[Python Tools] Align namespace for cross_check_tool (#7786)

* align openvino namespace

* update README
This commit is contained in:
Julia Kamelina 2021-11-03 01:55:27 +03:00 committed by GitHub
parent f20f4d024c
commit 7c56155dae
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 375 additions and 309 deletions

View File

@ -72,6 +72,13 @@ CCT mode arguments:
--load LOAD Path to a file to load blobs from --load LOAD Path to a file to load blobs from
``` ```
Cross Check Tool can also be installed via:
```sh
$python3 -m pip install <openvino_repo>/tools/cross_check_tool
```
In this case, to run the tool, call `cross_check_tool` on the command line with necessary parameters.
### Examples ### Examples
1. To check per-layer accuracy and performance of inference in FP32 precision on the CPU against the GPU, run: 1. To check per-layer accuracy and performance of inference in FP32 precision on the CPU against the GPU, run:

View File

@ -3,315 +3,9 @@
# Copyright (C) 2018-2021 Intel Corporation # Copyright (C) 2018-2021 Intel Corporation
# SPDX-License-Identifier: Apache-2.0 # SPDX-License-Identifier: Apache-2.0
import datetime
import logging as log
import os
import sys import sys
from openvino.tools.cross_check_tool.cross_check_tool import main
import numpy as np
try:
from openvino import inference_engine as ie
from openvino.inference_engine import IENetwork, IECore
except Exception as e:
exception_type = type(e).__name__
print(f"The following error happened while importing Python API module:\n[ {exception_type} ] {e}")
sys.exit(1)
try:
import ngraph as ng
except Exception as e:
exception_type = type(e).name
print(f"The following error happened while importing nGraph module:\n[ {exception_type} ] {e}")
sys.exit(1)
from utils import get_config_dictionary, get_layers_list, print_output_layers, input_processing, \
accuracy_metrics, validate_args, build_parser, set_logger, find_out_cct_mode, print_all_over_the_net_metrics, \
update_global_accuracy_matrics, blob_counters, performance_metrics, manage_user_outputs_with_mapping, \
dump_output_file, load_dump, error_handling, print_input_layers, set_verbosity
### if __name__ == "__main__":
# PLUGIN sys.exit(main() or 0)
###
@error_handling('plugin of \'{device}\' device config \'{config}\' loading')
def set_plugin_config(core: IECore, device: str, config: str = None):
core.set_config(get_config_dictionary(config_file=config), device_name=device)
@error_handling('\'{cpu_ext}\' cpu extensions loading')
def set_cpu_extensions(core: IECore, cpu_ext: str):
core.add_extension(cpu_ext, "CPU")
def get_plugin(device: str, cpu_ext: str = None, config: str = None):
ie = IECore()
# log.info('{} plugin:\n API version ............ {}'.format(device, plugin.version), extra={'no_lvl': True})
set_plugin_config(core=ie, device=device, config=config)
if cpu_ext and 'CPU' in device:
set_cpu_extensions(core=ie, cpu_ext=cpu_ext)
return ie
###
# MODEL
###
@error_handling('reading {model} IR model')
def get_net(model: str, core: IECore):
model_xml = model
model_bin = os.path.splitext(model_xml)[0] + ".bin"
net = core.read_network(model=model_xml, weights=model_bin)
return net
@error_handling('loading network to plugin of {device} device')
def get_exec_net(core, net, device):
return core.load_network(network=net, device_name=device)
@error_handling('output \'{output}\' addition for network from model \'{model}\'')
def get_net_copy_with_output(model: str, output: str, core: IECore):
net_copy = get_net(model=model, core=core)
func = ng.function_from_cnn(net_copy)
if output not in ['None', None]:
# output with port_id in name is absent in ops list
founded_op = [op for op in func.get_ops() if op.friendly_name == output]
if founded_op:
net_copy.add_outputs(output)
else:
split = output.rsplit(".", 1)
net_copy.add_outputs((split[0], int(split[1])))
return net_copy
@error_handling('getting model layers info')
def get_model_info(net: IENetwork):
