_box_attrs.flip, prior_box_attrs.flip);
|
||||
EXPECT_EQ(g_prior_box_attrs.step, prior_box_attrs.step);
|
||||
EXPECT_EQ(g_prior_box_attrs.offset, prior_box_attrs.offset);
|
||||
EXPECT_EQ(g_prior_box_attrs.variance, prior_box_attrs.variance);
|
||||
EXPECT_EQ(g_prior_box_attrs.scale_all_sizes, prior_box_attrs.scale_all_sizes);
|
||||
EXPECT_EQ(g_prior_box_attrs.min_max_aspect_ratios_order, prior_box_attrs.min_max_aspect_ratios_order);
|
||||
EXPECT_EQ(g_prior_box->has_evaluate(), prior_box->has_evaluate());
|
||||
}
|
||||
|
@ -62,3 +62,25 @@ TEST(attributes, rnn_cell_op_default_attributes) {
|
||||
EXPECT_EQ(g_rnn_cell->get_activations_alpha(), rnn_cell->get_activations_alpha());
|
||||
EXPECT_EQ(g_rnn_cell->get_activations_beta(), rnn_cell->get_activations_beta());
|
||||
}
|
||||
|
||||
TEST(attributes, rnn_cell_op_default_attributes2) {
|
||||
NodeBuilder::get_ops().register_factory<opset1::RNNCell>();
|
||||
auto X = make_shared<op::Parameter>(element::f32, Shape{2, 3});
|
||||
auto H = make_shared<op::Parameter>(element::f32, Shape{2, 3});
|
||||
auto W = make_shared<op::Parameter>(element::f32, Shape{3, 3});
|
||||
auto R = make_shared<op::Parameter>(element::f32, Shape{3, 3});
|
||||
auto B = make_shared<op::Parameter>(element::f32, Shape{3});
|
||||
|
||||
const size_t hidden_size = 3;
|
||||
|
||||
auto rnn_cell = make_shared<opset1::RNNCell>(X, H, W, R, B, hidden_size);
|
||||
|
||||
NodeBuilder builder(rnn_cell, {X, H, W, R, B});
|
||||
auto g_rnn_cell = ov::as_type_ptr<opset1::RNNCell>(builder.create());
|
||||
|
||||
EXPECT_EQ(g_rnn_cell->get_hidden_size(), rnn_cell->get_hidden_size());
|
||||
EXPECT_EQ(g_rnn_cell->get_clip(), rnn_cell->get_clip());
|
||||
EXPECT_EQ(g_rnn_cell->get_activations(), rnn_cell->get_activations());
|
||||
EXPECT_EQ(g_rnn_cell->get_activations_alpha(), rnn_cell->get_activations_alpha());
|
||||
EXPECT_EQ(g_rnn_cell->get_activations_beta(), rnn_cell->get_activations_beta());
|
||||
}
|
||||
|
28
src/core/tests/visitors/op/scatter_nd_update.cpp
Normal file
28
src/core/tests/visitors/op/scatter_nd_update.cpp
Normal file
@ -0,0 +1,28 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "gtest/gtest.h"
|
||||
#include "ngraph/ngraph.hpp"
|
||||
#include "ngraph/op/util/attr_types.hpp"
|
||||
#include "ngraph/opsets/opset4.hpp"
|
||||
#include "util/visitor.hpp"
|
||||
|
||||
using namespace ngraph;
|
||||
using ngraph::test::NodeBuilder;
|
||||
using ngraph::test::ValueMap;
|
||||
|
||||
TEST(attributes, scatter_nd_update) {
|
||||
NodeBuilder::get_ops().register_factory<opset4::ScatterNDUpdate>();
|
||||
|
||||
auto data = std::make_shared<op::Parameter>(element::f32, Shape{1000, 256, 10, 15});
|
||||
auto indices = std::make_shared<op::Parameter>(element::i32, Shape{25, 125, 3});
|
||||
auto updates = std::make_shared<op::Parameter>(element::f32, Shape{25, 125, 15});
|
||||
|
||||
auto scatter = std::make_shared<opset4::ScatterNDUpdate>(data, indices, updates);
|
||||
NodeBuilder builder(scatter, {data, indices, updates});
|
||||
EXPECT_NO_THROW(auto g_scatter = ov::as_type_ptr<opset4::ScatterNDUpdate>(builder.create()));
|
||||
|
||||
const auto expected_attr_count = 0;
|
||||
EXPECT_EQ(builder.get_value_map_size(), expected_attr_count);
|
||||
}
|
@ -30,6 +30,8 @@ TEST(attributes, scatter_update_op) {
|
||||
auto op = make_shared<ScatterUpdate>(R, I, U, A);
|
||||
|
||||
NodeBuilder builder(op, {R, I, U, A});
|
||||
EXPECT_NO_THROW(auto g_op = ov::as_type_ptr<ScatterUpdate>(builder.create()));
|
||||
|
||||
const auto expected_attr_count = 0;
|
||||
|
||||
EXPECT_EQ(builder.get_value_map_size(), expected_attr_count);
|
||||
|
@ -21,6 +21,7 @@ TEST(attributes, slice_op_no_axes) {
|
||||
|
||||
const auto op = make_shared<opset8::Slice>(data, start, stop, step);
|
||||
NodeBuilder builder(op, {data, start, stop, step});
|
||||
EXPECT_NO_THROW(auto g_op = ov::as_type_ptr<opset8::Slice>(builder.create()));
|
||||
|
||||
const auto expected_attr_count = 0;
|
||||
EXPECT_EQ(builder.get_value_map_size(), expected_attr_count);
|
||||
@ -36,6 +37,7 @@ TEST(attributes, slice_op_with_axes) {
|
||||
|
||||
const auto op = make_shared<opset8::Slice>(data, start, stop, step, axes);
|
||||
NodeBuilder builder(op, {data, start, stop, step, axes});
|
||||
EXPECT_NO_THROW(auto g_op = ov::as_type_ptr<opset8::Slice>(builder.create()));
|
||||
|
||||
const auto expected_attr_count = 0;
|
||||
EXPECT_EQ(builder.get_value_map_size(), expected_attr_count);
|
||||
|
@ -2,8 +2,35 @@
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "unary_ops.hpp"
|
||||
#include "gtest/gtest.h"
|
||||
#include "ngraph/opsets/opset4.hpp"
|
||||
#include "util/visitor.hpp"
|
||||
|
||||
using Type = ::testing::Types<UnaryOperatorType<ngraph::op::v4::Swish, ngraph::element::f32>>;
|
||||
using namespace std;
|
||||
using namespace ngraph;
|
||||
using ngraph::test::NodeBuilder;
|
||||
|
||||
INSTANTIATE_TYPED_TEST_SUITE_P(visitor_without_atrribute, UnaryOperatorVisitor, Type, UnaryOperatorTypeName);
|
||||
TEST(attributes, swish_op) {
|
||||
NodeBuilder::get_ops().register_factory<opset4::Swish>();
|
||||
const auto data = make_shared<op::Parameter>(element::f32, Shape{1, 2, 3});
|
||||
|
||||
const auto op = make_shared<opset4::Swish>(data);
|
||||
NodeBuilder builder(op, {data});
|
||||
EXPECT_NO_THROW(auto g_op = ov::as_type_ptr<opset4::Swish>(builder.create()));
|
||||
|
||||
const auto expected_attr_count = 0;
|
||||
EXPECT_EQ(builder.get_value_map_size(), expected_attr_count);
|
||||
}
|
||||
|
||||
TEST(attributes, swish_op2) {
|
||||
NodeBuilder::get_ops().register_factory<opset4::Swish>();
|
||||
const auto data = make_shared<op::Parameter>(element::f32, Shape{1, 2, 3});
|
||||
const auto beta = make_shared<op::Parameter>(element::f32, Shape{});
|
||||
|
||||
const auto op = make_shared<opset4::Swish>(data, beta);
|
||||
NodeBuilder builder(op, {data, beta});
|
||||
EXPECT_NO_THROW(auto g_op = ov::as_type_ptr<opset4::Swish>(builder.create()));
|
||||
|
||||
const auto expected_attr_count = 0;
|
||||
EXPECT_EQ(builder.get_value_map_size(), expected_attr_count);
|
||||
}
|
||||
|
@ -1302,3 +1302,88 @@ TEST_F(IRFrontendTests, name_with_comma) {
|
||||
auto it = names.find(tensor_name);
|
||||
EXPECT_NE(it, names.end());
|
||||
}
|
||||
|
||||
TEST_F(IRFrontendTests, DetectionOutput) {
|
||||
std::string testModel = R"V0G0N(
|
||||
<net name="DetectionOutput" version="11">
|
||||
<layers>
|
||||
<layer id="2" name="Parameter_186617" type="Parameter" version="opset1">
|
||||
<data shape="1,60" element_type="f32" />
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>60</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer id="1" name="Parameter_186618" type="Parameter" version="opset1">
|
||||
<data shape="1,165" element_type="f32" />
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>165</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer id="0" name="Parameter_186619" type="Parameter" version="opset1">
|
||||
<data shape="1,1,60" element_type="f32" />
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>1</dim>
|
||||
<dim>60</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer id="3" name="DetectionOutput_186620" type="DetectionOutput" version="opset1">
|
||||
<data num_classes="11" background_label_id="0" top_k="75" variance_encoded_in_target="true" keep_top_k="50" code_type="caffe.PriorBoxParameter.CORNER" share_location="true" nms_threshold="0.5" confidence_threshold="0.30000001192092896" clip_after_nms="true" clip_before_nms="true" decrease_label_id="true" normalized="true" input_height="1" input_width="1" objectness_score="0.40000000596046448" />
|
||||
<input>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>60</dim>
|
||||
</port>
|
||||
<port id="1" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>165</dim>
|
||||
</port>
|
||||
<port id="2" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>1</dim>
|
||||
<dim>60</dim>
|
||||
</port>
|
||||
</input>
|
||||
<output>
|
||||
<port id="3" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>1</dim>
|
||||
<dim>50</dim>
|
||||
<dim>7</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer id="4" name="Result_186621" type="Result" version="opset1">
|
||||
<input>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>1</dim>
|
||||
<dim>50</dim>
|
||||
<dim>7</dim>
|
||||
</port>
|
||||
</input>
|
||||
</layer>
|
||||
</layers>
|
||||
<edges>
|
||||
<edge from-layer="0" from-port="0" to-layer="3" to-port="2" />
|
||||
<edge from-layer="1" from-port="0" to-layer="3" to-port="1" />
|
||||
<edge from-layer="2" from-port="0" to-layer="3" to-port="0" />
|
||||
<edge from-layer="3" from-port="3" to-layer="4" to-port="0" />
|
||||
</edges>
|
||||
<rt_info />
|
||||
</net>
|
||||
)V0G0N";
|
||||
|
||||
std::shared_ptr<ov::Model> model;
|
||||
|
||||
ASSERT_NO_THROW(model = getWithIRFrontend(testModel));
|
||||
ASSERT_TRUE(!!model);
|
||||
}
|
||||
|
@ -1444,3 +1444,253 @@ TEST_F(IRFrontendTestsTensorIterator, tensor_iterator_negative_stride_opset4) {
|
||||
ASSERT_NO_THROW(model = core.read_model(xmlFileName, binFileName));
|
||||
ASSERT_TRUE(!!model);
|
||||
}
|
||||
|
||||
TEST_F(IRFrontendTestsTensorIterator, test1) {
|
||||
std::string xmlModel = R"V0G0N(
|
||||
<?xml version="1.0"?>
|
||||
<net name="Model169" version="10">
|
||||
<layers>
|
||||
<layer id="0" name="Parameter_2683" type="Parameter" version="opset1">
|
||||
<data shape="1,128" element_type="f32" />
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>128</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer id="1" name="Parameter_2682" type="Parameter" version="opset1">
|
||||
<data shape="1,2,10" element_type="f32" />
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>2</dim>
|
||||
<dim>10</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer id="2" name="TensorIterator_2680" type="TensorIterator" version="opset1">
|
||||
<port_map>
|
||||
<input axis="1" external_port_id="0" internal_layer_id="1" start="0" end="-1" stride="1" part_size="1" />
|
||||
<input external_port_id="1" internal_layer_id="0" />
|
||||
<output axis="1" external_port_id="2" internal_layer_id="9" start="0" end="-1" stride="1" part_size="1" />
|
||||
<output external_port_id="3" internal_layer_id="10" />
|
||||
</port_map>
|
||||
<back_edges>
|
||||
<edge from-layer="10" to-layer="0" />
|
||||
</back_edges>
|
||||
<input>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>2</dim>
|
||||
<dim>10</dim>
|
||||
</port>
|
||||
<port id="1" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>128</dim>
|
||||
</port>
|
||||
</input>
|
||||
<output>
|
||||
<port id="2" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>2</dim>
|
||||
<dim>128</dim>
|
||||
</port>
|
||||
<port id="3" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>128</dim>
|
||||
</port>
|
||||
</output>
|
||||
<body>
|
||||
<layers>
|
||||
<layer id="0" name="Parameter_2685" type="Parameter" version="opset1">
|
||||
<data shape="1,128" element_type="f32" />
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>128</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer id="1" name="Parameter_2684" type="Parameter" version="opset1">
|
||||
<data shape="1,1,10" element_type="f32" />
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>1</dim>
|
||||
<dim>10</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer id="2" name="Constant_2681" type="Const" version="opset1">
|
||||
<data element_type="i64" shape="1" offset="0" size="8" />
|
||||
<output>
|
||||
<port id="0" precision="I64">
|
||||
<dim>1</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer id="3" name="Squeeze_2686" type="Squeeze" version="opset1">
|
||||
<input>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>1</dim>
|
||||
<dim>10</dim>
|
||||
</port>
|
||||
<port id="1" precision="I64">
|
||||
<dim>1</dim>
|
||||
</port>
|
||||
</input>
|
||||
<output>
|
||||
<port id="2" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>10</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer id="4" name="Constant_2687" type="Const" version="opset1">
|
||||
<data element_type="f32" shape="384, 10" offset="8" size="15360" />
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>384</dim>
|
||||
<dim>10</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer id="5" name="Constant_2688" type="Const" version="opset1">
|
||||
<data element_type="f32" shape="384, 128" offset="15368" size="196608" />
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>384</dim>
|
||||
<dim>128</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer id="6" name="Constant_2689" type="Const" version="opset1">
|
||||
<data element_type="f32" shape="384" offset="211976" size="1536" />
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>384</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer id="7" name="GRUCell_2690" type="GRUCell" version="opset3">
|
||||
<data linear_before_reset="false" hidden_size="128" activations="sigmoid, tanh" activations_alpha="" activations_beta="" clip="0" />
|
||||
<input>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>10</dim>
|
||||
</port>
|
||||
<port id="1" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>128</dim>
|
||||
</port>
|
||||
<port id="2" precision="FP32">
|
||||
<dim>384</dim>
|
||||
<dim>10</dim>
|
||||
</port>
|
||||
<port id="3" precision="FP32">
|
||||
<dim>384</dim>
|
||||
<dim>128</dim>
|
||||
</port>
|
||||
<port id="4" precision="FP32">
|
||||
<dim>384</dim>
|
||||
</port>
|
||||
</input>
|
||||
<output>
|
||||
<port id="5" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>128</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer id="8" name="Unsqueeze_2691" type="Unsqueeze" version="opset1">
|
||||
<input>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>128</dim>
|
||||
</port>
|
||||
<port id="1" precision="I64">
|
||||
<dim>1</dim>
|
||||
</port>
|
||||
</input>
|
||||
<output>
|
||||
<port id="2" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>1</dim>
|
||||
<dim>128</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer id="9" name="Result_2693" type="Result" version="opset1">
|
||||
<input>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>1</dim>
|
||||
<dim>128</dim>
|
||||
</port>
|
||||
</input>
|
||||
</layer>
|
||||
<layer id="10" name="Result_2692" type="Result" version="opset1">
|
||||
<input>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>128</dim>
|
||||
</port>
|
||||
</input>
|
||||
</layer>
|
||||
</layers>
|
||||
<edges>
|
||||
<edge from-layer="0" from-port="0" to-layer="7" to-port="1" />
|
||||
<edge from-layer="1" from-port="0" to-layer="3" to-port="0" />
|
||||
<edge from-layer="2" from-port="0" to-layer="3" to-port="1" />
|
||||
<edge from-layer="2" from-port="0" to-layer="8" to-port="1" />
|
||||
<edge from-layer="3" from-port="2" to-layer="7" to-port="0" />
|
||||
<edge from-layer="4" from-port="0" to-layer="7" to-port="2" />
|
||||
<edge from-layer="5" from-port="0" to-layer="7" to-port="3" />
|
||||
<edge from-layer="6" from-port="0" to-layer="7" to-port="4" />
|
||||
<edge from-layer="7" from-port="5" to-layer="8" to-port="0" />
|
||||
<edge from-layer="7" from-port="5" to-layer="10" to-port="0" />
|
||||
<edge from-layer="8" from-port="2" to-layer="9" to-port="0" />
|
||||
</edges>
|
||||
<rt_info />
|
||||
</body>
|
||||
</layer>
|
||||
<layer id="3" name="Result_2695" type="Result" version="opset1">
|
||||
<input>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>128</dim>
|
||||
</port>
|
||||
</input>
|
||||
</layer>
|
||||
<layer id="4" name="Result_2694" type="Result" version="opset1">
|
||||
<input>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>2</dim>
|
||||
<dim>128</dim>
|
||||
</port>
|
||||
</input>
|
||||
</layer>
|
||||
</layers>
|
||||
<edges>
|
||||
<edge from-layer="0" from-port="0" to-layer="2" to-port="1" />
|
||||
<edge from-layer="1" from-port="0" to-layer="2" to-port="0" />
|
||||
<edge from-layer="2" from-port="3" to-layer="3" to-port="0" />
|
||||
<edge from-layer="2" from-port="2" to-layer="4" to-port="0" />
|
||||
</edges>
|
||||
<rt_info />
|
||||
</net>
|
||||
)V0G0N";
|
||||
|
||||
std::vector<unsigned char> buffer(213512, 0);
|
||||
int64_t* int64Buffer = reinterpret_cast<int64_t*>(buffer.data());
|
||||
int64Buffer[0] = 1;
|
||||
|
||||
createTemporalModelFile(xmlModel, buffer);
|
||||
std::shared_ptr<ov::Model> model;
|
||||
|
||||
ASSERT_NO_THROW(model = core.read_model(xmlFileName, binFileName));
|
||||
ASSERT_TRUE(!!model);
|
||||
}
|
||||
|
@ -1,8 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "functional_test_utils/core_config.hpp"
|
||||
|
||||
void CoreConfiguration(LayerTestsUtils::LayerTestsCommon* test) {
|
||||
}
|
@ -1,112 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
#include "shared_test_classes/single_layer/activation.hpp"
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
using namespace ngraph::helpers;
|
||||
namespace {
|
||||
TEST_P(ActivationLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
// Common params
|
||||
const std::vector<InferenceEngine::Precision> inputPrecisions = {
|
||||
InferenceEngine::Precision::FP32
|
||||
// TODO: Fix Issue-27390
|
||||
// InferenceEngine::Precision::I16,
|
||||
// InferenceEngine::Precision::U8
|
||||
};
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16
|
||||
};
|
||||
|
||||
const std::map<ActivationTypes, std::vector<std::vector<float>>> activationTypes = {
|
||||
{Sigmoid, {}},
|
||||
{Tanh, {}},
|
||||
{Relu, {}},
|
||||
{Exp, {}},
|
||||
{Log, {}},
|
||||
{Sign, {}},
|
||||
{Abs, {}},
|
||||
{Clamp, {{-2.0f, 2.0f}}},
|
||||
{Negative, {}},
|
||||
{Acos, {}},
|