func = ng.function_from_cnn(net)
ops = func.get_ordered_ops()
return ops, net.input_info, net.outputs
###
# INFER
###
@error_handling('processing inference')
def get_infer_results(executable_network, inputs: dict):
return executable_network.infer(inputs=inputs)
@error_handling('getting performance counts from executable network')
def get_perf_counts(executable_network):
return executable_network.requests[0].get_perf_counts()
@error_handling('getting inference results for outputs: \'{output}\' on \'{device}\' device')
def infer(net: IENetwork, core: IECore, device: str, inputs: dict, output: list):
executable_network = get_exec_net(core=core, net=net, device=device)
infer_dict = get_infer_results(executable_network=executable_network, inputs=inputs)
pc = get_perf_counts(executable_network=executable_network)
no_i = 'no_info'
no_info_pc = {'cpu_time': no_i, 'exec_time': no_i, 'layer_type': no_i, 'real_time': no_i, 'status': no_i}
result = {}
for out in output:
if out not in infer_dict:
log.warning(f"There is no '{out}' layer in Inference Engine outputs results")
continue
pc = pc[out] if out in pc else no_info_pc
pc['device'] = device
result = {out: [infer_dict[out], pc]}
return result
@error_handling('getting inference results for outputs: \'{layers}\'')
def overall_accuracy_check(model: str, ref_model: str, out_layers: list, ref_out_layers: list, inputs: dict,
ref_inputs: dict, core: IECore, device: str, ref_core: IECore, ref_device: str, layers: str,
num_of_iterations: int):
global_times, ref_global_times = [], []
if layers in ['None', None]:
net_copy = get_net_copy_with_output(model=model, output=layers, core=core)
ref_net_copy = get_net_copy_with_output(model=ref_model, output=layers, core=ref_core)
for i in range(num_of_iterations):
t1 = datetime.datetime.now()
infer(net=net_copy, core=core, device=device, inputs=inputs, output=out_layers)
t2 = datetime.datetime.now()
infer(net=ref_net_copy, core=ref_core, device=ref_device, inputs=ref_inputs, output=ref_out_layers)
t3 = datetime.datetime.now()
global_times.append(t2 - t1)
ref_global_times.append(t3 - t2)
return global_times, ref_global_times
def one_ir_mode(args):
core = get_plugin(args.device, args.l, args.config)
net = get_net(model=args.model, core=core)
net_layers, net_inputs, net_outputs = get_model_info(net)
log.info(f'{args.device} vs {args.reference_device}')
log.info(f'The same IR on both devices: {args.model}')
out_layers = get_layers_list(net_layers, net_inputs, net_outputs, args.layers)
print_input_layers(net_inputs)
print_output_layers(out_layers)
ref_core = get_plugin(args.reference_device, args.l, args.reference_config)
global_accuracy = []
inputs = input_processing(model_path=args.model, net_inputs=net_inputs, input_file=args.input)
global_times, ref_global_times = overall_accuracy_check(model=args.model, ref_model=args.model,
out_layers=out_layers, ref_out_layers=out_layers,
inputs=inputs, ref_inputs=inputs, core=core,
device=args.device, ref_core=ref_core,
ref_device=args.reference_device, layers=args.layers,
num_of_iterations=args.num_of_iterations)
for out_layer in out_layers:
log.info(f'Layer {out_layer} statistics')
net_copy = get_net_copy_with_output(model=args.model, output=out_layer, core=core)
results = infer(net=net_copy, core=core, device=args.device, inputs=inputs, output=[out_layer])
if out_layer not in results:
continue
out_blob, pc = results[out_layer]
ref_results = infer(net=net_copy, core=ref_core, device=args.reference_device,
inputs=inputs, output=[out_layer])
if out_layer not in ref_results:
continue
ref_out_blob, ref_pc = ref_results[out_layer]
a_m = accuracy_metrics(out_blob=out_blob, ref_out_blob=ref_out_blob)
performance_metrics(pc=pc, ref_pc=ref_pc)
blob_counters(out_blob=out_blob, ref_out_blob=ref_out_blob)
global_accuracy = update_global_accuracy_matrics(global_accuracy=global_accuracy, current_accuracy=a_m)
print_all_over_the_net_metrics(global_times=global_times, ref_global_times=ref_global_times,