||||
{Acosh, {}},
|
||||
{Asin, {}},
|
||||
{Asinh, {}},
|
||||
{Atan, {}},
|
||||
{Atanh, {}},
|
||||
{Cos, {}},
|
||||
{Cosh, {}},
|
||||
{Floor, {}},
|
||||
{Sin, {}},
|
||||
{Sinh, {}},
|
||||
{Sqrt, {}},
|
||||
{Tan, {}},
|
||||
{Elu, {{0.1f}}},
|
||||
{Erf, {}},
|
||||
{HardSigmoid, {{0.2f, 0.5f}}},
|
||||
{Selu, {{1.6732f, 1.0507f}}},
|
||||
{Ceiling, {}},
|
||||
{Mish, {}},
|
||||
{HSwish, {}},
|
||||
{Swish, {{0.3f}}},
|
||||
{SoftPlus, {}},
|
||||
{HSigmoid, {}},
|
||||
{RoundHalfToEven, {}},
|
||||
{RoundHalfAwayFromZero, {}},
|
||||
{GeluErf, {}},
|
||||
{GeluTanh, {}}
|
||||
};
|
||||
|
||||
const std::map<ActivationTypes, std::vector<std::vector<float>>> activationParamTypes = {
|
||||
{PReLu, {{-0.01f}}},
|
||||
{LeakyRelu, {{0.01f}}}
|
||||
};
|
||||
|
||||
std::map<std::vector<size_t>, std::vector<std::vector<size_t>>> basic = {
|
||||
{{1, 50}, {{}}},
|
||||
{{1, 128}, {{}}},
|
||||
};
|
||||
|
||||
std::map<std::vector<size_t>, std::vector<std::vector<size_t>>> preluBasic = {
|
||||
{{1, 50}, {{1}, {50}}},
|
||||
{{1, 128}, {{1}, {128}}},
|
||||
};
|
||||
|
||||
const auto basicCases = ::testing::Combine(
|
||||
::testing::ValuesIn(CommonTestUtils::combineParams(activationTypes)),
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::ValuesIn(CommonTestUtils::combineParams(basic)),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)
|
||||
);
|
||||
|
||||
const auto basicPreluCases = ::testing::Combine(
|
||||
::testing::ValuesIn(CommonTestUtils::combineParams(activationParamTypes)),
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::ValuesIn(CommonTestUtils::combineParams(preluBasic)),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)
|
||||
);
|
||||
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_Activation_Basic, ActivationLayerTest, basicCases, ActivationLayerTest::getTestCaseName);
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_Activation_Basic_Prelu, ActivationLayerTest, basicPreluCases, ActivationLayerTest::getTestCaseName);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_Activation_Basic, ActivationParamLayerTest, basicPreluCases, ActivationLayerTest::getTestCaseName);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_Activation_Basic, ActivationDynamicLayerTest, basicCases, ActivationLayerTest::getTestCaseName);
|
||||
|
||||
} // namespace
|
@ -1,55 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/batch_norm.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
|
||||
TEST_P(BatchNormLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16
|
||||
};
|
||||
|
||||
const std::vector<double> epsilon = {
|
||||
0.0,
|
||||
1e-6,
|
||||
1e-5,
|
||||
1e-4
|
||||
};
|
||||
|
||||
const std::vector<std::vector<size_t>> inputShapes = {
|
||||
{1, 3},
|
||||
{2, 5},
|
||||
{1, 3, 10},
|
||||
{1, 3, 1, 1},
|
||||
{2, 5, 4, 4},
|
||||
};
|
||||
|
||||
const auto batchNormParams = testing::Combine(
|
||||
testing::ValuesIn(epsilon),
|
||||
testing::ValuesIn(netPrecisions),
|
||||
testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
testing::Values(InferenceEngine::Layout::ANY),
|
||||
testing::Values(InferenceEngine::Layout::ANY),
|
||||
testing::ValuesIn(inputShapes),
|
||||
testing::Values(CommonTestUtils::DEVICE_CPU)
|
||||
);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_BatchNorm_Serialization,
|
||||
BatchNormLayerTest,
|
||||
batchNormParams,
|
||||
BatchNormLayerTest::getTestCaseName
|
||||
);
|
||||
|
||||
} // namespace
|
@ -1,72 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "shared_test_classes/single_layer/batch_to_space.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(BatchToSpaceLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32, InferenceEngine::Precision::FP16};
|
||||
|
||||
const std::vector<std::vector<int64_t>> block_shapes_4D = {
|
||||
{1, 1, 2, 2},
|
||||
{1, 1, 4, 2}
|
||||
};
|
||||
|
||||
const std::vector<std::vector<int64_t>> crops_4D = {
|
||||
{0, 0, 0, 0},
|
||||
{0, 0, 1, 0},
|
||||
{0, 0, 0, 1}
|
||||
};
|
||||
|
||||
const auto batch_to_space_4D_params = ::testing::Combine(
|
||||
::testing::ValuesIn(block_shapes_4D),
|
||||
::testing::ValuesIn(crops_4D),
|
||||
::testing::ValuesIn(crops_4D),
|
||||
::testing::Values(std::vector<size_t>{16, 1, 2, 2}),
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU));
|
||||
|
||||
const std::vector<std::vector<int64_t>> block_shapes_5D = {
|
||||
{1, 1, 2, 1, 3},
|
||||
{1, 1, 4, 2, 2}
|
||||
};
|
||||
|
||||
const std::vector<std::vector<int64_t>> crops_5D = {
|
||||
{0, 0, 0, 0, 0},
|
||||
{0, 0, 1, 0, 1},
|
||||
{0, 0, 0, 1, 1}
|
||||
};
|
||||
|
||||
const auto batch_to_space_5D_params = ::testing::Combine(
|
||||
::testing::ValuesIn(block_shapes_5D),
|
||||
::testing::ValuesIn(crops_5D),
|
||||
::testing::ValuesIn(crops_5D),
|
||||
::testing::Values(std::vector<size_t>{48, 1, 3, 4, 2}),
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_BatchToSpace_Serialization_4D, BatchToSpaceLayerTest,
|
||||
batch_to_space_4D_params,
|
||||
BatchToSpaceLayerTest::getTestCaseName);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_BatchToSpace_Serialization_5D, BatchToSpaceLayerTest,
|
||||
batch_to_space_5D_params,
|
||||
BatchToSpaceLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,63 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/binary_convolution.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(BinaryConvolutionLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32, InferenceEngine::Precision::FP16};
|
||||
const std::vector<std::vector<size_t>> kernels = {{3, 5}};
|
||||
const std::vector<std::vector<size_t>> strides = {{1, 3}};
|
||||
const std::vector<std::vector<ptrdiff_t>> padBegins = {{0, 3}};
|
||||
const std::vector<std::vector<ptrdiff_t>> padEnds = {{0, 3}};
|
||||
const std::vector<std::vector<size_t>> dilations = {{3, 1}};
|
||||
const std::vector<size_t> numOutChannels = {5};
|
||||
const std::vector<float> pad_values = {0, 1};
|
||||
|
||||
const auto binConv2DParams_ExplicitPadding = ::testing::Combine(
|
||||
::testing::ValuesIn(kernels), ::testing::ValuesIn(strides),
|
||||
::testing::ValuesIn(padBegins), ::testing::ValuesIn(padEnds),
|
||||
::testing::ValuesIn(dilations), ::testing::ValuesIn(numOutChannels),
|
||||
::testing::Values(ngraph::op::PadType::EXPLICIT),
|
||||
::testing::ValuesIn(pad_values));
|
||||
const auto binConv2DParams_AutoPadValid = ::testing::Combine(
|
||||
::testing::ValuesIn(kernels), ::testing::ValuesIn(strides),
|
||||
::testing::Values(std::vector<ptrdiff_t>({0, 0})),
|
||||
::testing::Values(std::vector<ptrdiff_t>({0, 0})),
|
||||
::testing::ValuesIn(dilations), ::testing::ValuesIn(numOutChannels),
|
||||
::testing::Values(ngraph::op::PadType::VALID),
|
||||
::testing::ValuesIn(pad_values));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_BinaryConvolution2D_Serialization_ExplicitPadding, BinaryConvolutionLayerTest,
|
||||
::testing::Combine(
|
||||
binConv2DParams_ExplicitPadding, ::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(std::vector<size_t>({1, 3, 30, 30})),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
BinaryConvolutionLayerTest::getTestCaseName);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_BinaryConvolution2D__Serialization_AutoPadValid, BinaryConvolutionLayerTest,
|
||||
::testing::Combine(
|
||||
binConv2DParams_AutoPadValid, ::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(std::vector<size_t>({1, 3, 30, 30})),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
BinaryConvolutionLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,33 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/broadcast.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(BroadcastLayerTest, Serialize) { Serialize(); }
|
||||
const std::vector<InferenceEngine::Precision> inputPrecisions = {
|
||||
InferenceEngine::Precision::FP32, InferenceEngine::Precision::I32,
|
||||
InferenceEngine::Precision::BOOL};
|
||||
|
||||
// NUMPY MODE
|
||||
|
||||
std::vector<std::vector<size_t>> inShapesNumpy = {{3, 1}, {1, 4, 1}};
|
||||
|
||||
std::vector<std::vector<size_t>> targetShapesNumpy = {{2, 3, 6}, {1, 4, 4}};
|
||||
|
||||
const auto numpyBroadcastParams1 = ::testing::Combine(
|
||||
::testing::Values(targetShapesNumpy[0]),
|
||||
::testing::Values(ngraph::AxisSet{}), // not used in numpy mode
|
||||
::testing::Values(ngraph::op::BroadcastType::NUMPY),
|
||||
::testing::Values(inShapesNumpy[0]), ::testing::ValuesIn(inputPrecisions),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_Broadcast1Serialization, BroadcastLayerTest,
|
||||
numpyBroadcastParams1,
|
||||
BroadcastLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,34 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/clamp.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(ClampLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<std::vector<size_t>> inShapes = {
|
||||
{50}, {10, 10}, {1, 20, 20}, {2, 3, 50, 50}};
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32, InferenceEngine::Precision::I32};
|
||||
|
||||
const std::vector<std::pair<float, float>> intervals = {
|
||||
{-20.1, -10.5}, {-10.0, 10.0}, {10.3, 20.4}};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_Clamp_Serialization, ClampLayerTest,
|
||||
::testing::Combine(
|
||||
::testing::ValuesIn(inShapes),
|
||||
::testing::ValuesIn(intervals),
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
ClampLayerTest::getTestCaseName);
|
||||
|
||||
} // namespace
|
@ -1,16 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "shared_test_classes/single_layer/comparison.hpp"
|
||||
|
||||
struct ComparisionOpsData {
|
||||
const std::map<std::vector<size_t>, std::vector<std::vector<size_t>>> inputShapes;
|
||||
const std::vector<InferenceEngine::Precision> inputsPrecisions;
|
||||
const std::vector<ngraph::helpers::InputLayerType> secondInputTypes;
|
||||
const std::map<std::string, std::string> additional_config;
|
||||
const ngraph::helpers::ComparisonTypes opType;
|
||||
const InferenceEngine::Precision ieInputPrecision;
|
||||
const InferenceEngine::Precision ieOutputPrecision;
|
||||
const std::string deviceName;
|
||||
};
|
@ -1,56 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "shared_test_classes/single_layer/constant.hpp"
|
||||
|
||||
#include <vector>
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(ConstantLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
std::vector<std::vector<size_t>> shapes = {
|
||||
{2, 2, 3},
|
||||
{3, 4, 1},
|
||||
{1, 1, 12},
|
||||
};
|
||||
|
||||
std::vector<InferenceEngine::Precision> precisions = {
|
||||
InferenceEngine::Precision::BIN, InferenceEngine::Precision::BF16,
|
||||
InferenceEngine::Precision::FP16, InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP64, InferenceEngine::Precision::U4,
|
||||
InferenceEngine::Precision::U8, InferenceEngine::Precision::U16,
|
||||
InferenceEngine::Precision::U32, InferenceEngine::Precision::I4,
|
||||
InferenceEngine::Precision::I8, InferenceEngine::Precision::I16,
|
||||
InferenceEngine::Precision::I32,
|
||||
};
|
||||
|
||||
std::vector<std::string> data = {"1", "2", "3", "4", "5", "6", "7", "1", "2", "3", "4", "5"};
|
||||
|
||||
std::vector<InferenceEngine::Precision> precisionsWithNegativeValues = {
|
||||
InferenceEngine::Precision::BF16, InferenceEngine::Precision::FP16,
|
||||
InferenceEngine::Precision::FP32, InferenceEngine::Precision::FP64,
|
||||
InferenceEngine::Precision::I4, InferenceEngine::Precision::I8,
|
||||
InferenceEngine::Precision::I16, InferenceEngine::Precision::I32,
|
||||
};
|
||||
|
||||
std::vector<std::string> dataWithNegativeValues = {"1", "-2", "3", "-4", "5", "-6",
|
||||
"7", "-1", "2", "-3", "4", "-5"};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_Constant_Serialization, ConstantLayerTest,
|
||||
::testing::Combine(::testing::ValuesIn(shapes),
|
||||
::testing::ValuesIn(precisions), ::testing::Values(data),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
ConstantLayerTest::getTestCaseName);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_Constant_Serialization_with_negative_values, ConstantLayerTest,
|
||||
::testing::Combine(::testing::ValuesIn(shapes),
|
||||
::testing::ValuesIn(precisionsWithNegativeValues),
|
||||
::testing::Values(dataWithNegativeValues),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
ConstantLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,44 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "shared_test_classes/single_layer/conversion.hpp"
|
||||
|
||||
#include <vector>
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
const std::vector<ngraph::helpers::ConversionTypes> conversionOpTypes = {
|
||||
ngraph::helpers::ConversionTypes::CONVERT,
|
||||
ngraph::helpers::ConversionTypes::CONVERT_LIKE,
|
||||
};
|
||||
|
||||
const std::vector<std::vector<size_t>> inShape = {{1, 2, 3, 4}};
|
||||
|
||||
const std::vector<InferenceEngine::Precision> precisions = {
|
||||
InferenceEngine::Precision::BOOL, InferenceEngine::Precision::BIN,
|
||||
InferenceEngine::Precision::U4, InferenceEngine::Precision::U8,
|
||||
InferenceEngine::Precision::I4, InferenceEngine::Precision::I8,
|
||||
InferenceEngine::Precision::U16, InferenceEngine::Precision::I16,
|
||||
InferenceEngine::Precision::U32, InferenceEngine::Precision::I32,
|
||||
InferenceEngine::Precision::U64, InferenceEngine::Precision::I64,
|
||||
InferenceEngine::Precision::BF16, InferenceEngine::Precision::FP16,
|
||||
InferenceEngine::Precision::FP32, InferenceEngine::Precision::FP64};
|
||||
|
||||
TEST_P(ConversionLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_Serialization_ConversionLayerTest, ConversionLayerTest,
|
||||
::testing::Combine(::testing::ValuesIn(conversionOpTypes),
|
||||
::testing::Values(inShape),
|
||||
::testing::ValuesIn(precisions),
|
||||
::testing::ValuesIn(precisions),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
ConversionLayerTest::getTestCaseName);
|
||||
|
||||
} // namespace
|
@ -1,33 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "shared_test_classes/single_layer/convert_color_i420.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
|
||||
TEST_P(ConvertColorI420LayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<ov::Shape> inShapes_nhwc = {
|
||||
{1, 10, 10, 1}
|
||||
};
|
||||
|
||||
const std::vector<ov::element::Type> inTypes = {
|
||||
ov::element::u8, ov::element::f32
|
||||
};
|
||||
|
||||
const auto testCase_values = ::testing::Combine(
|
||||
::testing::ValuesIn(inShapes_nhwc),
|
||||
::testing::ValuesIn(inTypes),
|
||||
::testing::Bool(),
|
||||
::testing::Bool(),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)
|
||||
);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_CompareWithRefs, ConvertColorI420LayerTest, testCase_values, ConvertColorI420LayerTest::getTestCaseName);
|
||||
|
||||
} // namespace
|
@ -1,33 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "shared_test_classes/single_layer/convert_color_nv12.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
|
||||
TEST_P(ConvertColorNV12LayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<ov::Shape> inShapes_nhwc = {
|
||||
{1, 10, 10, 1}
|
||||
};
|
||||
|
||||
const std::vector<ov::element::Type> inTypes = {
|
||||
ov::element::u8, ov::element::f32
|
||||
};
|
||||
|
||||
const auto testCase_values = ::testing::Combine(
|
||||
::testing::ValuesIn(inShapes_nhwc),
|
||||
::testing::ValuesIn(inTypes),
|
||||
::testing::Bool(),
|
||||
::testing::Bool(),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)
|
||||
);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_CompareWithRefs, ConvertColorNV12LayerTest, testCase_values, ConvertColorNV12LayerTest::getTestCaseName);
|
||||
|
||||
} // namespace
|
@ -1,62 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/convolution.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(ConvolutionLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32, InferenceEngine::Precision::FP16,
|
||||
InferenceEngine::Precision::I16, InferenceEngine::Precision::I32,
|
||||
InferenceEngine::Precision::I64};
|
||||
const std::vector<std::vector<size_t>> kernels = {{3, 5}};
|
||||
const std::vector<std::vector<size_t>> strides = {{1, 3}};
|
||||
const std::vector<std::vector<ptrdiff_t>> padBegins = {{0, 3}};
|
||||
const std::vector<std::vector<ptrdiff_t>> padEnds = {{0, 3}};
|
||||
const std::vector<std::vector<size_t>> dilations = {{3, 1}};
|
||||
const std::vector<size_t> numOutChannels = {5};
|
||||
|
||||
const auto conv2DParams_ExplicitPadding = ::testing::Combine(
|
||||
::testing::ValuesIn(kernels), ::testing::ValuesIn(strides),
|
||||
::testing::ValuesIn(padBegins), ::testing::ValuesIn(padEnds),
|
||||
::testing::ValuesIn(dilations), ::testing::ValuesIn(numOutChannels),
|
||||
::testing::Values(ngraph::op::PadType::EXPLICIT));
|
||||
const auto conv2DParams_AutoPadValid = ::testing::Combine(
|
||||
::testing::ValuesIn(kernels), ::testing::ValuesIn(strides),
|
||||
::testing::Values(std::vector<ptrdiff_t>({0, 0})),
|
||||
::testing::Values(std::vector<ptrdiff_t>({0, 0})),
|
||||
::testing::ValuesIn(dilations), ::testing::ValuesIn(numOutChannels),
|
||||
::testing::Values(ngraph::op::PadType::VALID));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_Convolution2D_Serialization_ExplicitPadding, ConvolutionLayerTest,
|
||||
::testing::Combine(
|
||||
conv2DParams_ExplicitPadding, ::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(std::vector<size_t>({1, 3, 30, 30})),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
ConvolutionLayerTest::getTestCaseName);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_Convolution2D__Serialization_AutoPadValid, ConvolutionLayerTest,
|
||||
::testing::Combine(
|
||||
conv2DParams_AutoPadValid, ::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(std::vector<size_t>({1, 3, 30, 30})),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
ConvolutionLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,58 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/convolution_backprop_data.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
|
||||
TEST_P(ConvolutionBackpropDataLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> precisions = {
|
||||
InferenceEngine::Precision::FP64, InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16, InferenceEngine::Precision::BF16,
|
||||
InferenceEngine::Precision::I8, InferenceEngine::Precision::I16,
|
||||
InferenceEngine::Precision::I32, InferenceEngine::Precision::I64,
|
||||
InferenceEngine::Precision::U8, InferenceEngine::Precision::U16,
|
||||
InferenceEngine::Precision::U32, InferenceEngine::Precision::U64,
|
||||
};
|
||||
const std::vector<std::vector<size_t>> kernels = {{3, 3}};
|
||||
const std::vector<std::vector<size_t>> strides = {{1, 1}};
|
||||
const std::vector<std::vector<ptrdiff_t>> padBegins = {{0, 0}};
|
||||
const std::vector<std::vector<ptrdiff_t>> padEnds = {{0, 0}};
|
||||
const std::vector<std::vector<size_t>> dilations = {{1, 1}};
|
||||
const std::vector<std::vector<ptrdiff_t>> outPadding = {{}, {1, 1}};
|
||||
const std::vector<size_t> numOutChannels = {8, 16};
|
||||
const std::vector<ngraph::op::PadType> pad_types = {
|
||||
ngraph::op::PadType::EXPLICIT, ngraph::op::PadType::VALID,
|
||||
ngraph::op::PadType::SAME_LOWER, ngraph::op::PadType::SAME_UPPER};
|
||||
const auto inputShapes = std::vector<size_t>({1, 16, 20, 20});
|
||||
const std::vector<std::vector<size_t >> emptyOutputShape = {{}};
|
||||
|
||||
const auto convolutionBackpropData2DParams = ::testing::Combine(
|
||||
::testing::ValuesIn(kernels), ::testing::ValuesIn(strides),
|
||||
::testing::ValuesIn(padBegins), ::testing::ValuesIn(padEnds),
|
||||
::testing::ValuesIn(dilations), ::testing::ValuesIn(numOutChannels),
|
||||
::testing::ValuesIn(pad_types), ::testing::ValuesIn(outPadding));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_convolutionBackpropData2D_Serialization, ConvolutionBackpropDataLayerTest,
|
||||
::testing::Combine(
|
||||
convolutionBackpropData2DParams,
|
||||
::testing::ValuesIn(precisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(inputShapes),
|
||||
::testing::ValuesIn(emptyOutputShape),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
ConvolutionBackpropDataLayerTest::getTestCaseName);
|
||||
|
||||
} // namespace
|
@ -1,43 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/ctc_loss.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(CTCLossLayerTest, Serialize) { Serialize(); }
|
||||
|
||||
const std::vector<InferenceEngine::Precision> fPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16};
|
||||
const std::vector<InferenceEngine::Precision> iPrecisions = {
|
||||
InferenceEngine::Precision::I32,
|
||||
InferenceEngine::Precision::I64};
|
||||
|
||||
const std::vector<bool> preprocessCollapseRepeated = {true, false};
|
||||
const std::vector<bool> ctcMergeRepeated = {true, false};
|
||||
const std::vector<bool> unique = {true, false};
|
||||
|
||||
const auto ctcLossArgsSubset1 = ::testing::Combine(
|
||||
::testing::Values(std::vector<size_t>({2, 3, 3})), // logits shape
|
||||
::testing::ValuesIn(std::vector<std::vector<int>>({{2, 3}, {3, 3}})), // logits length
|
||||
::testing::ValuesIn(std::vector<std::vector<std::vector<int>>>(
|
||||
{{{0, 1, 0}, {1, 0, 1}}, {{0, 1, 2}, {1, 1, 1}}})), // labels
|
||||
::testing::ValuesIn(std::vector<std::vector<int>>({{2, 2}, {2, 1}})), // labels length
|
||||
::testing::Values(2), // blank index
|
||||
::testing::ValuesIn(preprocessCollapseRepeated),
|
||||
::testing::ValuesIn(ctcMergeRepeated),
|
||||
::testing::ValuesIn(unique));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_CTCLossSerialization, CTCLossLayerTest,
|
||||
::testing::Combine(
|
||||
ctcLossArgsSubset1,
|
||||
::testing::ValuesIn(fPrecisions),
|
||||
::testing::ValuesIn(iPrecisions),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
CTCLossLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,74 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/deformable_convolution.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(DeformableConvolutionLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32, InferenceEngine::Precision::FP16,
|
||||
InferenceEngine::Precision::I32, InferenceEngine::Precision::I16};
|
||||
const std::vector<std::vector<size_t>> offsets = {{1, 18, 26, 26}};
|
||||
const std::vector<std::vector<size_t>> filters = {{1, 1, 3, 3}};
|
||||
const std::vector<std::vector<size_t>> strides = {{1, 1}};
|
||||
const std::vector<std::vector<ptrdiff_t>> padBegins = {{0, 0}};
|
||||
const std::vector<std::vector<ptrdiff_t>> padEnds ={{0, 0}};
|
||||
const std::vector<std::vector<size_t>> dilations = {{1, 1}};
|
||||
const std::vector<size_t> groups = {1};
|
||||
const std::vector<size_t> defor_groups = {1};
|
||||
const std::vector<size_t> numOutChannels = {1};
|
||||
const std::vector<bool> with_bilinear_interpolation_pad = { false, true };
|
||||
const std::vector<bool> with_modulated_scalar = { false, true };
|
||||
|
||||
const auto conv2DParams_ExplicitPadding = ::testing::Combine(
|
||||
::testing::ValuesIn(offsets), ::testing::ValuesIn(filters),
|
||||
::testing::ValuesIn(strides), ::testing::ValuesIn(padBegins),
|
||||
::testing::ValuesIn(padEnds), ::testing::ValuesIn(dilations),
|
||||
::testing::ValuesIn(groups), ::testing::ValuesIn(defor_groups),
|
||||
::testing::ValuesIn(numOutChannels),
|
||||
::testing::Values(ngraph::op::PadType::EXPLICIT),
|
||||
::testing::ValuesIn(with_bilinear_interpolation_pad),
|
||||
::testing::ValuesIn(with_modulated_scalar));
|
||||
const auto conv2DParams_AutoPadValid = ::testing::Combine(
|
||||
::testing::ValuesIn(offsets), ::testing::ValuesIn(filters),
|
||||
::testing::ValuesIn(strides),
|
||||
::testing::Values(std::vector<ptrdiff_t>({0, 0})),
|
||||
::testing::Values(std::vector<ptrdiff_t>({0, 0})),
|
||||
::testing::ValuesIn(dilations), ::testing::ValuesIn(groups),
|
||||
::testing::ValuesIn(defor_groups), ::testing::ValuesIn(numOutChannels),
|
||||
::testing::Values(ngraph::op::PadType::VALID),
|
||||
::testing::ValuesIn(with_bilinear_interpolation_pad),
|
||||
::testing::ValuesIn(with_modulated_scalar));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_DeformableConvolution2D_Serialization_ExplicitPadding, DeformableConvolutionLayerTest,
|
||||
::testing::Combine(
|
||||
conv2DParams_ExplicitPadding, ::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(std::vector<size_t>({1, 1, 28, 28})),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
DeformableConvolutionLayerTest::getTestCaseName);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_DeformableConvolution2D__Serialization_AutoPadValid, DeformableConvolutionLayerTest,
|
||||
::testing::Combine(
|
||||
conv2DParams_AutoPadValid, ::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(std::vector<size_t>({1, 1, 28, 28})),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
DeformableConvolutionLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,35 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/deformable_psroi_pooling.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(DeformablePSROIPoolingLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const auto deformablePSROIParams = ::testing::Combine(
|
||||
::testing::ValuesIn(std::vector<std::vector<size_t>>{{3, 8, 16, 16}, {1, 8, 67, 32}}), // data input shape
|
||||
::testing::Values(std::vector<size_t>{10, 5}), // rois input shape
|
||||
// Empty offsets shape means test without optional third input
|
||||
::testing::ValuesIn(std::vector<std::vector<size_t>>{{}, {10, 2, 2, 2}}), // offsets input shape
|
||||
::testing::Values(2), // output_dim
|
||||
::testing::Values(2), // group_size
|
||||
::testing::ValuesIn(std::vector<float>{1.0, 0.5, 0.0625}), // spatial scale
|
||||
::testing::ValuesIn(std::vector<std::vector<int64_t>>{{1, 1}, {2, 2}, {3, 3}, {2, 3}}), // spatial_bins_x_y
|
||||
::testing::ValuesIn(std::vector<float>{0.0, 0.01, 0.5}), // trans_std
|
||||
::testing::Values(2)); // part_size
|
||||
|
||||
const auto deformablePSROICases_test_params = ::testing::Combine(
|
||||
deformablePSROIParams,
|
||||
::testing::Values(InferenceEngine::Precision::FP32), // Net precision
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)); // Device name
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_TestsDeformablePSROIPooling, DeformablePSROIPoolingLayerTest, deformablePSROICases_test_params,
|
||||
DeformablePSROIPoolingLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,40 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "shared_test_classes/single_layer/depth_to_space.hpp"
|
||||
|
||||
#include <ngraph/opsets/opset3.hpp>
|
||||
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
using namespace ngraph::opset3;
|
||||
|
||||
namespace {
|
||||
TEST_P(DepthToSpaceLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
const std::vector<InferenceEngine::Precision> inputPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::U8,
|
||||
InferenceEngine::Precision::I16,
|
||||
};
|
||||
|
||||
const std::vector<DepthToSpace::DepthToSpaceMode> modes = {
|
||||
DepthToSpace::DepthToSpaceMode::BLOCKS_FIRST,
|
||||
DepthToSpace::DepthToSpaceMode::DEPTH_FIRST};
|
||||
|
||||
const std::vector<std::vector<size_t>> inputShapesBS2 = {
|
||||
{1, 4, 1, 1}, {1, 4, 2, 2}, {1, 4, 3, 3}, {2, 32, 3, 3},
|
||||
{2, 16, 5, 4}, {1, 8, 1, 1, 1}, {1, 8, 2, 2, 2}, {1, 8, 3, 3, 3},
|
||||
{2, 32, 3, 3, 3}, {2, 16, 5, 4, 6}};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_DepthToSpaceSerialization, DepthToSpaceLayerTest,
|
||||
::testing::Combine(::testing::ValuesIn(inputShapesBS2),
|
||||
::testing::ValuesIn(inputPrecisions),
|
||||
::testing::ValuesIn(modes), ::testing::Values(1, 2),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
DepthToSpaceLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,74 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/detection_output.hpp"
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(DetectionOutputLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16
|
||||
};
|
||||
|
||||
/* =============== Detection Output =============== */
|
||||
|
||||
const int numClasses = 11;
|
||||
const int backgroundLabelId = 0;
|
||||
const std::vector<int> topK = {75};
|
||||
const std::vector<std::vector<int>> keepTopK = { {50}, {100} };
|
||||
const std::vector<std::string> codeType = {"caffe.PriorBoxParameter.CORNER", "caffe.PriorBoxParameter.CENTER_SIZE"};
|
||||
const float nmsThreshold = 0.5f;
|
||||
const float confidenceThreshold = 0.3f;
|
||||
const std::vector<bool> clipAfterNms = {true, false};
|
||||
const std::vector<bool> clipBeforeNms = {true, false};
|
||||
const std::vector<bool> decreaseLabelId = {true, false};
|
||||
const std::vector<size_t> numberBatch = {1, 2};
|
||||
const float objectnessScore = 0.4f;
|
||||
|
||||
const auto commonAttributes = ::testing::Combine(
|
||||
::testing::Values(numClasses),
|
||||
::testing::Values(backgroundLabelId),
|
||||
::testing::ValuesIn(topK),
|
||||
::testing::ValuesIn(keepTopK),
|
||||
::testing::ValuesIn(codeType),
|
||||
::testing::Values(nmsThreshold),
|
||||
::testing::Values(confidenceThreshold),
|
||||
::testing::ValuesIn(clipAfterNms),
|
||||
::testing::ValuesIn(clipBeforeNms),
|
||||
::testing::ValuesIn(decreaseLabelId));
|
||||
|
||||
/* =============== 3 inputs cases =============== */
|
||||
|
||||
const std::vector<ParamsWhichSizeDepends> specificParams3In = {
|
||||
ParamsWhichSizeDepends{true, true, true, 1, 1, {1, 60}, {1, 165}, {1, 1, 60}, {}, {}},
|
||||
ParamsWhichSizeDepends{true, false, true, 1, 1, {1, 660}, {1, 165}, {1, 1, 60}, {}, {}},
|
||||
ParamsWhichSizeDepends{false, true, true, 1, 1, {1, 60}, {1, 165}, {1, 2, 60}, {}, {}},
|
||||
ParamsWhichSizeDepends{false, false, true, 1, 1, {1, 660}, {1, 165}, {1, 2, 60}, {}, {}},
|
||||
|
||||
ParamsWhichSizeDepends{true, true, false, 10, 10, {1, 60}, {1, 165}, {1, 1, 75}, {}, {}},
|
||||
ParamsWhichSizeDepends{true, false, false, 10, 10, {1, 660}, {1, 165}, {1, 1, 75}, {}, {}},
|
||||
ParamsWhichSizeDepends{false, true, false, 10, 10, {1, 60}, {1, 165}, {1, 2, 75}, {}, {}},
|
||||
ParamsWhichSizeDepends{false, false, false, 10, 10, {1, 660}, {1, 165}, {1, 2, 75}, {}, {}}};
|
||||
|
||||
const auto params3Inputs = ::testing::Combine(
|
||||
commonAttributes,
|
||||
::testing::ValuesIn(specificParams3In),
|
||||
::testing::ValuesIn(numberBatch),
|
||||
::testing::Values(objectnessScore),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_DetectionOutput3In,
|
||||
DetectionOutputLayerTest,
|
||||
params3Inputs,
|
||||
DetectionOutputLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,85 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/eltwise.hpp"
|
||||
|
||||
using namespace ov::test::subgraph;
|
||||
|
||||
namespace {
|
||||
TEST_P(EltwiseLayerTest, Serialize) {
|
||||
serialize();
|
||||
}
|
||||
|
||||
const std::vector<ov::test::ElementType> inputPrecisions = {
|
||||
ov::element::f32,
|
||||
ov::element::f16,
|
||||
ov::element::i32,
|
||||
};
|
||||
|
||||
std::vector<std::vector<ov::Shape>> inputShapes = {
|
||||
{{2}},
|
||||
{{1, 5, 50}},
|
||||
{{2, 10, 1, 4}, {2, 10, 1, 1}}
|
||||
};
|
||||
|
||||
std::vector<std::vector<ov::test::InputShape>> inShapesDynamic = {
|
||||
{{{ngraph::Dimension(1, 10), 200}, {{6, 200}, {1, 200}}},
|
||||
{{ngraph::Dimension(1, 10), 200}, {{2, 200}, {5, 200}}}},
|
||||
};
|
||||
|
||||
std::vector<ngraph::helpers::InputLayerType> secondaryInputTypes = {
|
||||
ngraph::helpers::InputLayerType::CONSTANT,
|
||||
ngraph::helpers::InputLayerType::PARAMETER,
|
||||
};
|
||||
|
||||
std::vector<CommonTestUtils::OpType> opTypes = {
|
||||
CommonTestUtils::OpType::SCALAR,
|
||||
CommonTestUtils::OpType::VECTOR,
|
||||
};
|
||||
|
||||
std::vector<ngraph::helpers::EltwiseTypes> eltwiseOpTypes = {
|
||||
ngraph::helpers::EltwiseTypes::ADD,
|
||||
ngraph::helpers::EltwiseTypes::MULTIPLY,
|
||||
ngraph::helpers::EltwiseTypes::SUBTRACT,
|
||||
ngraph::helpers::EltwiseTypes::DIVIDE,
|
||||
ngraph::helpers::EltwiseTypes::FLOOR_MOD,
|
||||
ngraph::helpers::EltwiseTypes::SQUARED_DIFF,
|
||||
ngraph::helpers::EltwiseTypes::POWER,
|
||||
ngraph::helpers::EltwiseTypes::MOD
|
||||
};
|
||||
|
||||
ov::AnyMap additionalConfig = {};
|
||||
|
||||
const auto elementiwiseParams = ::testing::Combine(
|
||||
::testing::ValuesIn(ov::test::static_shapes_to_test_representation(inputShapes)),
|
||||
::testing::ValuesIn(eltwiseOpTypes),
|
||||
::testing::ValuesIn(secondaryInputTypes),
|
||||
::testing::ValuesIn(opTypes),
|
||||
::testing::ValuesIn(inputPrecisions),
|
||||
::testing::Values(ov::element::undefined),
|
||||
::testing::Values(ov::element::undefined),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU),
|
||||
::testing::Values(additionalConfig));
|
||||
|
||||
const auto elementiwiseParamsDyn = ::testing::Combine(
|
||||
::testing::ValuesIn(inShapesDynamic),
|
||||
::testing::ValuesIn(eltwiseOpTypes),
|
||||
::testing::ValuesIn(secondaryInputTypes),
|
||||
::testing::ValuesIn(opTypes),
|
||||
::testing::ValuesIn(inputPrecisions),
|
||||
::testing::Values(ov::element::undefined),
|
||||
::testing::Values(ov::element::undefined),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU),
|
||||
::testing::Values(additionalConfig));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_ElementwiseSerialization_static, EltwiseLayerTest,
|
||||
elementiwiseParams,
|
||||
EltwiseLayerTest::getTestCaseName);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_ElementwiseSerialization_dynamic, EltwiseLayerTest,
|
||||
elementiwiseParamsDyn,
|
||||
EltwiseLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,48 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/embedding_bag_offsets_sum.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(EmbeddingBagOffsetsSumLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::I32,
|
||||
InferenceEngine::Precision::U8};
|
||||
|
||||
const std::vector<InferenceEngine::Precision> indPrecisions = {
|
||||
InferenceEngine::Precision::I64,
|
||||
InferenceEngine::Precision::I32};
|
||||
|
||||
const std::vector<std::vector<size_t>> emb_table_shape = {{5, 6}, {5, 4, 16}};
|
||||
const std::vector<std::vector<size_t>> indices =
|
||||
{{0, 1, 2, 2, 3}, {4, 4, 3, 1, 0}, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2}};
|
||||
const std::vector<std::vector<size_t>> offsets = {{0, 2}, {0, 0, 2, 2}, {2, 4}};
|
||||
const std::vector<size_t> default_index = {0, 4};
|
||||
const std::vector<bool> with_weights = {false, true};
|
||||
const std::vector<bool> with_default_index = {false, true};
|
||||
|
||||
const auto EmbeddingBagOffsetsSumParams = ::testing::Combine(
|
||||
::testing::ValuesIn(emb_table_shape),
|
||||
::testing::ValuesIn(indices),
|
||||
::testing::ValuesIn(offsets),
|
||||
::testing::ValuesIn(default_index),
|
||||
::testing::ValuesIn(with_weights),
|
||||
::testing::ValuesIn(with_default_index));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_EmbeddingBagOffsetsSumLayerTest_Serialization, EmbeddingBagOffsetsSumLayerTest,
|
||||
::testing::Combine(EmbeddingBagOffsetsSumParams,
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::ValuesIn(indPrecisions),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
EmbeddingBagOffsetsSumLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,42 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/embedding_bag_packed_sum.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(EmbeddingBagPackedSumLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::I32,
|
||||
InferenceEngine::Precision::U8};
|
||||
|
||||
const std::vector<InferenceEngine::Precision> indPrecisions = {
|
||||
InferenceEngine::Precision::I64,
|
||||
InferenceEngine::Precision::I32};
|
||||
|
||||
const std::vector<std::vector<size_t>> emb_table_shape = {{5, 6}, {10, 35}, {5, 4, 16}};
|
||||
const std::vector<std::vector<std::vector<size_t>>> indices =
|
||||
{{{0, 1}, {2, 2}}, {{4, 4, 3}, {1, 0, 2}}, {{1, 2, 1, 2}}};
|
||||
const std::vector<bool> with_weights = {false, true};
|
||||
|
||||
const auto EmbeddingBagPackedSumParams = ::testing::Combine(
|
||||
::testing::ValuesIn(emb_table_shape),
|
||||
::testing::ValuesIn(indices),
|
||||
::testing::ValuesIn(with_weights));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_EmbeddingBagPackedSumLayerTest_Serialization, EmbeddingBagPackedSumLayerTest,
|
||||
::testing::Combine(EmbeddingBagPackedSumParams,
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::ValuesIn(indPrecisions),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
EmbeddingBagPackedSumLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,50 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/embedding_segments_sum.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(EmbeddingSegmentsSumLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::I32,
|
||||
InferenceEngine::Precision::U8};
|
||||
|
||||
const std::vector<InferenceEngine::Precision> indPrecisions = {
|
||||
InferenceEngine::Precision::I64,
|
||||
InferenceEngine::Precision::I32};
|
||||
|
||||
const std::vector<std::vector<size_t>> emb_table_shape = {{5, 6}, {5, 4, 16}};
|
||||
const std::vector<std::vector<size_t>> indices =
|
||||
{{0, 1, 2, 2, 3}, {4, 4, 3, 1, 2}};
|
||||
const std::vector<std::vector<size_t>> segment_ids = {{0, 1, 2, 3, 4}, {0, 0, 2, 2, 4}};
|
||||
const std::vector<size_t> num_segments = {5, 7};
|
||||
const std::vector<size_t> default_index = {0, 4};
|
||||
const std::vector<bool> with_weights = {false, true};
|
||||
const std::vector<bool> with_default_index = {false, true};
|
||||
|
||||
const auto EmbeddingSegmentsSumParams = ::testing::Combine(
|
||||
::testing::ValuesIn(emb_table_shape),
|
||||
::testing::ValuesIn(indices),
|
||||
::testing::ValuesIn(segment_ids),
|
||||
::testing::ValuesIn(num_segments),
|
||||
::testing::ValuesIn(default_index),
|
||||
::testing::ValuesIn(with_weights),
|
||||
::testing::ValuesIn(with_default_index));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_EmbeddingSegmentsSumLayerTest_Serialization, EmbeddingSegmentsSumLayerTest,
|
||||
::testing::Combine(EmbeddingSegmentsSumParams,
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::ValuesIn(indPrecisions),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
EmbeddingSegmentsSumLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,63 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "comparison_ops.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
using namespace LayerTestsDefinitions::ComparisonParams;
|
||||
|
||||
namespace {
|
||||
TEST_P(ComparisonLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
ComparisionOpsData data = {
|
||||
// inputsShape
|
||||
{
|
||||
{{1}, {{1}, {17}, {1, 1}, {2, 18}, {1, 1, 2}, {2, 2, 3}, {1, 1, 2, 3}}},
|
||||
{{5}, {{1}, {1, 1}, {2, 5}, {1, 1, 1}, {2, 2, 5}}},
|
||||
{{2, 200}, {{1}, {200}, {1, 200}, {2, 200}, {2, 2, 200}}},
|
||||
{{1, 3, 20}, {{20}, {2, 1, 1}}},
|
||||
{{2, 17, 3, 4}, {{4}, {1, 3, 4}, {2, 1, 3, 4}}},
|
||||
{{2, 17, 3, 4}, {{4}, {1, 3, 4}, {141, 1, 3, 4}}},
|
||||
{{2, 1, 1, 3, 1}, {{1}, {1, 3, 4}, {2, 1, 3, 4}, {1, 1, 1, 1, 1}}},
|
||||
},
|
||||
// inputsPrecisions
|
||||
{
|
||||
InferenceEngine::Precision::FP64,
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16,
|
||||
InferenceEngine::Precision::I32,
|
||||
InferenceEngine::Precision::U32,
|
||||
InferenceEngine::Precision::BOOL,
|
||||
},
|
||||
// secondIinputsType
|
||||
{
|
||||
ngraph::helpers::InputLayerType::CONSTANT,
|
||||
ngraph::helpers::InputLayerType::PARAMETER,
|
||||
},
|
||||
// additionalConfig
|
||||
{},
|
||||
// opType
|
||||
ngraph::helpers::ComparisonTypes::EQUAL,
|
||||
// ieInputPrecision
|
||||
InferenceEngine::Precision::UNSPECIFIED,
|
||||
// ieOutputPrecision
|
||||
InferenceEngine::Precision::UNSPECIFIED,
|
||||
// deviceName
|
||||
CommonTestUtils::DEVICE_CPU,
|
||||
};
|
||||
|
||||
const auto SerializeEqualTestParams = ::testing::Combine(
|
||||
::testing::ValuesIn(CommonTestUtils::combineParams(data.inputShapes)),
|
||||
::testing::ValuesIn(data.inputsPrecisions),
|
||||
::testing::Values(data.opType),
|
||||
::testing::ValuesIn(data.secondInputTypes),
|
||||
::testing::Values(data.ieInputPrecision),
|
||||
::testing::Values(data.ieOutputPrecision),
|
||||
::testing::Values(data.deviceName),
|
||||
::testing::Values(data.additional_config));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_CompareWithRefs, ComparisonLayerTest, SerializeEqualTestParams, ComparisonLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,43 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
#include "shared_test_classes/single_layer/extract_image_patches.hpp"
|
||||
|
||||
using namespace ngraph;
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(ExtractImagePatchesTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<std::vector<size_t>> inShapes = {{2, 3, 13, 37}};
|
||||
const std::vector<std::vector<size_t>> kSizes = {{1, 5}, {3, 4}, {3, 1}};
|
||||
const std::vector<std::vector<size_t>> strides = {{1, 2}, {2, 2}, {2, 1}};
|
||||
const std::vector<std::vector<size_t>> rates = {{1, 3}, {3, 3}, {3, 1}};
|
||||
|
||||
const std::vector<ngraph::op::PadType> autoPads = {
|
||||
ngraph::op::PadType::VALID, ngraph::op::PadType::SAME_UPPER,
|
||||
ngraph::op::PadType::SAME_LOWER
|
||||
};
|
||||
const std::vector<InferenceEngine::Precision> netPrecision = {
|
||||
InferenceEngine::Precision::I8, InferenceEngine::Precision::BF16,
|
||||
InferenceEngine::Precision::FP32
|
||||
};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_ExtractImagePatchesLayerTest, ExtractImagePatchesTest,
|
||||
::testing::Combine(::testing::ValuesIn(inShapes),
|
||||
::testing::ValuesIn(kSizes),
|
||||
::testing::ValuesIn(strides),
|
||||
::testing::ValuesIn(rates),
|
||||
::testing::ValuesIn(autoPads),
|
||||
::testing::ValuesIn(netPrecision),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
ExtractImagePatchesTest::getTestCaseName);
|
||||
|
||||
} // namespace
|
@ -1,41 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/gather_tree.hpp"
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
|
||||
TEST_P(GatherTreeLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::I32
|
||||
};
|
||||
|
||||
const std::vector<std::vector<size_t>> inputShapes = { {5, 1, 10}, {1, 1, 10}, {20, 1, 10}, {20, 20, 10} };
|
||||
|
||||
const std::vector<ngraph::helpers::InputLayerType> secondaryInputTypes = {
|
||||
ngraph::helpers::InputLayerType::CONSTANT,
|
||||
ngraph::helpers::InputLayerType::PARAMETER
|
||||
};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_GatherTree_Serialization, GatherTreeLayerTest,
|
||||
::testing::Combine(
|
||||
::testing::ValuesIn(inputShapes),
|
||||
::testing::ValuesIn(secondaryInputTypes),
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
GatherTreeLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,63 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "comparison_ops.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
using namespace LayerTestsDefinitions::ComparisonParams;
|
||||
|
||||
namespace {
|
||||
TEST_P(ComparisonLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
ComparisionOpsData data = {
|
||||
// inputsShape
|
||||
{
|
||||
{{1}, {{1}, {17}, {1, 1}, {2, 18}, {1, 1, 2}, {2, 2, 3}, {1, 1, 2, 3}}},
|
||||
{{5}, {{1}, {1, 1}, {2, 5}, {1, 1, 1}, {2, 2, 5}}},
|
||||
{{2, 200}, {{1}, {200}, {1, 200}, {2, 200}, {2, 2, 200}}},
|
||||
{{1, 3, 20}, {{20}, {2, 1, 1}}},
|
||||
{{2, 17, 3, 4}, {{4}, {1, 3, 4}, {2, 1, 3, 4}}},
|
||||
{{2, 17, 3, 4}, {{4}, {1, 3, 4}, {141, 1, 3, 4}}},
|
||||
{{2, 1, 1, 3, 1}, {{1}, {1, 3, 4}, {2, 1, 3, 4}, {1, 1, 1, 1, 1}}},
|
||||
},
|
||||
// inputsPrecisions
|
||||
{
|
||||
InferenceEngine::Precision::FP64,
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16,
|
||||
InferenceEngine::Precision::I32,
|
||||
InferenceEngine::Precision::U32,
|
||||
InferenceEngine::Precision::BOOL,
|
||||
},
|
||||
// secondIinputsType
|
||||
{
|
||||
ngraph::helpers::InputLayerType::CONSTANT,
|
||||
ngraph::helpers::InputLayerType::PARAMETER,
|
||||
},
|
||||
// additionalConfig
|
||||
{},
|
||||
// opType
|
||||
ngraph::helpers::ComparisonTypes::GREATER,
|
||||
// ieInputPrecision
|
||||
InferenceEngine::Precision::UNSPECIFIED,
|
||||
// ieOutputPrecision
|
||||
InferenceEngine::Precision::UNSPECIFIED,
|
||||
// deviceName
|
||||
CommonTestUtils::DEVICE_CPU,
|
||||
};
|
||||
|
||||
const auto SerializeGreaterTestParams = ::testing::Combine(
|
||||
::testing::ValuesIn(CommonTestUtils::combineParams(data.inputShapes)),
|
||||
::testing::ValuesIn(data.inputsPrecisions),
|
||||
::testing::Values(data.opType),
|
||||
::testing::ValuesIn(data.secondInputTypes),
|
||||
::testing::Values(data.ieInputPrecision),
|
||||
::testing::Values(data.ieOutputPrecision),
|
||||
::testing::Values(data.deviceName),
|
||||
::testing::Values(data.additional_config));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_CompareWithRefs, ComparisonLayerTest, SerializeGreaterTestParams, ComparisonLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,63 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "comparison_ops.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
using namespace LayerTestsDefinitions::ComparisonParams;
|
||||
|
||||
namespace {
|
||||
TEST_P(ComparisonLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
ComparisionOpsData data = {
|
||||
// inputsShape
|
||||
{
|
||||
{{1}, {{1}, {17}, {1, 1}, {2, 18}, {1, 1, 2}, {2, 2, 3}, {1, 1, 2, 3}}},
|
||||
{{5}, {{1}, {1, 1}, {2, 5}, {1, 1, 1}, {2, 2, 5}}},
|
||||
{{2, 200}, {{1}, {200}, {1, 200}, {2, 200}, {2, 2, 200}}},
|
||||
{{1, 3, 20}, {{20}, {2, 1, 1}}},
|
||||
{{2, 17, 3, 4}, {{4}, {1, 3, 4}, {2, 1, 3, 4}}},
|
||||
{{2, 17, 3, 4}, {{4}, {1, 3, 4}, {141, 1, 3, 4}}},
|
||||
{{2, 1, 1, 3, 1}, {{1}, {1, 3, 4}, {2, 1, 3, 4}, {1, 1, 1, 1, 1}}},
|
||||
},
|
||||
// inputsPrecisions
|
||||
{
|
||||
InferenceEngine::Precision::FP64,
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16,
|
||||
InferenceEngine::Precision::I32,
|
||||
InferenceEngine::Precision::U32,
|
||||
InferenceEngine::Precision::BOOL,
|
||||
},
|
||||
// secondIinputsType
|
||||
{
|
||||
ngraph::helpers::InputLayerType::CONSTANT,
|
||||
ngraph::helpers::InputLayerType::PARAMETER,
|
||||
},
|
||||
// additionalConfig
|
||||
{},
|
||||
// opType
|
||||
ngraph::helpers::ComparisonTypes::GREATER_EQUAL,
|
||||
// ieInputPrecision
|
||||
InferenceEngine::Precision::UNSPECIFIED,
|
||||
// ieOutputPrecision
|
||||
InferenceEngine::Precision::UNSPECIFIED,
|
||||
// deviceName
|
||||
CommonTestUtils::DEVICE_CPU,
|
||||
};
|
||||
|
||||
const auto SerializeGreaterEqualTestParams = ::testing::Combine(
|
||||
::testing::ValuesIn(CommonTestUtils::combineParams(data.inputShapes)),
|
||||
::testing::ValuesIn(data.inputsPrecisions),
|
||||
::testing::Values(data.opType),
|
||||
::testing::ValuesIn(data.secondInputTypes),
|
||||
::testing::Values(data.ieInputPrecision),
|
||||
::testing::Values(data.ieOutputPrecision),
|
||||
::testing::Values(data.deviceName),
|
||||
::testing::Values(data.additional_config));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_CompareWithRefs, ComparisonLayerTest, SerializeGreaterEqualTestParams, ComparisonLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,35 +0,0 @@
|
||||
// Copyright (C) 2020-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/grn.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(GrnLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32
|
||||
};
|
||||
|
||||
const auto basicCases = ::testing::Combine(
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
// input shapes
|
||||
::testing::Values(std::vector<size_t>{2, 16, 15, 20}),
|
||||
// bias
|
||||
::testing::Values(1e-6f),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_GRN_Serialization, GrnLayerTest,
|
||||
basicCases,
|
||||
GrnLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,55 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/group_convolution.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
|
||||
TEST_P(GroupConvolutionLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> precisions = {
|
||||
InferenceEngine::Precision::FP64, InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16, InferenceEngine::Precision::BF16,
|
||||
InferenceEngine::Precision::I8, InferenceEngine::Precision::I16,
|
||||
InferenceEngine::Precision::I32, InferenceEngine::Precision::I64,
|
||||
InferenceEngine::Precision::U8, InferenceEngine::Precision::U16,
|
||||
InferenceEngine::Precision::U32, InferenceEngine::Precision::U64,
|
||||
};
|
||||
const std::vector<std::vector<size_t>> kernels = {{3, 3}};
|
||||
const std::vector<std::vector<size_t>> strides = {{1, 1}};
|
||||
const std::vector<std::vector<ptrdiff_t>> padBegins = {{0, 0}};
|
||||
const std::vector<std::vector<ptrdiff_t>> padEnds = {{0, 0}};
|
||||
const std::vector<std::vector<size_t>> dilations = {{1, 1}};
|
||||
const std::vector<size_t> numOutChannels = {8, 16};
|
||||
const std::vector<size_t> numGroups = {2, 8};
|
||||
const std::vector<ngraph::op::PadType> pad_types = {
|
||||
ngraph::op::PadType::EXPLICIT, ngraph::op::PadType::VALID,
|
||||
ngraph::op::PadType::SAME_LOWER, ngraph::op::PadType::SAME_UPPER};
|
||||
const auto inputShapes = std::vector<size_t>({1, 16, 30, 30});
|
||||
|
||||
const auto groupConv2DParams = ::testing::Combine(
|
||||
::testing::ValuesIn(kernels), ::testing::ValuesIn(strides),
|
||||
::testing::ValuesIn(padBegins), ::testing::ValuesIn(padEnds),
|
||||
::testing::ValuesIn(dilations), ::testing::ValuesIn(numOutChannels),
|
||||
::testing::ValuesIn(numGroups), ::testing::ValuesIn(pad_types));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_GroupConvolution2D_Serialization, GroupConvolutionLayerTest,
|
||||
::testing::Combine(
|
||||
groupConv2DParams, ::testing::ValuesIn(precisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(inputShapes),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
GroupConvolutionLayerTest::getTestCaseName);
|
||||
|
||||
} // namespace
|
@ -1,60 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/group_convolution_backprop_data.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
|
||||
TEST_P(GroupConvBackpropLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> precisions = {
|
||||
InferenceEngine::Precision::FP64, InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16, InferenceEngine::Precision::BF16,
|
||||
InferenceEngine::Precision::I8, InferenceEngine::Precision::I16,
|
||||
InferenceEngine::Precision::I32, InferenceEngine::Precision::I64,
|
||||
InferenceEngine::Precision::U8, InferenceEngine::Precision::U16,
|
||||
InferenceEngine::Precision::U32, InferenceEngine::Precision::U64,
|
||||
};
|
||||
const std::vector<std::vector<size_t>> kernels = {{3, 3}};
|
||||
const std::vector<std::vector<size_t>> strides = {{1, 1}};
|
||||
const std::vector<std::vector<ptrdiff_t>> padBegins = {{0, 0}};
|
||||
const std::vector<std::vector<ptrdiff_t>> padEnds = {{0, 0}};
|
||||
const std::vector<std::vector<ptrdiff_t>> outputPadding = {{}, {1, 1}};
|
||||
const std::vector<std::vector<size_t>> dilations = {{1, 1}};
|
||||
const std::vector<size_t> numOutChannels = {8, 16};
|
||||
const std::vector<size_t> numGroups = {2, 8};
|
||||
const std::vector<ngraph::op::PadType> pad_types = {
|
||||
ngraph::op::PadType::EXPLICIT, ngraph::op::PadType::VALID,
|
||||
ngraph::op::PadType::SAME_LOWER, ngraph::op::PadType::SAME_UPPER};
|
||||
const auto inputShapes = std::vector<size_t>({1, 16, 30, 30});
|
||||
const std::vector<std::vector<size_t >> emptyOutputShape = {{}};
|
||||
|
||||
const auto groupConvBackpropData2DParams = ::testing::Combine(
|
||||
::testing::ValuesIn(kernels), ::testing::ValuesIn(strides),
|
||||
::testing::ValuesIn(padBegins), ::testing::ValuesIn(padEnds),
|
||||
::testing::ValuesIn(dilations), ::testing::ValuesIn(numOutChannels),
|
||||
::testing::ValuesIn(numGroups), ::testing::ValuesIn(pad_types),
|
||||
::testing::ValuesIn(outputPadding));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_GroupConvBackpropData2D_Serialization, GroupConvBackpropLayerTest,
|
||||
::testing::Combine(
|
||||
groupConvBackpropData2DParams,
|
||||
::testing::ValuesIn(precisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(inputShapes),
|
||||
::testing::ValuesIn(emptyOutputShape),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
GroupConvBackpropLayerTest::getTestCaseName);
|
||||
|
||||
} // namespace
|
@ -1,63 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "comparison_ops.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
using namespace LayerTestsDefinitions::ComparisonParams;
|
||||
|
||||
namespace {
|
||||
TEST_P(ComparisonLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
ComparisionOpsData data = {
|
||||
// inputsShape
|
||||
{
|
||||
{{1}, {{1}, {17}, {1, 1}, {2, 18}, {1, 1, 2}, {2, 2, 3}, {1, 1, 2, 3}}},