global_accuracy=global_accuracy)
def two_ir_mode(args):
core = get_plugin(args.device, args.l, args.config)
ref_core = get_plugin(args.reference_device, args.l, args.reference_config)
net = get_net(model=args.model, core=core)
net_layers, net_inputs, net_outputs = get_model_info(net)
ref_net = get_net(model=args.reference_model, core=ref_core)
ref_net_layers, ref_net_inputs, ref_net_outputs = get_model_info(ref_net)
log.info(f'{args.device} vs {args.reference_device}')
log.info(f'IR for {args.device} : {args.model}')
log.info(f'IR for {args.reference_device} : {args.reference_model}')
out_layers = get_layers_list(net_layers, net_inputs, net_outputs, args.layers)
ref_out_layers = get_layers_list(ref_net_layers, ref_net_inputs, ref_net_outputs, args.layers)
print_input_layers(net_inputs)
print_output_layers(out_layers)
layers_map = manage_user_outputs_with_mapping(mapping=args.mapping, reference_mapping=args.reference_mapping,
user_layers=out_layers)
inputs = input_processing(model_path=args.model, net_inputs=net_inputs, input_file=args.input,
layers_map=layers_map)
ref_inputs = input_processing(model_path=args.reference_model, net_inputs=ref_net_inputs, input_file=args.input,
layers_map=layers_map)
global_accuracy = []
global_times, ref_global_times = overall_accuracy_check(model=args.model, ref_model=args.reference_model,
out_layers=out_layers, ref_out_layers=ref_out_layers,
inputs=inputs, ref_inputs=ref_inputs, core=core,
device=args.device, ref_core=ref_core,
ref_device=args.reference_device, layers=args.layers,
num_of_iterations=args.num_of_iterations)
for out_layer in layers_map:
ref_out_layer = layers_map[out_layer]
if out_layer == ref_out_layer:
log.info(f'Layer {out_layer} statistics')
else:
log.info(f'Statistics \'{out_layer}\' vs \'{ref_out_layer}\'')
net_copy = get_net_copy_with_output(model=args.model, output=out_layer, core=core)
ref_net_copy = get_net_copy_with_output(model=args.reference_model, output=ref_out_layer, core=ref_core)
results = infer(net=net_copy, core=core, device=args.device, inputs=inputs, output=[out_layer])
if out_layer not in results:
continue
out_blob, pc = results[out_layer]
ref_results = infer(net=ref_net_copy, core=ref_core, device=args.reference_device,
inputs=ref_inputs, output=[ref_out_layer])
ref_out_blob, ref_pc = ref_results[ref_out_layer]
if ref_out_layer not in ref_results:
continue
a_m = accuracy_metrics(out_blob=out_blob, ref_out_blob=ref_out_blob)
performance_metrics(pc=pc, ref_pc=ref_pc)
blob_counters(out_blob=out_blob, ref_out_blob=ref_out_blob)
global_accuracy = update_global_accuracy_matrics(global_accuracy=global_accuracy, current_accuracy=a_m)
print_all_over_the_net_metrics(global_times=global_times, ref_global_times=ref_global_times,
global_accuracy=global_accuracy)
def dump_mode(args):
core = get_plugin(args.device, args.l, args.config)
net = get_net(model=args.model, core=core)
func = ng.function_from_cnn(net)
ops = func.get_ops()
out_layers = get_layers_list(ops, net.input_info, net.outputs, args.layers)
inputs = input_processing(args.model, net.input_info, args.input)
dump_dict = {}
for out_layer in out_layers:
log.info(f'Layer {out_layer} processing')
net_copy = get_net_copy_with_output(model=args.model, output=out_layer, core=core)
results = infer(net=net_copy, core=core, device=args.device, inputs=inputs, output=[out_layer])
if out_layer not in results:
continue
out_blob, pc = results[out_layer]
dump_dict[out_layer] = np.array({'blob': out_blob, 'pc': pc})
dump_output_file(args.model + '_' + args.device + '_dump.npz', dump_dict)
def load_mode(args):
core = get_plugin(args.device, args.l, args.config)
log.info(f'IR for {args.device} : {args.model}')
log.info(f'Loading blob from {args.load}')
net = get_net(model=args.model, core=core)
net_layers, net_inputs, net_outputs = get_model_info(net)
out_layers = get_layers_list(net_layers, net_inputs, net_outputs, args.layers)