|
||||
{{5}, {{1}, {1, 1}, {2, 5}, {1, 1, 1}, {2, 2, 5}}},
|
||||
{{2, 200}, {{1}, {200}, {1, 200}, {2, 200}, {2, 2, 200}}},
|
||||
{{1, 3, 20}, {{20}, {2, 1, 1}}},
|
||||
{{2, 17, 3, 4}, {{4}, {1, 3, 4}, {2, 1, 3, 4}}},
|
||||
{{2, 17, 3, 4}, {{4}, {1, 3, 4}, {141, 1, 3, 4}}},
|
||||
{{2, 1, 1, 3, 1}, {{1}, {1, 3, 4}, {2, 1, 3, 4}, {1, 1, 1, 1, 1}}},
|
||||
},
|
||||
// inputsPrecisions
|
||||
{
|
||||
InferenceEngine::Precision::FP64,
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16,
|
||||
InferenceEngine::Precision::I32,
|
||||
InferenceEngine::Precision::U32,
|
||||
InferenceEngine::Precision::BOOL,
|
||||
},
|
||||
// secondIinputsType
|
||||
{
|
||||
ngraph::helpers::InputLayerType::CONSTANT,
|
||||
ngraph::helpers::InputLayerType::PARAMETER,
|
||||
},
|
||||
// additionalConfig
|
||||
{},
|
||||
// opType
|
||||
ngraph::helpers::ComparisonTypes::LESS,
|
||||
// ieInputPrecision
|
||||
InferenceEngine::Precision::UNSPECIFIED,
|
||||
// ieOutputPrecision
|
||||
InferenceEngine::Precision::UNSPECIFIED,
|
||||
// deviceName
|
||||
CommonTestUtils::DEVICE_CPU,
|
||||
};
|
||||
|
||||
const auto SerializeLessTestParams = ::testing::Combine(
|
||||
::testing::ValuesIn(CommonTestUtils::combineParams(data.inputShapes)),
|
||||
::testing::ValuesIn(data.inputsPrecisions),
|
||||
::testing::Values(data.opType),
|
||||
::testing::ValuesIn(data.secondInputTypes),
|
||||
::testing::Values(data.ieInputPrecision),
|
||||
::testing::Values(data.ieOutputPrecision),
|
||||
::testing::Values(data.deviceName),
|
||||
::testing::Values(data.additional_config));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_CompareWithRefs, ComparisonLayerTest, SerializeLessTestParams, ComparisonLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,63 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "comparison_ops.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
using namespace LayerTestsDefinitions::ComparisonParams;
|
||||
|
||||
namespace {
|
||||
TEST_P(ComparisonLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
ComparisionOpsData data = {
|
||||
// inputsShape
|
||||
{
|
||||
{{1}, {{1}, {17}, {1, 1}, {2, 18}, {1, 1, 2}, {2, 2, 3}, {1, 1, 2, 3}}},
|
||||
{{5}, {{1}, {1, 1}, {2, 5}, {1, 1, 1}, {2, 2, 5}}},
|
||||
{{2, 200}, {{1}, {200}, {1, 200}, {2, 200}, {2, 2, 200}}},
|
||||
{{1, 3, 20}, {{20}, {2, 1, 1}}},
|
||||
{{2, 17, 3, 4}, {{4}, {1, 3, 4}, {2, 1, 3, 4}}},
|
||||
{{2, 17, 3, 4}, {{4}, {1, 3, 4}, {141, 1, 3, 4}}},
|
||||
{{2, 1, 1, 3, 1}, {{1}, {1, 3, 4}, {2, 1, 3, 4}, {1, 1, 1, 1, 1}}},
|
||||
},
|
||||
// inputsPrecisions
|
||||
{
|
||||
InferenceEngine::Precision::FP64,
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16,
|
||||
InferenceEngine::Precision::I32,
|
||||
InferenceEngine::Precision::U32,
|
||||
InferenceEngine::Precision::BOOL,
|
||||
},
|
||||
// secondIinputsType
|
||||
{
|
||||
ngraph::helpers::InputLayerType::CONSTANT,
|
||||
ngraph::helpers::InputLayerType::PARAMETER,
|
||||
},
|
||||
// additionalConfig
|
||||
{},
|
||||
// opType
|
||||
ngraph::helpers::ComparisonTypes::LESS_EQUAL,
|
||||
// ieInputPrecision
|
||||
InferenceEngine::Precision::UNSPECIFIED,
|
||||
// ieOutputPrecision
|
||||
InferenceEngine::Precision::UNSPECIFIED,
|
||||
// deviceName
|
||||
CommonTestUtils::DEVICE_CPU,
|
||||
};
|
||||
|
||||
const auto SerializeLessEqualTestParams = ::testing::Combine(
|
||||
::testing::ValuesIn(CommonTestUtils::combineParams(data.inputShapes)),
|
||||
::testing::ValuesIn(data.inputsPrecisions),
|
||||
::testing::Values(data.opType),
|
||||
::testing::ValuesIn(data.secondInputTypes),
|
||||
::testing::Values(data.ieInputPrecision),
|
||||
::testing::Values(data.ieOutputPrecision),
|
||||
::testing::Values(data.deviceName),
|
||||
::testing::Values(data.additional_config));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_CompareWithRefs, ComparisonLayerTest, SerializeLessEqualTestParams, ComparisonLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,84 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
#include "shared_test_classes/single_layer/logical.hpp"
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
using namespace LayerTestsDefinitions::LogicalParams;
|
||||
|
||||
namespace {
|
||||
TEST_P(LogicalLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
std::map<std::vector<size_t>, std::vector<std::vector<size_t >>> inputShapes = {
|
||||
{{1}, {{1}, {17}, {1, 1}, {2, 18}, {1, 1, 2}, {2, 2, 3}, {1, 1, 2, 3}}},
|
||||
{{5}, {{1}, {1, 1}, {2, 5}, {1, 1, 1}, {2, 2, 5}}},
|
||||
{{2, 200}, {{1}, {200}, {1, 200}, {2, 200}, {2, 2, 200}}},
|
||||
{{1, 3, 20}, {{20}, {2, 1, 1}}},
|
||||
{{2, 17, 3, 4}, {{4}, {1, 3, 4}, {2, 1, 3, 4}}},
|
||||
{{2, 1, 1, 3, 1}, {{1}, {1, 3, 4}, {2, 1, 3, 4}, {1, 1, 1, 1, 1}}},
|
||||
};
|
||||
|
||||
std::map<std::vector<size_t>, std::vector<std::vector<size_t >>> inputShapesNot = {
|
||||
{{1}, {}},
|
||||
{{5}, {}},
|
||||
{{2, 200}, {}},
|
||||
{{1, 3, 20}, {}},
|
||||
{{2, 17, 3, 4}, {}},
|
||||
{{2, 1, 1, 3, 1}, {}},
|
||||
};
|
||||
|
||||
std::vector<InferenceEngine::Precision> inputsPrecisions = {
|
||||
InferenceEngine::Precision::BOOL,
|
||||
};
|
||||
|
||||
std::vector<ngraph::helpers::LogicalTypes> logicalOpTypes = {
|
||||
ngraph::helpers::LogicalTypes::LOGICAL_AND,
|
||||
ngraph::helpers::LogicalTypes::LOGICAL_OR,
|
||||
ngraph::helpers::LogicalTypes::LOGICAL_XOR,
|
||||
};
|
||||
|
||||
std::vector<ngraph::helpers::InputLayerType> secondInputTypes = {
|
||||
ngraph::helpers::InputLayerType::CONSTANT,
|
||||
ngraph::helpers::InputLayerType::PARAMETER,
|
||||
};
|
||||
|
||||
std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
};
|
||||
|
||||
std::map<std::string, std::string> additional_config = {};
|
||||
|
||||
const auto LogicalTestParams = ::testing::Combine(
|
||||
::testing::ValuesIn(LogicalLayerTest::combineShapes(inputShapes)),
|
||||
::testing::ValuesIn(logicalOpTypes),
|
||||
::testing::ValuesIn(secondInputTypes),
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::ValuesIn(inputsPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU),
|
||||
::testing::Values(additional_config));
|
||||
|
||||
const auto LogicalNotTestParams = ::testing::Combine(
|
||||
::testing::ValuesIn(LogicalLayerTest::combineShapes(inputShapesNot)),
|
||||
::testing::Values(ngraph::helpers::LogicalTypes::LOGICAL_NOT),
|
||||
::testing::Values(ngraph::helpers::InputLayerType::CONSTANT),
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::ValuesIn(inputsPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU),
|
||||
::testing::Values(additional_config));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_CompareWithRefs, LogicalLayerTest, LogicalTestParams, LogicalLayerTest::getTestCaseName);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_CompareWithRefsNot, LogicalLayerTest, LogicalNotTestParams, LogicalLayerTest::getTestCaseName);
|
||||
|
||||
} // namespace
|
@ -1,69 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/matrix_nms.hpp"
|
||||
|
||||
using namespace ngraph;
|
||||
using namespace ov::test::subgraph;
|
||||
|
||||
namespace {
|
||||
TEST_P(MatrixNmsLayerTest, Serialize) {
|
||||
serialize();
|
||||
}
|
||||
|
||||
const std::vector<ov::test::ElementType> netPrecisions = {
|
||||
ov::element::f32,
|
||||
ov::element::f16
|
||||
};
|
||||
|
||||
const std::vector<std::vector<ov::test::InputShape>> shapeParams = {
|
||||
// num_batches, num_boxes, 4
|
||||
{{{ngraph::Dimension::dynamic(), ngraph::Dimension::dynamic(), 4},
|
||||
{{1, 10, 4}, {2, 100, 4}}},
|
||||
// num_batches, num_classes, num_boxes
|
||||
{{ngraph::Dimension::dynamic(), ngraph::Dimension::dynamic(), ngraph::Dimension::dynamic()},
|
||||
{{1, 3, 10}, {2, 5, 100}}}},
|
||||
// num_batches, num_boxes, 4
|
||||
{{{ngraph::Dimension(1, 10), ngraph::Dimension(1, 100), 4},
|
||||
{{1, 10, 4}, {2, 100, 4}}},
|
||||
// num_batches, num_classes, num_boxes
|
||||
{{{ngraph::Dimension(1, 10), ngraph::Dimension(1, 100), ngraph::Dimension(1, 100)}},
|
||||
{{1, 3, 10}, {2, 5, 100}}}}
|
||||
};
|
||||
|
||||
const std::vector<op::v8::MatrixNms::SortResultType> sortResultType = {op::v8::MatrixNms::SortResultType::CLASSID,
|
||||
op::v8::MatrixNms::SortResultType::SCORE,
|
||||
op::v8::MatrixNms::SortResultType::NONE};
|
||||
const std::vector<element::Type> outType = {element::i32, element::i64};
|
||||
const std::vector<TopKParams> topKParams = {
|
||||
TopKParams{-1, 5},
|
||||
TopKParams{100, -1}
|
||||
};
|
||||
const std::vector<ThresholdParams> thresholdParams = {
|
||||
ThresholdParams{0.0f, 2.0f, 0.0f},
|
||||
ThresholdParams{0.1f, 1.5f, 0.2f}
|
||||
};
|
||||
const std::vector<int> nmsTopK = {-1, 100};
|
||||
const std::vector<int> keepTopK = {-1, 5};
|
||||
const std::vector<int> backgroudClass = {-1, 0};
|
||||
const std::vector<bool> normalized = {true, false};
|
||||
const std::vector<op::v8::MatrixNms::DecayFunction> decayFunction = {op::v8::MatrixNms::DecayFunction::GAUSSIAN,
|
||||
op::v8::MatrixNms::DecayFunction::LINEAR};
|
||||
const auto nmsParams = ::testing::Combine(::testing::ValuesIn(shapeParams),
|
||||
::testing::Combine(::testing::Values(ov::element::f32),
|
||||
::testing::Values(ov::element::i32),
|
||||
::testing::Values(ov::element::f32)),
|
||||
::testing::ValuesIn(sortResultType),
|
||||
::testing::ValuesIn(outType),
|
||||
::testing::ValuesIn(topKParams),
|
||||
::testing::ValuesIn(thresholdParams),
|
||||
::testing::ValuesIn(backgroudClass),
|
||||
::testing::ValuesIn(normalized),
|
||||
::testing::ValuesIn(decayFunction),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_MatrixNmsLayerTest, MatrixNmsLayerTest, nmsParams, MatrixNmsLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,52 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
#include "shared_test_classes/single_layer/minimum_maximum.hpp"
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(MaxMinLayerTest, Serialize) { Serialize(); }
|
||||
|
||||
const std::vector<std::vector<std::vector<size_t>>> inShapes = {
|
||||
{{2}, {1}},
|
||||
{{1, 1, 1, 3}, {1}},
|
||||
{{1, 2, 4}, {1}},
|
||||
{{1, 4, 4}, {1}},
|
||||
{{1, 4, 4, 1}, {1}},
|
||||
{{256, 56}, {256, 56}},
|
||||
{{8, 1, 6, 1}, {7, 1, 5}},
|
||||
};
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16,
|
||||
};
|
||||
|
||||
const std::vector<ngraph::helpers::MinMaxOpType> opType = {
|
||||
ngraph::helpers::MinMaxOpType::MINIMUM,
|
||||
ngraph::helpers::MinMaxOpType::MAXIMUM,
|
||||
};
|
||||
|
||||
const std::vector<ngraph::helpers::InputLayerType> inputType = {
|
||||
ngraph::helpers::InputLayerType::CONSTANT,
|
||||
ngraph::helpers::InputLayerType::PARAMETER,
|
||||
};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_maximum, MaxMinLayerTest,
|
||||
::testing::Combine(
|
||||
::testing::ValuesIn(inShapes),
|
||||
::testing::ValuesIn(opType),
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::ValuesIn(inputType),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
MaxMinLayerTest::getTestCaseName);
|
||||
|
||||
} // namespace
|
@ -1,120 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/multiclass_nms.hpp"
|
||||
|
||||
using namespace ngraph;
|
||||
using namespace ov::test::subgraph;
|
||||
|
||||
namespace {
|
||||
TEST_P(MulticlassNmsLayerTest, Serialize) {
|
||||
serialize();
|
||||
}
|
||||
|
||||
/* input format #1 with 2 inputs: bboxes N, M, 4, scores N, C, M */
|
||||
const std::vector<std::vector<ov::test::InputShape>> shapeParams1 = {
|
||||
// num_batches, num_boxes, 4
|
||||
{{{ngraph::Dimension::dynamic(), ngraph::Dimension::dynamic(), 4},
|
||||
{{1, 10, 4}, {2, 100, 4}}},
|
||||
// num_batches, num_classes, num_boxes
|
||||
{{ngraph::Dimension::dynamic(), ngraph::Dimension::dynamic(), ngraph::Dimension::dynamic()},
|
||||
{{1, 3, 10}, {2, 5, 100}}}},
|
||||
{{{ngraph::Dimension(1, 10), ngraph::Dimension(1, 100), 4},
|
||||
{{1, 10, 4}, {2, 100, 4}}},
|
||||
{{{ngraph::Dimension(1, 10), ngraph::Dimension(1, 100), ngraph::Dimension(1, 100)}},
|
||||
{{1, 3, 10}, {2, 5, 100}}}}
|
||||
};
|
||||
|
||||
/* input format #2 with 3 inputs: bboxes C, M, 4, scores C, M, roisnum N */
|
||||
const std::vector<std::vector<ov::test::InputShape>> shapeParams2 = {
|
||||
/*0*/
|
||||
// bboxes
|
||||
{{{ngraph::Dimension::dynamic(), ngraph::Dimension::dynamic(), 4},
|
||||
{{1, 10, 4}, {2, 100, 4}}},
|
||||
// scores
|
||||
{{ngraph::Dimension::dynamic(), ngraph::Dimension::dynamic()},
|
||||
{{1, 10}, {2, 100}}},
|
||||
// roisnum
|
||||
{{ngraph::Dimension::dynamic()},
|
||||
{{1}, {10}}}},
|
||||
/*1*/
|
||||
{{{ngraph::Dimension(1, 10), ngraph::Dimension(1, 100), 4},
|
||||
{{1, 10, 4}, {2, 100, 4}}},
|
||||
{{{ngraph::Dimension(1, 10), ngraph::Dimension(1, 100)}},
|
||||
{{1, 10}, {2, 100}}},
|
||||
{{ngraph::Dimension::dynamic()},
|
||||
{{1}, {10}}}},
|
||||
/*2*/
|
||||
{{{ngraph::Dimension(3), ngraph::Dimension(2), 4},
|
||||
{{3, 2, 4}}},
|
||||
{{{ngraph::Dimension(3), ngraph::Dimension(2)}},
|
||||
{{3, 2}}},
|
||||
{{ngraph::Dimension::dynamic()},
|
||||
{{1}, {2}}}}
|
||||
};
|
||||
|
||||
const std::vector<int32_t> nmsTopK = {-1, 20};
|
||||
const std::vector<float> iouThreshold = {0.7f};
|
||||
const std::vector<float> scoreThreshold = {0.7f};
|
||||
const std::vector<int32_t> backgroundClass = {-1, 0};
|
||||
const std::vector<int32_t> keepTopK = {-1, 30};
|
||||
const std::vector<element::Type> outType = {element::i32, element::i64};
|
||||
|
||||
const std::vector<ov::op::util::MulticlassNmsBase::SortResultType> sortResultType = {
|
||||
op::v8::MulticlassNms::SortResultType::SCORE,
|
||||
op::v8::MulticlassNms::SortResultType::CLASSID,
|
||||
op::v8::MulticlassNms::SortResultType::NONE};
|
||||
const std::vector<bool> sortResDesc = {true, false};
|
||||
const std::vector<float> nmsEta = {0.6f, 1.0f};
|
||||
const std::vector<bool> normalized = {true, false};
|
||||
|
||||
const auto nmsParams1_smoke = ::testing::Combine(
|
||||
::testing::ValuesIn(shapeParams1),
|
||||
::testing::Combine(::testing::Values(ov::element::f32),
|
||||
::testing::Values(ov::element::i32),
|
||||
::testing::Values(ov::element::i32),
|
||||
::testing::Values(ov::element::f32)),
|
||||
::testing::ValuesIn(nmsTopK),
|
||||
::testing::Combine(::testing::ValuesIn(iouThreshold),
|
||||
::testing::ValuesIn(scoreThreshold),
|
||||
::testing::ValuesIn(nmsEta)),
|
||||
::testing::ValuesIn(backgroundClass),
|
||||
::testing::ValuesIn(keepTopK),
|
||||
::testing::ValuesIn(outType),
|
||||
::testing::ValuesIn(sortResultType),
|
||||
::testing::Combine(::testing::ValuesIn(sortResDesc),
|
||||
::testing::ValuesIn(normalized)),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_MulticlassNmsLayerTest1,
|
||||
MulticlassNmsLayerTest,
|
||||
nmsParams1_smoke,
|
||||
MulticlassNmsLayerTest::getTestCaseName);
|
||||
|
||||
|
||||
const auto nmsParams2_smoke = ::testing::Combine(
|
||||
::testing::ValuesIn(shapeParams2),
|
||||
::testing::Combine(::testing::Values(ov::element::f32),
|
||||
::testing::Values(ov::element::i32),
|
||||
::testing::Values(ov::element::i32),
|
||||
::testing::Values(ov::element::f32)),
|
||||
::testing::ValuesIn(nmsTopK),
|
||||
::testing::Combine(::testing::ValuesIn(iouThreshold),
|
||||
::testing::ValuesIn(scoreThreshold),
|
||||
::testing::ValuesIn(nmsEta)),
|
||||
::testing::ValuesIn(backgroundClass),
|
||||
::testing::ValuesIn(keepTopK),
|
||||
::testing::ValuesIn(outType),
|
||||
::testing::ValuesIn(sortResultType),
|
||||
::testing::Combine(::testing::ValuesIn(sortResDesc),
|
||||
::testing::ValuesIn(normalized)),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_MulticlassNmsLayerTest2,
|
||||
MulticlassNmsLayerTest,
|
||||
nmsParams2_smoke,
|
||||
MulticlassNmsLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,74 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/mvn.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
std::vector<InferenceEngine::Precision> dataPrecisions = {
|
||||
InferenceEngine::Precision::FP32, InferenceEngine::Precision::FP16};
|
||||
|
||||
const std::vector<bool> normalizeVariance = {true, false};
|
||||
|
||||
// ------------------- MVN-1 -------------------------------------------------
|
||||
const std::vector<std::vector<size_t>> inputShapes = {{1, 10, 5, 7, 8},
|
||||
{1, 3, 8, 9, 49}};
|
||||
|
||||
const std::vector<ngraph::AxisSet> axes = {{1, 2, 3}, {2, 3}};
|
||||
const std::vector<bool> acrossChannels = {true, false};
|
||||
const std::vector<ngraph::AxisSet> emptyReductionAxes = {{}};
|
||||
const std::vector<bool> emptyAcrossChannels = {{}};
|
||||
|
||||
const std::vector<double> epsilon = {0.000000001};
|
||||
|
||||
const auto MvnAcrossChannels = ::testing::Combine(
|
||||
::testing::ValuesIn(inputShapes), ::testing::ValuesIn(dataPrecisions),
|
||||
::testing::ValuesIn(emptyReductionAxes), ::testing::ValuesIn(acrossChannels),
|
||||
::testing::ValuesIn(normalizeVariance), ::testing::ValuesIn(epsilon),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU));
|
||||
|
||||
const auto MvnReductionAxes = ::testing::Combine(
|
||||
::testing::ValuesIn(inputShapes), ::testing::ValuesIn(dataPrecisions),
|
||||
::testing::ValuesIn(axes), ::testing::ValuesIn(emptyAcrossChannels),
|
||||
::testing::ValuesIn(normalizeVariance), ::testing::ValuesIn(epsilon),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU));
|
||||
|
||||
TEST_P(Mvn1LayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_INTEL_CPU_TestsMVN_across_channels, Mvn1LayerTest, MvnAcrossChannels,
|
||||
Mvn1LayerTest::getTestCaseName);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_INTEL_CPU_TestsMVN_reduction_axes, Mvn1LayerTest, MvnReductionAxes,
|
||||
Mvn1LayerTest::getTestCaseName);
|
||||
|
||||
// ------------------- MVN-6 -------------------------------------------------
|
||||
|
||||
std::vector<InferenceEngine::Precision> idxPrecisions = {
|
||||
InferenceEngine::Precision::I32, InferenceEngine::Precision::I64};
|
||||
|
||||
const std::vector<std::string> epsMode = {"inside_sqrt", "outside_sqrt"};
|
||||
|
||||
const std::vector<float> epsilonF = {0.0001};
|
||||
|
||||
TEST_P(Mvn6LayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_MVN_5D, Mvn6LayerTest,
|
||||
::testing::Combine(::testing::ValuesIn(std::vector<std::vector<size_t>>{
|
||||
{1, 10, 5, 7, 8}, {1, 3, 8, 9, 49}}),
|
||||
::testing::ValuesIn(dataPrecisions),
|
||||
::testing::ValuesIn(idxPrecisions),
|
||||
::testing::ValuesIn(std::vector<std::vector<int>>{
|
||||
{1, 2, 3, 4}, {2, 3, 4}}),
|
||||
::testing::ValuesIn(normalizeVariance),
|
||||
::testing::ValuesIn(epsilonF),
|
||||
::testing::ValuesIn(epsMode),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
Mvn6LayerTest::getTestCaseName);
|
@ -1,57 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/non_max_suppression.hpp"
|
||||
|
||||
using namespace ngraph;
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(NmsLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16
|
||||
};
|
||||
|
||||
/* ============= NO MAX SUPPRESSION ============= */
|
||||
|
||||
const std::vector<InputShapeParams> inShapeParams = {
|
||||
InputShapeParams{3, 100, 5},
|
||||
InputShapeParams{1, 10, 50},
|
||||
InputShapeParams{2, 50, 50}
|
||||
};
|
||||
|
||||
const std::vector<int32_t> maxOutBoxPerClass = {5, 20};
|
||||
const std::vector<float> threshold = {0.3f, 0.7f};
|
||||
const std::vector<float> sigmaThreshold = {0.0f, 0.5f};
|
||||
const std::vector<ngraph::op::v5::NonMaxSuppression::BoxEncodingType> encodType = {op::v5::NonMaxSuppression::BoxEncodingType::CENTER,
|
||||
op::v5::NonMaxSuppression::BoxEncodingType::CORNER};
|
||||
const std::vector<bool> sortResDesc = {true, false};
|
||||
const std::vector<element::Type> outType = {element::i32, element::i64};
|
||||
|
||||
const auto inPrecisions = ::testing::Combine(
|
||||
::testing::Values(InferenceEngine::Precision::FP32),
|
||||
::testing::Values(InferenceEngine::Precision::I32),
|
||||
::testing::Values(InferenceEngine::Precision::FP32));
|
||||
|
||||
const auto nmsParams = ::testing::Combine(
|
||||
::testing::ValuesIn(inShapeParams),
|
||||
inPrecisions,
|
||||
::testing::ValuesIn(maxOutBoxPerClass),
|
||||
::testing::ValuesIn(threshold), // IOU threshold
|
||||
::testing::ValuesIn(threshold), // Score threshold
|
||||
::testing::ValuesIn(sigmaThreshold),
|
||||
::testing::ValuesIn(encodType),
|
||||
::testing::ValuesIn(sortResDesc),
|
||||
::testing::ValuesIn(outType),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_NmsLayerTest, NmsLayerTest, nmsParams, NmsLayerTest::getTestCaseName);
|
||||
} // namespace
|
||||
|
@ -1,34 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/nonzero.hpp"
|
||||
|
||||
using namespace ngraph;
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(NonZeroLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
std::vector<InferenceEngine::SizeVector> inputDims = {
|
||||
{7}, {1000}, {3, 5}, {65, 33}, {33, 65},
|
||||
{1, 1000}, {223, 217, 21}, {3, 4, 5, 1}, {3, 4, 1, 5, 1}};
|
||||
|
||||
std::vector<InferenceEngine::Precision> inputPrecisions = {
|
||||
InferenceEngine::Precision::BOOL, InferenceEngine::Precision::U8,
|
||||
InferenceEngine::Precision::FP32, InferenceEngine::Precision::I32,
|
||||
};
|
||||
|
||||
ConfigMap config;
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_NonZeroLayerTest, NonZeroLayerTest,
|
||||
::testing::Combine(::testing::ValuesIn(inputDims),
|
||||
::testing::ValuesIn(inputPrecisions),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU),
|
||||
::testing::Values(config)));
|
||||
} // namespace
|
@ -1,42 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/normalize_l2.hpp"
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
using namespace InferenceEngine;
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(NormalizeL2LayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<std::vector<int64_t>> axes = {
|
||||
{1},
|
||||
};
|
||||
const std::vector<float> eps = { 1e-4f };
|
||||
|
||||
const std::vector<ngraph::op::EpsMode> epsMode = {
|
||||
ngraph::op::EpsMode::ADD,
|
||||
ngraph::op::EpsMode::MAX,
|
||||
};
|
||||
|
||||
const std::vector<Precision> netPrecisions = {
|
||||
Precision::FP32,
|
||||
Precision::BF16
|
||||
};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_NormalizeL2Serialization, NormalizeL2LayerTest,
|
||||
testing::Combine(
|
||||
testing::ValuesIn(axes),
|
||||
testing::ValuesIn(eps),
|
||||
testing::ValuesIn(epsMode),
|
||||
testing::Values(std::vector<size_t>{1, 32, 17}),
|
||||
testing::ValuesIn(netPrecisions),
|
||||
testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
NormalizeL2LayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,63 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "comparison_ops.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
using namespace LayerTestsDefinitions::ComparisonParams;
|
||||
|
||||
namespace {
|
||||
TEST_P(ComparisonLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
ComparisionOpsData data = {
|
||||
// inputsShape
|
||||
{
|
||||
{{1}, {{1}, {17}, {1, 1}, {2, 18}, {1, 1, 2}, {2, 2, 3}, {1, 1, 2, 3}}},
|
||||
{{5}, {{1}, {1, 1}, {2, 5}, {1, 1, 1}, {2, 2, 5}}},
|
||||
{{2, 200}, {{1}, {200}, {1, 200}, {2, 200}, {2, 2, 200}}},
|
||||
{{1, 3, 20}, {{20}, {2, 1, 1}}},
|
||||
{{2, 17, 3, 4}, {{4}, {1, 3, 4}, {2, 1, 3, 4}}},
|
||||
{{2, 17, 3, 4}, {{4}, {1, 3, 4}, {141, 1, 3, 4}}},
|
||||
{{2, 1, 1, 3, 1}, {{1}, {1, 3, 4}, {2, 1, 3, 4}, {1, 1, 1, 1, 1}}},
|
||||
},
|
||||
// inputsPrecisions
|
||||
{
|
||||
InferenceEngine::Precision::FP64,
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16,
|
||||
InferenceEngine::Precision::I32,
|
||||
InferenceEngine::Precision::U32,
|
||||
InferenceEngine::Precision::BOOL,
|
||||
},
|
||||
// secondIinputsType
|
||||
{
|
||||
ngraph::helpers::InputLayerType::CONSTANT,
|
||||
ngraph::helpers::InputLayerType::PARAMETER,
|
||||
},
|
||||
// additionalConfig
|
||||
{},
|
||||
// opType
|
||||
ngraph::helpers::ComparisonTypes::NOT_EQUAL,
|
||||
// ieInputPrecision
|
||||
InferenceEngine::Precision::UNSPECIFIED,
|
||||
// ieOutputPrecision
|
||||
InferenceEngine::Precision::UNSPECIFIED,
|
||||
// deviceName
|
||||
CommonTestUtils::DEVICE_CPU,
|
||||
};
|
||||
|
||||
const auto SerializeNotEqualTestParams = ::testing::Combine(
|
||||
::testing::ValuesIn(CommonTestUtils::combineParams(data.inputShapes)),
|
||||
::testing::ValuesIn(data.inputsPrecisions),
|
||||
::testing::Values(data.opType),
|
||||
::testing::ValuesIn(data.secondInputTypes),
|
||||
::testing::Values(data.ieInputPrecision),
|
||||
::testing::Values(data.ieOutputPrecision),
|
||||
::testing::Values(data.deviceName),
|
||||
::testing::Values(data.additional_config));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_CompareWithRefs, ComparisonLayerTest, SerializeNotEqualTestParams, ComparisonLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,39 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/one_hot.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(OneHotLayerTest, Serialize) { Serialize(); }
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::I32 };
|
||||
|
||||
const std::vector<ngraph::element::Type> argDepthType_IC = { ngraph::element::i32 };
|
||||
const std::vector<int64_t> argDepth_IC = { 5, 1017 };
|
||||
const std::vector<ngraph::element::Type> argSetType_IC = { ngraph::element::i32, ngraph::element::i64 };
|
||||
const std::vector<float> argOnValue_IC = { 1, -29 };
|
||||
const std::vector<float> argOffValue_IC = { -1, 127 };
|
||||
const std::vector<int64_t> argAxis_IC = {0, 1, -1};
|
||||
const std::vector<std::vector<size_t>> inputShapes_IC = {{4, 5}, {3, 7}};
|
||||
|
||||
const auto oneHotParams = testing::Combine(
|
||||
testing::ValuesIn(argDepthType_IC),
|
||||
testing::ValuesIn(argDepth_IC),
|
||||
testing::ValuesIn(argSetType_IC),
|
||||
testing::ValuesIn(argOnValue_IC),
|
||||
testing::ValuesIn(argOffValue_IC),
|
||||
testing::ValuesIn(argAxis_IC),
|
||||
testing::ValuesIn(netPrecisions),
|
||||
testing::ValuesIn(inputShapes_IC),
|
||||
testing::Values(CommonTestUtils::DEVICE_CPU)
|
||||
);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_OneHotConstSerialization, OneHotLayerTest, oneHotParams,
|
||||
OneHotLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,40 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/pad.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(PadLayerTest, Serialize) { Serialize(); }
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32, InferenceEngine::Precision::FP16};
|
||||
|
||||
const std::vector<std::vector<int64_t>> padsBegin2D = {
|
||||
{0, 0}, {1, 1}, {2, 0}, {0, 3}};
|
||||
const std::vector<std::vector<int64_t>> padsEnd2D = {
|
||||
{0, 0}, {1, 1}, {0, 1}, {3, 2}};
|
||||
const std::vector<float> argPadValue = {0.f, 1.f, 2.f, -1.f};
|
||||
|
||||
const std::vector<ngraph::helpers::PadMode> padMode = {
|
||||
ngraph::helpers::PadMode::EDGE, ngraph::helpers::PadMode::REFLECT,
|
||||
ngraph::helpers::PadMode::SYMMETRIC};
|
||||
|
||||
const auto pad2DConstparams = testing::Combine(
|
||||
testing::ValuesIn(padsBegin2D), testing::ValuesIn(padsEnd2D),
|
||||
testing::ValuesIn(argPadValue),
|
||||
testing::Values(ngraph::helpers::PadMode::CONSTANT),
|
||||
testing::ValuesIn(netPrecisions),
|
||||
testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
testing::Values(InferenceEngine::Layout::ANY),
|
||||
testing::Values(std::vector<size_t>{13, 5}),
|
||||
testing::Values(CommonTestUtils::DEVICE_CPU));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_Pad2DConstSerialization, PadLayerTest, pad2DConstparams,
|
||||
PadLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,92 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/pooling.hpp"
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(PoolingLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16
|
||||
};
|
||||
|
||||
/* ============= POOLING ============= */
|
||||
const std::vector<std::vector<size_t >> kernels = {{3, 3},
|
||||
{3, 5}};
|
||||
const std::vector<std::vector<size_t >> strides = {{1, 1},
|
||||
{1, 2}};
|
||||
const std::vector<std::vector<size_t >> padBegins = {{0, 0},
|
||||
{0, 2}};
|
||||
const std::vector<std::vector<size_t >> padEnds = {{0, 0},
|
||||
{0, 2}};
|
||||
|
||||
const std::vector<ngraph::op::RoundingType> roundingTypes = {
|
||||
ngraph::op::RoundingType::FLOOR,
|
||||
ngraph::op::RoundingType::CEIL
|
||||
};
|
||||
|
||||
const std::vector<ngraph::op::PadType> padTypes = {
|
||||
ngraph::op::PadType::EXPLICIT,
|
||||
ngraph::op::PadType::SAME_UPPER,
|
||||
ngraph::op::PadType::VALID
|
||||
};
|
||||
|
||||
const std::vector<size_t> inputShape = {511, 11, 13, 15};
|
||||
const std::vector<bool> excludePad = {true, false};
|
||||
|
||||
/* ============= AVERAGE POOLING ============= */
|
||||
|
||||
const auto avgExcludePadParams = ::testing::Combine(
|
||||
::testing::Values(ngraph::helpers::PoolingTypes::AVG),
|
||||
::testing::ValuesIn(kernels),
|
||||
::testing::ValuesIn(strides),
|
||||
::testing::ValuesIn(padBegins),
|
||||
::testing::ValuesIn(padEnds),
|
||||
::testing::ValuesIn(roundingTypes),
|
||||
::testing::ValuesIn(padTypes),
|
||||
::testing::Values(excludePad[0]));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_AvgPoolExcluePad, PoolingLayerTest,
|
||||
::testing::Combine(
|
||||
avgExcludePadParams,
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(inputShape),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
PoolingLayerTest::getTestCaseName);
|
||||
|
||||
const auto avgPadParams = ::testing::Combine(
|
||||
::testing::Values(ngraph::helpers::PoolingTypes::AVG),
|
||||
::testing::ValuesIn(kernels),
|
||||
::testing::ValuesIn(strides),
|
||||
::testing::ValuesIn(padBegins),
|
||||
::testing::ValuesIn(padEnds),
|
||||
::testing::ValuesIn(roundingTypes),
|
||||
::testing::ValuesIn(padTypes),
|
||||
::testing::Values(excludePad[1]));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_AvgPool, PoolingLayerTest,
|
||||
::testing::Combine(
|
||||
avgPadParams,
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(inputShape),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
PoolingLayerTest::getTestCaseName);
|
||||
} // namespace
|
||||
|
@ -1,43 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
#include "shared_test_classes/single_layer/activation.hpp"
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
using namespace ngraph::helpers;
|
||||
namespace {
|
||||
TEST_P(ActivationLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16
|
||||
};
|
||||
|
||||
const std::map<ActivationTypes, std::vector<std::vector<float>>> activationTypes = {
|
||||
{ActivationTypes::PReLu, {{-0.01f}}},
|
||||
};
|
||||
|
||||
std::map<std::vector<size_t>, std::vector<std::vector<size_t>>> basic = {
|
||||
{{1, 50}, {{}}},
|
||||
{{1, 128}, {{}}},
|
||||
};
|
||||
|
||||
const auto basicCases = ::testing::Combine(
|
||||
::testing::ValuesIn(CommonTestUtils::combineParams(activationTypes)),
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::ValuesIn(CommonTestUtils::combineParams(basic)),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)
|
||||
);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_ActivationPreluSerialization,
|
||||
ActivationLayerTest, basicCases, ActivationLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,103 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/prior_box.hpp"
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(PriorBoxLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::I32,
|
||||
InferenceEngine::Precision::U16
|
||||
};
|
||||
const std::vector<std::vector<float>> min_sizes = {
|
||||
{16.f, 32.f}
|
||||
};
|
||||
|
||||
const std::vector<std::vector<float>> max_sizes = {
|
||||
{256.f, 512.f}
|
||||
};
|
||||
|
||||
const std::vector<std::vector<float>> aspect_ratios = {
|
||||
{0.66f, 1.56f}
|
||||
};
|
||||
|
||||
const std::vector<std::vector<float>> densities = {
|
||||
{0.55f}
|
||||
};
|
||||
|
||||
const std::vector<std::vector<float>> fixed_ratios = {
|
||||
{0.88f}
|
||||
};
|
||||
|
||||
const std::vector<std::vector<float>> fixed_sizes = {
|
||||
{1.25f}
|
||||
};
|
||||
|
||||
const std::vector<bool> clips = {
|
||||
true, false
|
||||
};
|
||||
|
||||
const std::vector<bool> flips = {
|
||||
true, false
|
||||
};
|
||||
|
||||
const std::vector<float> steps = {
|
||||
1.0f, 2.0f
|
||||
};
|
||||
|
||||
const std::vector<float> offsets = {
|
||||
0.0f, 0.5f
|
||||
};
|
||||
|
||||
const std::vector<std::vector<float>> variances = {
|
||||
{2.22f, 3.14f}
|
||||
};
|
||||
|
||||
const std::vector<bool> scale_all_sizes = {
|
||||
true, false
|
||||
};
|
||||
|
||||
const std::vector<bool> min_max_aspect_ratios_order = {
|
||||
true, false
|
||||
};
|
||||
|
||||
const std::vector<size_t> inputShape = {128, 128};
|
||||
const std::vector<size_t> imageShape = {50, 50};
|
||||
|
||||
const auto layerSpecificParams = ::testing::Combine(
|
||||
::testing::ValuesIn(min_sizes),
|
||||
::testing::ValuesIn(max_sizes),
|
||||
::testing::ValuesIn(aspect_ratios),
|
||||
::testing::ValuesIn(densities),
|
||||
::testing::ValuesIn(fixed_ratios),
|
||||
::testing::ValuesIn(fixed_sizes),
|
||||
::testing::ValuesIn(clips),
|
||||
::testing::ValuesIn(flips),
|
||||
::testing::ValuesIn(steps),
|
||||
::testing::ValuesIn(offsets),
|
||||
::testing::ValuesIn(variances),
|
||||
::testing::ValuesIn(scale_all_sizes),
|
||||
::testing::ValuesIn(min_max_aspect_ratios_order));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_PriorBox_Basic, PriorBoxLayerTest,
|
||||
::testing::Combine(
|
||||
layerSpecificParams,
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(inputShape),
|
||||
::testing::Values(imageShape),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
PriorBoxLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,82 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/prior_box_clustered.hpp"
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(PriorBoxClusteredLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16
|
||||
};
|
||||
|
||||
const std::vector<std::vector<float>> widths = {
|
||||
{ 5.12f, 14.6f, 13.5f },
|
||||
{ 7.0f, 8.2f, 33.39f }
|
||||
};
|
||||
|
||||
const std::vector<std::vector<float>> heights = {
|
||||
{ 15.12f, 15.6f, 23.5f },
|
||||
{ 10.0f, 16.2f, 36.2f }
|
||||
};
|
||||
|
||||
const std::vector<float> step_widths = {
|
||||
0.0f, 2.0f
|
||||
};
|
||||
|
||||
const std::vector<float> step_heights = {
|
||||
0.0f, 1.5f
|
||||
};
|
||||
|
||||
const std::vector<float> step = {
|
||||
0.0f
|
||||
};
|
||||
|
||||
const std::vector<float> offsets = {
|
||||
0.5f
|
||||
};
|
||||
|
||||
const std::vector<std::vector<float>> variances = {
|
||||
{ 0.1f, 0.1f, 0.2f, 0.2f }
|
||||
};
|
||||
|
||||
const std::vector<bool> clips = {
|
||||
true, false
|
||||
};
|
||||
|
||||
const std::vector<size_t> inputShape = {4, 4};
|
||||
const std::vector<size_t> imageShape = {50, 50};
|
||||
|
||||
const auto layerSpeficParams = ::testing::Combine(
|
||||
::testing::ValuesIn(widths),
|
||||
::testing::ValuesIn(heights),
|
||||
::testing::ValuesIn(clips),
|
||||
::testing::ValuesIn(step_widths),
|
||||
::testing::ValuesIn(step_heights),
|
||||
::testing::ValuesIn(step),
|
||||
::testing::ValuesIn(offsets),
|
||||
::testing::ValuesIn(variances));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_PriorBoxClustered_Basic, PriorBoxClusteredLayerTest,