print_input_layers(net_inputs)
print_output_layers(out_layers)
layers_map = manage_user_outputs_with_mapping(mapping=args.mapping, reference_mapping=args.reference_mapping,
user_layers=out_layers)
inputs = input_processing(args.model, net_inputs, args.input, layers_map)
global_accuracy = []
loaded = load_dump(args.load)
for out_layer in layers_map:
ref_out_layer = layers_map[out_layer]
if out_layer == ref_out_layer:
log.info(f'Layer {out_layer} statistics')
else:
log.info(f'Statistics \'{out_layer}\' vs \'{ref_out_layer}\'')
net_copy = get_net_copy_with_output(model=args.model, output=out_layer, core=core)
results = infer(net=net_copy, core=core, device=args.device, inputs=inputs, output=[out_layer])
if out_layer not in results:
continue
out_blob, pc = results[out_layer]
if ref_out_layer not in loaded:
continue
ref_out_blob = loaded[ref_out_layer]['blob']
a_m = accuracy_metrics(out_blob=out_blob, ref_out_blob=ref_out_blob)
if 'pc' in loaded[ref_out_layer]:
ref_pc = loaded[ref_out_layer]['pc']
performance_metrics(pc=pc, ref_pc=ref_pc)
blob_counters(out_blob=out_blob, ref_out_blob=ref_out_blob)
global_accuracy = update_global_accuracy_matrics(global_accuracy=global_accuracy, current_accuracy=a_m)
print_all_over_the_net_metrics(global_accuracy=global_accuracy)
def main(args):
log.info(f'Inference Engine:\n API version ............ {ie.__version__}', extra={'no_lvl': True})
set_verbosity(args.verbosity)
mode = find_out_cct_mode(args)
if mode == 1:
log.info('Cross check with one IR was enabled')
one_ir_mode(args)
elif mode == 2:
log.info('Cross check with two IRs was enabled')
two_ir_mode(args)
elif mode == 3:
log.info('Dump mode was enabled')
dump_mode(args)
elif mode == 4:
log.info('Load mode was enabled')
load_mode(args)
log.info("Execution successful")
if __name__ == '__main__':
set_logger(log.DEBUG)
main(validate_args(build_parser().parse_args()))

View File

@ -0,0 +1,3 @@
# Copyright (C) 2018-2021 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
__path__ = __import__('pkgutil').extend_path(__path__, __name__)

View File

@ -0,0 +1,3 @@
# Copyright (C) 2018-2021 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

View File

@ -0,0 +1,319 @@
#!/usr/bin/python3
# Copyright (C) 2018-2021 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import datetime
import logging as log
import os
import sys
import numpy as np
try:
from openvino import inference_engine as ie
from openvino.inference_engine import IENetwork, IECore
except Exception as e:
exception_type = type(e).__name__
print(f"The following error happened while importing Python API module:\n[ {exception_type} ] {e}")
sys.exit(1)
try:
import ngraph as ng
except Exception as e:
exception_type = type(e).name
print(f"The following error happened while importing nGraph module:\n[ {exception_type} ] {e}")
sys.exit(1)
from openvino.tools.cross_check_tool.utils import get_config_dictionary, get_layers_list, print_output_layers, \
input_processing, accuracy_metrics, validate_args, build_parser, set_logger, find_out_cct_mode, \
print_all_over_the_net_metrics, update_global_accuracy_matrics, blob_counters, performance_metrics, \
manage_user_outputs_with_mapping, dump_output_file, load_dump, error_handling, print_input_layers, set_verbosity
###
# PLUGIN
###
@error_handling('plugin of \'{device}\' device config \'{config}\' loading')
def set_plugin_config(core: IECore, device: str, config: str = None):
core.set_config(get_config_dictionary(config_file=config), device_name=device)
@error_handling('\'{cpu_ext}\' cpu extensions loading')
def set_cpu_extensions(core: IECore, cpu_ext: str):
core.add_extension(cpu_ext, "CPU")
def get_plugin(device: str, cpu_ext: str = None, config: str = None):
ie = IECore()
# log.info('{} plugin:\n API version ............ {}'.format(device, plugin.version), extra={'no_lvl': True})
set_plugin_config(core=ie, device=device, config=config)
if cpu_ext and 'CPU' in device:
set_cpu_extensions(core=ie, cpu_ext=cpu_ext)