|
||||
::testing::Combine(
|
||||
layerSpeficParams,
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(inputShape),
|
||||
::testing::Values(imageShape),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
PriorBoxClusteredLayerTest::getTestCaseName);
|
||||
|
||||
} // namespace
|
@ -1,177 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/reduce_ops.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(ReduceOpsLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::I32,
|
||||
InferenceEngine::Precision::U8,
|
||||
InferenceEngine::Precision::I8,
|
||||
};
|
||||
|
||||
const std::vector<bool> keepDims = {
|
||||
true,
|
||||
false,
|
||||
};
|
||||
|
||||
std::vector<CommonTestUtils::OpType> opTypes = {
|
||||
CommonTestUtils::OpType::SCALAR,
|
||||
CommonTestUtils::OpType::VECTOR,
|
||||
};
|
||||
|
||||
const std::vector<ngraph::helpers::ReductionType> reductionTypes = {
|
||||
ngraph::helpers::ReductionType::Mean,
|
||||
ngraph::helpers::ReductionType::Min,
|
||||
ngraph::helpers::ReductionType::Max,
|
||||
ngraph::helpers::ReductionType::Sum,
|
||||
ngraph::helpers::ReductionType::Prod,
|
||||
ngraph::helpers::ReductionType::L1,
|
||||
ngraph::helpers::ReductionType::L2,
|
||||
};
|
||||
|
||||
const std::vector<ngraph::helpers::ReductionType> reductionLogicalTypes = {
|
||||
ngraph::helpers::ReductionType::LogicalOr,
|
||||
ngraph::helpers::ReductionType::LogicalAnd
|
||||
};
|
||||
|
||||
const std::vector<std::vector<size_t>> inputShapesOneAxis = {
|
||||
std::vector<size_t>{10, 20, 30, 40},
|
||||
std::vector<size_t>{3, 5, 7, 9},
|
||||
std::vector<size_t>{10},
|
||||
};
|
||||
|
||||
const std::vector<std::vector<size_t>> inputShapes = {
|
||||
std::vector<size_t>{10, 20, 30, 40},
|
||||
std::vector<size_t>{3, 5, 7, 9},
|
||||
};
|
||||
|
||||
const std::vector<std::vector<int>> axes = {
|
||||
{0},
|
||||
{1},
|
||||
{2},
|
||||
{3},
|
||||
{0, 1},
|
||||
{0, 2},
|
||||
{0, 3},
|
||||
{1, 2},
|
||||
{1, 3},
|
||||
{2, 3},
|
||||
{0, 1, 2},
|
||||
{0, 1, 3},
|
||||
{0, 2, 3},
|
||||
{1, 2, 3},
|
||||
{0, 1, 2, 3},
|
||||
{1, -1}
|
||||
};
|
||||
|
||||
const auto paramsOneAxis = testing::Combine(
|
||||
testing::Values(std::vector<int>{0}),
|
||||
testing::ValuesIn(opTypes),
|
||||
testing::ValuesIn(keepDims),
|
||||
testing::ValuesIn(reductionTypes),
|
||||
testing::Values(netPrecisions[0]),
|
||||
testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
testing::Values(InferenceEngine::Layout::ANY),
|
||||
testing::ValuesIn(inputShapesOneAxis),
|
||||
testing::Values(CommonTestUtils::DEVICE_CPU)
|
||||
);
|
||||
|
||||
const auto paramsOneAxisLogical = testing::Combine(
|
||||
testing::Values(std::vector<int>{0}),
|
||||
testing::ValuesIn(opTypes),
|
||||
testing::ValuesIn(keepDims),
|
||||
testing::ValuesIn(reductionLogicalTypes),
|
||||
testing::Values(InferenceEngine::Precision::BOOL),
|
||||
testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
testing::Values(InferenceEngine::Layout::ANY),
|
||||
testing::ValuesIn(inputShapesOneAxis),
|
||||
testing::Values(CommonTestUtils::DEVICE_CPU)
|
||||
);
|
||||
|
||||
const auto params_Axes = testing::Combine(
|
||||
testing::ValuesIn(axes),
|
||||
testing::Values(opTypes[1]),
|
||||
testing::ValuesIn(keepDims),
|
||||
testing::Values(reductionTypes[0]),
|
||||
testing::Values(netPrecisions[0]),
|
||||
testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
testing::Values(InferenceEngine::Layout::ANY),
|
||||
testing::ValuesIn(inputShapes),
|
||||
testing::Values(CommonTestUtils::DEVICE_CPU)
|
||||
);
|
||||
|
||||
const auto params_ReductionTypes = testing::Combine(
|
||||
testing::Values(std::vector<int>{0, 1, 3}),
|
||||
testing::Values(opTypes[1]),
|
||||
testing::ValuesIn(keepDims),
|
||||
testing::ValuesIn(reductionTypes),
|
||||
testing::ValuesIn(netPrecisions),
|
||||
testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
testing::Values(InferenceEngine::Layout::ANY),
|
||||
testing::Values(std::vector<size_t>{2, 9, 2, 9}),
|
||||
testing::Values(CommonTestUtils::DEVICE_CPU)
|
||||
);
|
||||
|
||||
const auto params_ReductionTypesLogical = testing::Combine(
|
||||
testing::Values(std::vector<int>{0, 1, 3}),
|
||||
testing::Values(opTypes[1]),
|
||||
testing::ValuesIn(keepDims),
|
||||
testing::ValuesIn(reductionLogicalTypes),
|
||||
testing::Values(InferenceEngine::Precision::BOOL),
|
||||
testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
testing::Values(InferenceEngine::Layout::ANY),
|
||||
testing::Values(std::vector<size_t>{2, 9, 2, 9}),
|
||||
testing::Values(CommonTestUtils::DEVICE_CPU)
|
||||
);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_ReduceOneAxis_Serialization,
|
||||
ReduceOpsLayerTest,
|
||||
paramsOneAxis,
|
||||
ReduceOpsLayerTest::getTestCaseName
|
||||
);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_ReduceLogicalOneAxis_Serialization,
|
||||
ReduceOpsLayerTest,
|
||||
paramsOneAxisLogical,
|
||||
ReduceOpsLayerTest::getTestCaseName
|
||||
);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_ReduceAxes_Serialization,
|
||||
ReduceOpsLayerTest,
|
||||
params_Axes,
|
||||
ReduceOpsLayerTest::getTestCaseName
|
||||
);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_Reduce_ReductionTypes_Serialization,
|
||||
ReduceOpsLayerTest,
|
||||
params_ReductionTypes,
|
||||
ReduceOpsLayerTest::getTestCaseName
|
||||
);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_ReduceLogical_ReductionTypes_Serialization,
|
||||
ReduceOpsLayerTest,
|
||||
params_ReductionTypesLogical,
|
||||
ReduceOpsLayerTest::getTestCaseName
|
||||
);
|
||||
} // namespace
|
@ -1,49 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/region_yolo.hpp"
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(RegionYoloLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
|
||||
const std::vector<ngraph::Shape> inShapes_v3 = {
|
||||
{1, 255, 52, 52},
|
||||
{1, 255, 26, 26},
|
||||
{1, 255, 13, 13}
|
||||
};
|
||||
const std::vector<std::vector<int64_t>> masks = {
|
||||
{0, 1, 2},
|
||||
{3, 4, 5},
|
||||
{6, 7, 8}
|
||||
};
|
||||
|
||||
const std::vector<bool> do_softmax = {true, false};
|
||||
const std::vector<size_t> classes = {80, 20};
|
||||
const std::vector<size_t> num_regions = {5, 9};
|
||||
const size_t coords = 4;
|
||||
const int start_axis = 1;
|
||||
const int end_axis = 3;
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_RegionYolov3Serialization, RegionYoloLayerTest,
|
||||
::testing::Combine(
|
||||
::testing::ValuesIn(inShapes_v3),
|
||||
::testing::Values(classes[0]),
|
||||
::testing::Values(coords),
|
||||
::testing::Values(num_regions[1]),
|
||||
::testing::Values(do_softmax[1]),
|
||||
::testing::Values(masks[2]),
|
||||
::testing::Values(start_axis),
|
||||
::testing::Values(end_axis),
|
||||
::testing::Values(InferenceEngine::Precision::FP32),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
RegionYoloLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,35 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/reshape.hpp"
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(ReshapeLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16
|
||||
};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_ReshapeSerialization, ReshapeLayerTest,
|
||||
::testing::Combine(
|
||||
::testing::Values(true),
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(std::vector<size_t>({30, 30, 30, 30})),
|
||||
::testing::Values(std::vector<int64_t>({30, 30, 30, 30})),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU),
|
||||
::testing::Values(std::map<std::string, std::string>({{CONFIG_KEY(DYN_BATCH_ENABLED), CONFIG_VALUE(YES)}}))),
|
||||
ReshapeLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,34 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/result.hpp"
|
||||
|
||||
using namespace ngraph;
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(ResultLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
std::vector<InferenceEngine::SizeVector> inputDims = {
|
||||
{7}, {1000}, {3, 5}, {65, 33}, {33, 65},
|
||||
{1, 1000}, {223, 217, 21}, {3, 4, 5, 1}, {3, 4, 1, 5, 1}};
|
||||
|
||||
std::vector<InferenceEngine::Precision> inputPrecisions = {
|
||||
InferenceEngine::Precision::U8, InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::I32,
|
||||
};
|
||||
|
||||
ConfigMap config;
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_ResultLayerTest, ResultLayerTest,
|
||||
::testing::Combine(::testing::ValuesIn(inputDims),
|
||||
::testing::ValuesIn(inputPrecisions),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU),
|
||||
::testing::Values(config)));
|
||||
} // namespace
|
@ -1,51 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
#include <ngraph/opsets/opset3.hpp>
|
||||
|
||||
#include "shared_test_classes/single_layer/scatter_elements_update.hpp"
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
using namespace ngraph::opset3;
|
||||
|
||||
namespace {
|
||||
TEST_P(ScatterElementsUpdateLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
// map<inputShape, map<indicesShape, axis>>
|
||||
std::map<std::vector<size_t>, std::map<std::vector<size_t>, std::vector<int>>> axesShapeInShape {
|
||||
{{10, 12, 15}, {{{1, 2, 4}, {0, 1, 2}}, {{2, 2, 2}, {-1, -2, -3}}}},
|
||||
{{15, 9, 8, 12}, {{{1, 2, 2, 2}, {0, 1, 2, 3}}, {{1, 2, 1, 4}, {-1, -2, -3, -4}}}},
|
||||
{{9, 9, 8, 8, 11, 10}, {{{1, 2, 1, 2, 1, 2}, {5, -3}}}},
|
||||
};
|
||||
// index value should not be random data
|
||||
const std::vector<std::vector<size_t>> idxValue = {
|
||||
{1, 0, 4, 6, 2, 3, 7, 5}
|
||||
};
|
||||
|
||||
const std::vector<InferenceEngine::Precision> inputPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16,
|
||||
InferenceEngine::Precision::I32,
|
||||
};
|
||||
|
||||
const std::vector<InferenceEngine::Precision> idxPrecisions = {
|
||||
InferenceEngine::Precision::I32,
|
||||
InferenceEngine::Precision::I64,
|
||||
};
|
||||
|
||||
const auto ScatterEltUpdateCases = ::testing::Combine(
|
||||
::testing::ValuesIn(ScatterElementsUpdateLayerTest::combineShapes(axesShapeInShape)),
|
||||
::testing::ValuesIn(idxValue),
|
||||
::testing::ValuesIn(inputPrecisions),
|
||||
::testing::ValuesIn(idxPrecisions),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)
|
||||
);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_ScatterEltsUpdateSerialization, ScatterElementsUpdateLayerTest,
|
||||
ScatterEltUpdateCases, ScatterElementsUpdateLayerTest::getTestCaseName);
|
||||
|
||||
} // namespace
|
@ -1,50 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/scatter_ND_update.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(ScatterNDUpdateLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> inputPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16,
|
||||
InferenceEngine::Precision::I32,
|
||||
};
|
||||
|
||||
const std::vector<InferenceEngine::Precision> idxPrecisions = {
|
||||
InferenceEngine::Precision::I32,
|
||||
InferenceEngine::Precision::I64,
|
||||
};
|
||||
// map<inputShape map<indicesShape, indicesValue>>
|
||||
// updateShape is gotten from inputShape and indicesShape
|
||||
std::map<std::vector<size_t>, std::map<std::vector<size_t>, std::vector<size_t>>>
|
||||
sliceSelectInShape{
|
||||
{{10, 9, 9, 11},
|
||||
{{{4, 1}, {1, 3, 5, 7}},
|
||||
{{1, 2}, {4, 6}},
|
||||
{{2, 3}, {0, 1, 1, 2, 2, 2}},
|
||||
{{1, 4}, {5, 5, 4, 9}}}},
|
||||
{{10, 9, 10, 9, 10}, {{{2, 2, 1}, {5, 6, 2, 8}}, {{2, 3}, {0, 4, 6, 5, 7, 1}}}},
|
||||
};
|
||||
|
||||
const auto ScatterNDUpdateCases = ::testing::Combine(
|
||||
::testing::ValuesIn(ScatterNDUpdateLayerTest::combineShapes(sliceSelectInShape)),
|
||||
::testing::ValuesIn(inputPrecisions),
|
||||
::testing::ValuesIn(idxPrecisions),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_ScatterNDUpdateLayerTestSerialization,
|
||||
ScatterNDUpdateLayerTest,
|
||||
ScatterNDUpdateCases,
|
||||
ScatterNDUpdateLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,51 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
#include <ngraph/opsets/opset8.hpp>
|
||||
|
||||
#include "shared_test_classes/single_layer/scatter_update.hpp"
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
using namespace ngraph::opset8;
|
||||
|
||||
namespace {
|
||||
TEST_P(ScatterUpdateLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> inputPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16,
|
||||
InferenceEngine::Precision::I32,
|
||||
};
|
||||
|
||||
const std::vector<InferenceEngine::Precision> idxPrecisions = {
|
||||
InferenceEngine::Precision::I32,
|
||||
InferenceEngine::Precision::I64,
|
||||
};
|
||||
|
||||
// map<inputShape, map<indicesShape, axis>>
|
||||
std::map<std::vector<size_t>, std::map<std::vector<size_t>, std::vector<int>>> axesShapeInShape {
|
||||
{{10, 16, 12, 15}, {{{2, 4}, {0, 1, 2, 3}}, {{8}, {-1, -2, -3, -4}}}},
|
||||
{{10, 9, 10, 9, 10}, {{{8}, {-3, -1, 0, 2, 4}}, {{4, 2}, {-2, 2}}}},
|
||||
};
|
||||
//indices should not be random value
|
||||
const std::vector<std::vector<int64_t>> idxValue = {
|
||||
{0, 2, 4, 6, 1, 3, 5, 7}
|
||||
};
|
||||
|
||||
const auto ScatterUpdateCase = ::testing::Combine(
|
||||
::testing::ValuesIn(ScatterUpdateLayerTest::combineShapes(axesShapeInShape)),
|
||||
::testing::ValuesIn(idxValue),
|
||||
::testing::ValuesIn(inputPrecisions),
|
||||
::testing::ValuesIn(idxPrecisions),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)
|
||||
);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_ScatterUpdate, ScatterUpdateLayerTest, ScatterUpdateCase, ScatterUpdateLayerTest::getTestCaseName);
|
||||
|
||||
} // namespace
|
||||
|
@ -1,41 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "shared_test_classes/single_layer/select.hpp"
|
||||
|
||||
#include <vector>
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
const std::vector<InferenceEngine::Precision> inputPrecision = {
|
||||
InferenceEngine::Precision::I8, InferenceEngine::Precision::I16,
|
||||
InferenceEngine::Precision::I32, InferenceEngine::Precision::FP16,
|
||||
InferenceEngine::Precision::FP32};
|
||||
|
||||
const std::vector<std::vector<std::vector<size_t>>> noneShapes = {
|
||||
{{2, 3, 4, 5, 6}, {2, 3, 4, 5, 6}, {2, 3, 4, 5, 6}}};
|
||||
|
||||
const auto noneCases = ::testing::Combine(
|
||||
::testing::ValuesIn(noneShapes), ::testing::ValuesIn(inputPrecision),
|
||||
::testing::Values(ngraph::op::AutoBroadcastType::NONE),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU));
|
||||
|
||||
const std::vector<std::vector<std::vector<size_t>>> numpyShapes = {
|
||||
{{5, 1, 2, 1}, {8, 1, 9, 1, 1}, {5, 1, 2, 1}}};
|
||||
|
||||
const auto numpyCases = ::testing::Combine(
|
||||
::testing::ValuesIn(numpyShapes), ::testing::ValuesIn(inputPrecision),
|
||||
::testing::Values(ngraph::op::AutoBroadcastType::NUMPY),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU));
|
||||
|
||||
TEST_P(SelectLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_Serialization_SelectLayerTest_none,
|
||||
SelectLayerTest, noneCases,
|
||||
SelectLayerTest::getTestCaseName);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_Serialization_SelectLayerTest_numpy,
|
||||
SelectLayerTest, numpyCases,
|
||||
SelectLayerTest::getTestCaseName);
|
@ -1,49 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/shuffle_channels.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(ShuffleChannelsLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::I8,
|
||||
InferenceEngine::Precision::U8,
|
||||
InferenceEngine::Precision::I16,
|
||||
InferenceEngine::Precision::I32,
|
||||
InferenceEngine::Precision::FP32
|
||||
};
|
||||
|
||||
const std::vector<int> axes = {0, 1, 2, 3};
|
||||
const std::vector<int> negativeAxes = {-4, -3, -2, -1};
|
||||
const std::vector<int> groups = {1, 2, 3};
|
||||
|
||||
const auto shuffleChannelsParams4D = ::testing::Combine(
|
||||
::testing::ValuesIn(axes),
|
||||
::testing::ValuesIn(groups)
|
||||
);
|
||||
|
||||
const auto shuffleChannelsParamsNegativeAxis4D = ::testing::Combine(
|
||||
::testing::ValuesIn(negativeAxes),
|
||||
::testing::ValuesIn(groups)
|
||||
);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_ShuffleChannelsSerialization, ShuffleChannelsLayerTest,
|
||||
::testing::Combine(
|
||||
shuffleChannelsParams4D,
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(std::vector<size_t >({6, 6, 6, 6})),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
ShuffleChannelsLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,131 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/slice.hpp"
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
using namespace ov::test;
|
||||
|
||||
namespace {
|
||||
TEST_P(Slice8LayerTest, Serialize) {
|
||||
serialize();
|
||||
}
|
||||
|
||||
const std::vector<ElementType> inputPrecisions = {
|
||||
ElementType::f32,
|
||||
ElementType::bf16,
|
||||
ElementType::i8
|
||||
};
|
||||
|
||||
const std::vector<ElementType> inputPrecisionsOther = {
|
||||
ElementType::i64,
|
||||
ElementType::i32,
|
||||
ElementType::i16,
|
||||
ElementType::u8
|
||||
};
|
||||
|
||||
std::vector<Slice8SpecificParams> staticParams = {
|
||||
Slice8SpecificParams{ {{{}, {{ 16 }}}}, { 4 }, { 12 }, { 1 }, { 0 } },
|
||||
Slice8SpecificParams{ {{{}, {{ 16 }}}}, { 0 }, { 8 }, { 2 }, { 0 } },
|
||||
Slice8SpecificParams{ {{{}, {{ 20, 10, 5 }}}}, { 0, 0}, { 10, 20}, { 1, 1 }, { 1, 0 } },
|
||||
Slice8SpecificParams{ {{{}, {{ 1, 2, 12, 100 }}}}, { 0, 1, 0, 1 }, { 1, 2, 5, 100 }, { 1, 1, 1, 10 }, {} },
|
||||
Slice8SpecificParams{ {{{}, {{ 1, 12, 100 }}}}, { 0, 9, 0 }, { 1, 11, 1 }, { 1, 1, 1 }, { 0, 1, -1 } },
|
||||