return ie
###
# MODEL
###
@error_handling('reading {model} IR model')
def get_net(model: str, core: IECore):
model_xml = model
model_bin = os.path.splitext(model_xml)[0] + ".bin"
net = core.read_network(model=model_xml, weights=model_bin)
return net
@error_handling('loading network to plugin of {device} device')
def get_exec_net(core, net, device):
return core.load_network(network=net, device_name=device)
@error_handling('output \'{output}\' addition for network from model \'{model}\'')
def get_net_copy_with_output(model: str, output: str, core: IECore):
net_copy = get_net(model=model, core=core)
func = ng.function_from_cnn(net_copy)
if output not in ['None', None]:
# output with port_id in name is absent in ops list
founded_op = [op for op in func.get_ops() if op.friendly_name == output]
if founded_op:
net_copy.add_outputs(output)
else:
split = output.rsplit(".", 1)
net_copy.add_outputs((split[0], int(split[1])))
return net_copy
@error_handling('getting model layers info')
def get_model_info(net: IENetwork):
func = ng.function_from_cnn(net)
ops = func.get_ordered_ops()
return ops, net.input_info, net.outputs
###
# INFER
###
@error_handling('processing inference')
def get_infer_results(executable_network, inputs: dict):
return executable_network.infer(inputs=inputs)
@error_handling('getting performance counts from executable network')
def get_perf_counts(executable_network):
return executable_network.requests[0].get_perf_counts()
@error_handling('getting inference results for outputs: \'{output}\' on \'{device}\' device')
def infer(net: IENetwork, core: IECore, device: str, inputs: dict, output: list):
executable_network = get_exec_net(core=core, net=net, device=device)
infer_dict = get_infer_results(executable_network=executable_network, inputs=inputs)
pc = get_perf_counts(executable_network=executable_network)
no_i = 'no_info'
no_info_pc = {'cpu_time': no_i, 'exec_time': no_i, 'layer_type': no_i, 'real_time': no_i, 'status': no_i}
result = {}
for out in output:
if out not in infer_dict:
log.warning(f"There is no '{out}' layer in Inference Engine outputs results")
continue
pc = pc[out] if out in pc else no_info_pc
pc['device'] = device
result = {out: [infer_dict[out], pc]}
return result
@error_handling('getting inference results for outputs: \'{layers}\'')
def overall_accuracy_check(model: str, ref_model: str, out_layers: list, ref_out_layers: list, inputs: dict,
ref_inputs: dict, core: IECore, device: str, ref_core: IECore, ref_device: str, layers: str,
num_of_iterations: int):
global_times, ref_global_times = [], []
if layers in ['None', None]:
net_copy = get_net_copy_with_output(model=model, output=layers, core=core)
ref_net_copy = get_net_copy_with_output(model=ref_model, output=layers, core=ref_core)
for i in range(num_of_iterations):
t1 = datetime.datetime.now()
infer(net=net_copy, core=core, device=device, inputs=inputs, output=out_layers)
t2 = datetime.datetime.now()
infer(net=ref_net_copy, core=ref_core, device=ref_device, inputs=ref_inputs, output=ref_out_layers)
t3 = datetime.datetime.now()
global_times.append(t2 - t1)
ref_global_times.append(t3 - t2)
return global_times, ref_global_times
def one_ir_mode(args):
core = get_plugin(args.device, args.l, args.config)
net = get_net(model=args.model, core=core)
net_layers, net_inputs, net_outputs = get_model_info(net)
log.info(f'{args.device} vs {args.reference_device}')
log.info(f'The same IR on both devices: {args.model}')
out_layers = get_layers_list(net_layers, net_inputs, net_outputs, args.layers)
print_input_layers(net_inputs)
print_output_layers(out_layers)
ref_core = get_plugin(args.reference_device, args.l, args.reference_config)
global_accuracy = []
inputs = input_processing(model_path=args.model, net_inputs=net_inputs, input_file=args.input)
global_times, ref_global_times = overall_accuracy_check(model=args.model, ref_model=args.model,
out_layers=out_layers, ref_out_layers=out_layers,