Slice8SpecificParams{ {{{}, {{ 1, 12, 100 }}}}, { 0, 1, 0 }, { 10, -1, 10 }, { 1, 1, 1 }, { -3, -2, -1} },
|
||||
Slice8SpecificParams{ {{{}, {{ 2, 12, 100 }}}}, { 1, 12, 100 }, { 0, 7, 0 }, { -1, -1, -1 }, {} },
|
||||
Slice8SpecificParams{ {{{}, {{ 2, 12, 100 }}}}, { 1, 4, 99 }, { 0, 9, 0 }, { -1, 2, -1 }, {} },
|
||||
Slice8SpecificParams{ {{{}, {{ 2, 12, 100 }}}}, { -1, -1, -1 }, { 0, 4, 0 }, { -1, -2, -1 }, {} },
|
||||
Slice8SpecificParams{ {{{}, {{ 2, 12, 100 }}}}, { -1, -1, -1 }, { 0, 0, 4 }, { -1, -1, -1 }, {2, 0, 1} },
|
||||
Slice8SpecificParams{ {{{}, {{ 2, 12, 100 }}}}, { 0, 0, 4 }, { -5, -1, -1 }, { 1, 2, 1 }, {2, 0, 1} },
|
||||
Slice8SpecificParams{ {{{}, {{ 2, 2, 2, 2 }}}}, { 0, 0, 0, 0 }, { 2, 2, 2, 2 }, { 1, 1, 1, 1 }, {} },
|
||||
Slice8SpecificParams{ {{{}, {{ 2, 2, 2, 2 }}}}, { 1, 1, 1, 1 }, { 2, 2, 2, 2 }, { 1, 1, 1, 1 }, {} },
|
||||
Slice8SpecificParams{ {{{}, {{ 2, 2, 4, 3 }}}}, { 0, 0, 0, 0 }, { 2, 2, 4, 3 }, { 1, 1, 2, 1 }, { -4, 1, -2, 3 } },
|
||||
Slice8SpecificParams{ {{{}, {{ 2, 2, 4, 2 }}}}, { 1, 0, 0, 1 }, { 2, 2, 4, 2 }, { 1, 1, 2, 1 }, {} },
|
||||
Slice8SpecificParams{ {{{}, {{ 1, 2, 4, 2 }}}}, { 0, 1, 0, 1 }, { 10, 2, 4, 2 }, { 1, 1, 2, 1 }, {} },
|
||||
Slice8SpecificParams{ {{{}, {{ 1, 2, 4, 2 }}}}, { 1, 0, 1, 0 }, { 2, 4, 2, 10 }, { 1, 2, 1, 1 }, { -1, -2, -3, -4 } },
|
||||
Slice8SpecificParams{ {{{}, {{ 10, 2, 4, 2 }}}}, { 9, 1, 3, 0 }, { 0, 0, 0, 1 }, { -1, -1, -1, 1 }, {} },
|
||||
Slice8SpecificParams{ {{{}, {{ 10, 2, 4, 2 }}}}, { 19, 1, -1, 0 }, { -10, 0, 0, -1 }, { -1, -1, -1, 1 }, {} },
|
||||
Slice8SpecificParams{ {{{}, {{ 3, 2, 4, 200 }}}}, { 0, 1, -1, -1 }, { 3, 2, 0, 0 }, { 1, 1, -2, -1 }, {} },
|
||||
Slice8SpecificParams{ {{{}, {{ 2, 4, 5, 5, 68 }}}}, { 0, 1, 0, 0, 0 }, {
|
||||
std::numeric_limits<std::int64_t>::max(),
|
||||
std::numeric_limits<std::int64_t>::max(),
|
||||
std::numeric_limits<std::int64_t>::max(),
|
||||
std::numeric_limits<std::int64_t>::max(),
|
||||
std::numeric_limits<std::int64_t>::max() }, { 1, 1, 1, 1, 16 }, {} },
|
||||
Slice8SpecificParams{ {{{}, {{ 10, 12 }}}}, { -1, 1 }, { -9999, 10 }, { -1, 1 }, {} },
|
||||
Slice8SpecificParams{ {{{}, {{ 5, 5, 5, 5 }}}}, { -1, 0, -1, 0 }, { -50, -1, -60, -1 }, { -1, 1, -1, 1 }, {} },
|
||||
Slice8SpecificParams{ {{{}, {{ 1, 5, 32, 32 }}}}, { 0, 2, 5, 4 }, { 1, 4, 28, 27 }, { 1, 1, 1, 1 }, { 0, 1, 2, 3 } },
|
||||
Slice8SpecificParams{ {{{}, {{ 1, 5, 32, 20 }}}}, { 0, 1, 0, 0 }, { 1, 3, 32, 20 }, { 1, 1, 1, 1 }, { 0, 1, 2, 3 } },
|
||||
Slice8SpecificParams{ {{{}, {{ 2, 5, 32, 20 }}}}, { 0, 0, 10, 0 }, { 1, 3, 20, 20 }, { 1, 1, 1, 1 }, { 0, 1, 2, 3 } },
|
||||
Slice8SpecificParams{ {{{}, {{ 1, 5, 32, 32 }}}}, { 0, 0, 20, 20 }, { 1, 5, 25, 26 }, { 1, 1, 1, 2 }, { 0, 1, 2, 3 } },
|
||||
Slice8SpecificParams{ {{{}, {{ 2, 5, 32, 32 }}}}, { 0, 0, 0, 20 }, { 1, 2, 30, 30 }, { 1, 1, 2, 1 }, { 0, 1, 2, 3 } },
|
||||
Slice8SpecificParams{ {{{}, {{ 1, 5, 32, 20 }}}}, { 0, 0, 2, 10 }, { 1, 3, 32, 20 }, { 1, 1, 1, 1 }, { 0, 1, 2, 3 } },
|
||||
Slice8SpecificParams{ {{{}, {{ 2, 5, 32, 32 }}}}, { 0, 1, 0, 10 }, { 1, 5, 32, 30 }, { 1, 1, 1, 1 }, { 0, 1, 2, 3 } },
|
||||
Slice8SpecificParams{ {{{}, {{ 1, 5, 32, 20 }}}}, { 0, 1, 2, 10 }, { 1, 5, 32, 18 }, { 1, 1, 1, 2 }, { 0, 1, 2, 3 } },
|
||||
Slice8SpecificParams{ {{{}, {{ 2, 8, 32, 20 }}}}, { 0, 0, 2, 10 }, { 1, 8, 32, 18 }, { 1, 2, 1, 2 }, { 0, 1, 2, 3 } },
|
||||
Slice8SpecificParams{ {{{}, {{ 2, 8, 32, 20 }}}}, { 0, -20, -15 }, { 2, -5, 3 }, { 1, 1, 1 }, { 0, 2, 1 } }
|
||||
};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_Slice8Serialization_static, Slice8LayerTest,
|
||||
::testing::Combine(
|
||||
::testing::ValuesIn(staticParams),
|
||||
::testing::ValuesIn(inputPrecisions),
|
||||
::testing::Values(ElementType::undefined),
|
||||
::testing::Values(ElementType::undefined),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU),
|
||||
::testing::Values(std::map<std::string, std::string>())),
|
||||
Slice8LayerTest::getTestCaseName);
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_Slice8Serialization_PrecisionTransformation, Slice8LayerTest,
|
||||
::testing::Combine(
|
||||
::testing::Values(staticParams[0]),
|
||||
::testing::ValuesIn(inputPrecisionsOther),
|
||||
::testing::Values(ElementType::undefined),
|
||||
::testing::Values(ElementType::undefined),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU),
|
||||
::testing::Values(std::map<std::string, std::string>())),
|
||||
Slice8LayerTest::getTestCaseName);
|
||||
|
||||
std::vector<Slice8SpecificParams> dynamicParams = {
|
||||
Slice8SpecificParams{ {{{ -1 }, {{ 8 }, { 16 }}}}, { 4 }, { 12 }, { 1 }, { 0 } },
|
||||
Slice8SpecificParams{ {{{ ov::Dimension(2, 20) }, {{ 5 }, { 15 }}}}, { 0 }, { 8 }, { 2 }, { 0 } },
|
||||
Slice8SpecificParams{ {{{ -1, -1, -1 }, {{ 20, 10, 5 }, {5, 10, 20}}}}, { 0, 0}, { 10, 20}, { 1, 1 }, { 1, 0 } },
|
||||
Slice8SpecificParams{ {{{ -1, -1, -1, -1 }, {{ 1, 2, 12, 100 }}}}, { 0, 1, 0, 1 }, { 1, 2, 5, 100 }, { 1, 1, 1, 10 }, {} },
|
||||
Slice8SpecificParams{ {{{ -1, ov::Dimension(2, 20), -1 }, {{ 1, 12, 100 }, { 2, 12, 100 }}}}, { 0, 9, 0 }, { 1, 11, 1 }, { 1, 1, 1 }, {} },
|
||||
Slice8SpecificParams{ {{{ ov::Dimension(1, 5), ov::Dimension(1, 5), ov::Dimension(1, 5), ov::Dimension(1, 5) },
|
||||
{{ 2, 2, 2, 2 }, { 2, 2, 4, 3 }, { 2, 2, 4, 2 }, { 1, 2, 4, 2 }}}},
|
||||
{ 0, 0, 0, 0 }, { 2, 2, 2, 2 }, { 1, 1, 1, 1 }, {} },
|
||||
Slice8SpecificParams{ {{{ -1, ov::Dimension(1, 5), ov::Dimension(1, 5), -1 }, {{ 10, 2, 4, 2 }, { 10, 4, 2, 2 }}}},
|
||||
{ 9, 1, 3, 0 }, { 0, 0, 0, 1 }, { -1, -1, -1, 1 }, {} },
|
||||
Slice8SpecificParams{ {{{ -1, ov::Dimension(1, 5), -1, -1, ov::Dimension(30, 70) }, {{ 2, 4, 5, 5, 68 }, { 2, 3, 7, 7, 33 }}}},
|
||||
{ 0, 1, 0, 0, 0 }, {
|
||||
std::numeric_limits<std::int64_t>::max(),
|
||||
std::numeric_limits<std::int64_t>::max(),
|
||||
std::numeric_limits<std::int64_t>::max(),
|
||||
std::numeric_limits<std::int64_t>::max(),
|
||||
std::numeric_limits<std::int64_t>::max() }, { 1, 1, 1, 1, 16 }, {} },
|
||||
Slice8SpecificParams{ {{{ov::Dimension(1, 5), ov::Dimension(1, 7), ov::Dimension(1, 35), ov::Dimension(1, 35)},
|
||||
{{ 1, 5, 32, 32 }, { 2, 5, 32, 20 }, { 2, 5, 32, 32 }}}}, { 0, 2, 5, 4 }, { 1, 4, 28, 27 }, { 1, 1, 1, 1 }, { 0, 1, 2, 3 } },
|
||||
Slice8SpecificParams{ {{{ov::Dimension(1, 5), ov::Dimension(10, 20), ov::Dimension(20, 30), 16, ov::Dimension(30, 40)},
|
||||
{{ 4, 15, 30, 16, 39 }}}}, { 0, 2, 10, 0, 35 }, { 1, 8, 25, 16, 40 }, { 1, 1, 1, 1, 1 }, { 0, 1, 2, 3, 4 } }
|
||||
};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_Slice8Serialization_dynamic, Slice8LayerTest,
|
||||
::testing::Combine(
|
||||
::testing::ValuesIn(dynamicParams),
|
||||
::testing::ValuesIn(inputPrecisions),
|
||||
::testing::Values(ElementType::undefined),
|
||||
::testing::Values(ElementType::undefined),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU),
|
||||
::testing::Values(std::map<std::string, std::string>())),
|
||||
Slice8LayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,38 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "shared_test_classes/single_layer/space_to_batch.hpp"
|
||||
|
||||
#include <vector>
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
|
||||
TEST_P(SpaceToBatchLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<std::vector<int64_t>> blockShapes4D{{1, 1, 2, 2}};
|
||||
const std::vector<std::vector<int64_t>> padsBegins4D{{0, 0, 0, 0},
|
||||
{0, 0, 0, 2}};
|
||||
const std::vector<std::vector<int64_t>> padsEnds4D{{0, 0, 0, 0}, {0, 0, 0, 2}};
|
||||
const std::vector<std::vector<size_t>> dataShapes4D{
|
||||
{1, 1, 2, 2}, {1, 3, 2, 2}, {1, 1, 4, 4}, {2, 1, 2, 4}};
|
||||
|
||||
const auto SpaceToBatch4D = ::testing::Combine(
|
||||
::testing::ValuesIn(blockShapes4D), ::testing::ValuesIn(padsBegins4D),
|
||||
::testing::ValuesIn(padsEnds4D), ::testing::ValuesIn(dataShapes4D),
|
||||
::testing::Values(InferenceEngine::Precision::FP32),
|
||||
::testing::Values(InferenceEngine::Precision::FP32),
|
||||
::testing::Values(InferenceEngine::Precision::FP32),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_spacetobatch4D_Serialization,
|
||||
SpaceToBatchLayerTest, SpaceToBatch4D,
|
||||
SpaceToBatchLayerTest::getTestCaseName);
|
||||
|
||||
} // namespace
|
@ -1,45 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "shared_test_classes/single_layer/space_to_depth.hpp"
|
||||
|
||||
#include <ngraph/opsets/opset3.hpp>
|
||||
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
using namespace ngraph::opset3;
|
||||
|
||||
namespace {
|
||||
TEST_P(SpaceToDepthLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
const std::vector<InferenceEngine::Precision> inputPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::U8,
|
||||
InferenceEngine::Precision::I16,
|
||||
};
|
||||
|
||||
const std::vector<SpaceToDepth::SpaceToDepthMode> modes = {
|
||||
SpaceToDepth::SpaceToDepthMode::BLOCKS_FIRST,
|
||||
SpaceToDepth::SpaceToDepthMode::DEPTH_FIRST};
|
||||
|
||||
const std::vector<std::vector<size_t>> inputShapesBS2 = {
|
||||
{1, 1, 2, 2}, {1, 1, 4, 4}, {1, 1, 6, 6}, {2, 8, 6, 6},
|
||||
{2, 4, 10, 8}, {1, 1, 2, 2, 2}, {1, 1, 4, 4, 4}, {1, 1, 6, 6, 6},
|
||||
{2, 8, 6, 6, 6}, {2, 4, 10, 8, 12}};
|
||||
|
||||
const auto SpaceToDepthBS2 = ::testing::Combine(
|
||||
::testing::ValuesIn(inputShapesBS2), ::testing::ValuesIn(inputPrecisions),
|
||||
::testing::ValuesIn(modes), ::testing::Values(1, 2),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU));
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_SpaceToDepthSerialization, SpaceToDepthLayerTest,
|
||||
::testing::Combine(::testing::ValuesIn(inputShapesBS2),
|
||||
::testing::ValuesIn(inputPrecisions),
|
||||
::testing::ValuesIn(modes), ::testing::Values(1, 2),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
SpaceToDepthLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,39 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/split.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
|
||||
TEST_P(SplitLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::I32,
|
||||
InferenceEngine::Precision::U16,
|
||||
InferenceEngine::Precision::BOOL};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
smoke_Split_Serialization, SplitLayerTest,
|
||||
::testing::Combine(
|
||||
::testing::Values(1, 2, 5, 10),
|
||||
::testing::Values(0, 1, 2, 3),
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(std::vector<size_t>{20, 30, 50, 50}),
|
||||
::testing::Values(std::vector<size_t>({})),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
SplitLayerTest::getTestCaseName
|
||||
);
|
||||
|
||||
} // namespace
|
@ -1,46 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/squeeze_unsqueeze.hpp"
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(SqueezeUnsqueezeLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
std::map<std::vector<size_t>, std::vector<std::vector<int>>> axesVectors = {
|
||||
{{1, 1, 1, 1}, {{}, {-1}, {0}, {1}, {2}, {3}, {0, 1}, {0, 2}, {0, 3}, {1, 2}, {2, 3}, {0, 1, 2}, {0, 2, 3}, {1, 2, 3}, {0, 1, 2, 3}}},
|
||||
{{1, 2, 3, 4}, {{}, {0}}},
|
||||
{{2, 1, 3, 4}, {{}, {1}}},
|
||||
{{1}, {{}, {-1}, {0}}},
|
||||
{{1, 2}, {{}, {0}}},
|
||||
{{2, 1}, {{}, {1}, {-1}}},
|
||||
};
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16,
|
||||
InferenceEngine::Precision::I32,
|
||||
InferenceEngine::Precision::U32};
|
||||
|
||||
const std::vector<ngraph::helpers::SqueezeOpType> opTypes = {
|
||||
ngraph::helpers::SqueezeOpType::SQUEEZE};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_Squeeze_Basic, SqueezeUnsqueezeLayerTest,
|
||||
::testing::Combine(
|
||||
::testing::ValuesIn(CommonTestUtils::combineParams(axesVectors)),
|
||||
::testing::ValuesIn(opTypes),
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
SqueezeUnsqueezeLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,47 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
#include "shared_test_classes/single_layer/tensor_iterator.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(TensorIteratorTest, Serialize_IR10) {
|
||||
Serialize(ov::pass::Serialize::Version::IR_V10);
|
||||
}
|
||||
|
||||
TEST_P(TensorIteratorTest, Serialize_IR11) {
|
||||
Serialize(ov::pass::Serialize::Version::IR_V11);
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32, InferenceEngine::Precision::FP16};
|
||||
const std::vector<ngraph::helpers::TensorIteratorBody> body = {
|
||||
ngraph::helpers::TensorIteratorBody::GRU, ngraph::helpers::TensorIteratorBody::LSTM, ngraph::helpers::TensorIteratorBody::RNN};
|
||||
const std::vector<bool> decompose = {true, false};
|
||||
const std::vector<size_t> sequenceLength = {2};
|
||||
const std::vector<size_t> batch = {1, 10};
|
||||
const std::vector<size_t> hiddenSize = {128};
|
||||
const std::vector<size_t> sequenceAxis = {1};
|
||||
const std::vector<float> clip = {0.f};
|
||||
const std::vector<ngraph::op::RecurrentSequenceDirection> direction = {
|
||||
ngraph::op::RecurrentSequenceDirection::FORWARD, ngraph::op::RecurrentSequenceDirection::REVERSE};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_TensorIterator, TensorIteratorTest,
|
||||
::testing::Combine(
|
||||
::testing::ValuesIn(decompose),
|
||||
::testing::ValuesIn(sequenceLength),
|
||||
::testing::ValuesIn(batch),
|
||||
::testing::ValuesIn(hiddenSize),
|
||||
::testing::ValuesIn(sequenceAxis),
|
||||
::testing::ValuesIn(clip),
|
||||
::testing::ValuesIn(body),
|
||||
::testing::ValuesIn(direction),
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
TensorIteratorTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,71 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/transpose.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
|
||||
TEST_P(TransposeLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16,
|
||||
InferenceEngine::Precision::I32
|
||||
};
|
||||
|
||||
std::vector<std::vector<size_t>> inputShape2D = {{2, 10}, {10, 2}, {10, 10}};
|
||||
std::vector<std::vector<size_t>> order2D = {{}, {0, 1}, {1, 0}};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_Transpose2D, TransposeLayerTest,
|
||||
::testing::Combine(
|
||||
::testing::ValuesIn(order2D),
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::ValuesIn(inputShape2D),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
TransposeLayerTest::getTestCaseName);
|
||||
|
||||
std::vector<std::vector<size_t>> inputShape4D = {{2, 2, 2, 2}};
|
||||
std::vector<std::vector<size_t>> order4D = {
|
||||
{}, {0, 1, 2, 3}
|
||||
};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_Transpose4D, TransposeLayerTest,
|
||||
::testing::Combine(
|
||||
::testing::ValuesIn(order4D),
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::ValuesIn(inputShape4D),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
TransposeLayerTest::getTestCaseName);
|
||||
|
||||
std::vector<std::vector<size_t>> inputShape5D = {{2, 3, 4, 5, 6}};
|
||||
std::vector<std::vector<size_t>> order5D = {
|
||||
{}, {0, 1, 2, 3, 4}
|
||||
};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_Transpose5D, TransposeLayerTest,
|
||||
::testing::Combine(
|
||||
::testing::ValuesIn(order5D),
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::ValuesIn(inputShape5D),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
TransposeLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,46 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/squeeze_unsqueeze.hpp"
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(SqueezeUnsqueezeLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
std::map<std::vector<size_t>, std::vector<std::vector<int>>> axesVectors = {
|
||||
{{1, 1, 1, 1}, {{-1}, {0}, {1}, {2}, {3}, {0, 1}, {0, 2}, {0, 3}, {1, 2}, {2, 3}, {0, 1, 2}, {0, 2, 3}, {1, 2, 3}, {0, 1, 2, 3}}},
|
||||
{{1, 2, 3, 4}, {{0}}},
|
||||
{{2, 1, 3, 4}, {{1}}},
|
||||
{{1}, {{-1}, {0}}},
|
||||
{{1, 2}, {{0}}},
|
||||
{{2, 1}, {{1}, {-1}}},
|
||||
};
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16,
|
||||
InferenceEngine::Precision::I32,
|
||||
InferenceEngine::Precision::U32};
|
||||
|
||||
const std::vector<ngraph::helpers::SqueezeOpType> opTypes = {
|
||||
ngraph::helpers::SqueezeOpType::UNSQUEEZE};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_Squeeze_Basic, SqueezeUnsqueezeLayerTest,
|
||||
::testing::Combine(
|
||||
::testing::ValuesIn(CommonTestUtils::combineParams(axesVectors)),
|
||||
::testing::ValuesIn(opTypes),
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
SqueezeUnsqueezeLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -1,39 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "shared_test_classes/single_layer/variadic_split.hpp"
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
using namespace LayerTestsDefinitions;
|
||||
|
||||
namespace {
|
||||
TEST_P(VariadicSplitLayerTest, Serialize) {
|
||||
Serialize();
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16
|
||||
};
|
||||
|
||||
// Sum of elements numSplits = inputShapes[Axis]
|
||||
const std::vector<std::vector<size_t>> numSplits = {
|
||||
{1, 16, 5, 8},
|
||||
};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_VariadicSplitSerialization, VariadicSplitLayerTest,
|
||||
::testing::Combine(
|
||||
::testing::ValuesIn(numSplits),
|
||||
::testing::Values(0, 1, 2, 3),
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Precision::UNSPECIFIED),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(InferenceEngine::Layout::ANY),
|
||||
::testing::Values(std::vector<size_t>({30, 30, 30, 30})),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
VariadicSplitLayerTest::getTestCaseName);
|
||||
} // namespace
|
Loading…
Reference in New Issue
Block a user