inputs=inputs, ref_inputs=inputs, core=core,
device=args.device, ref_core=ref_core,
ref_device=args.reference_device, layers=args.layers,
num_of_iterations=args.num_of_iterations)
for out_layer in out_layers:
log.info(f'Layer {out_layer} statistics')
net_copy = get_net_copy_with_output(model=args.model, output=out_layer, core=core)
results = infer(net=net_copy, core=core, device=args.device, inputs=inputs, output=[out_layer])
if out_layer not in results:
continue
out_blob, pc = results[out_layer]
ref_results = infer(net=net_copy, core=ref_core, device=args.reference_device,
inputs=inputs, output=[out_layer])
if out_layer not in ref_results:
continue
ref_out_blob, ref_pc = ref_results[out_layer]
a_m = accuracy_metrics(out_blob=out_blob, ref_out_blob=ref_out_blob)
performance_metrics(pc=pc, ref_pc=ref_pc)
blob_counters(out_blob=out_blob, ref_out_blob=ref_out_blob)
global_accuracy = update_global_accuracy_matrics(global_accuracy=global_accuracy, current_accuracy=a_m)
print_all_over_the_net_metrics(global_times=global_times, ref_global_times=ref_global_times,
global_accuracy=global_accuracy)
def two_ir_mode(args):
core = get_plugin(args.device, args.l, args.config)
ref_core = get_plugin(args.reference_device, args.l, args.reference_config)
net = get_net(model=args.model, core=core)
net_layers, net_inputs, net_outputs = get_model_info(net)
ref_net = get_net(model=args.reference_model, core=ref_core)
ref_net_layers, ref_net_inputs, ref_net_outputs = get_model_info(ref_net)
log.info(f'{args.device} vs {args.reference_device}')
log.info(f'IR for {args.device} : {args.model}')
log.info(f'IR for {args.reference_device} : {args.reference_model}')
out_layers = get_layers_list(net_layers, net_inputs, net_outputs, args.layers)
ref_out_layers = get_layers_list(ref_net_layers, ref_net_inputs, ref_net_outputs, args.layers)
print_input_layers(net_inputs)
print_output_layers(out_layers)
layers_map = manage_user_outputs_with_mapping(mapping=args.mapping, reference_mapping=args.reference_mapping,
user_layers=out_layers)
inputs = input_processing(model_path=args.model, net_inputs=net_inputs, input_file=args.input,
layers_map=layers_map)
ref_inputs = input_processing(model_path=args.reference_model, net_inputs=ref_net_inputs, input_file=args.input,
layers_map=layers_map)
global_accuracy = []
global_times, ref_global_times = overall_accuracy_check(model=args.model, ref_model=args.reference_model,
out_layers=out_layers, ref_out_layers=ref_out_layers,
inputs=inputs, ref_inputs=ref_inputs, core=core,
device=args.device, ref_core=ref_core,
ref_device=args.reference_device, layers=args.layers,
num_of_iterations=args.num_of_iterations)
for out_layer in layers_map:
ref_out_layer = layers_map[out_layer]
if out_layer == ref_out_layer:
log.info(f'Layer {out_layer} statistics')
else:
log.info(f'Statistics \'{out_layer}\' vs \'{ref_out_layer}\'')
net_copy = get_net_copy_with_output(model=args.model, output=out_layer, core=core)
ref_net_copy = get_net_copy_with_output(model=args.reference_model, output=ref_out_layer, core=ref_core)
results = infer(net=net_copy, core=core, device=args.device, inputs=inputs, output=[out_layer])
if out_layer not in results:
continue
out_blob, pc = results[out_layer]
ref_results = infer(net=ref_net_copy, core=ref_core, device=args.reference_device,
inputs=ref_inputs, output=[ref_out_layer])
ref_out_blob, ref_pc = ref_results[ref_out_layer]
if ref_out_layer not in ref_results:
continue
a_m = accuracy_metrics(out_blob=out_blob, ref_out_blob=ref_out_blob)
performance_metrics(pc=pc, ref_pc=ref_pc)
blob_counters(out_blob=out_blob, ref_out_blob=ref_out_blob)
global_accuracy = update_global_accuracy_matrics(global_accuracy=global_accuracy, current_accuracy=a_m)
print_all_over_the_net_metrics(global_times=global_times, ref_global_times=ref_global_times,
global_accuracy=global_accuracy)
def dump_mode(args):
core = get_plugin(args.device, args.l, args.config)
net = get_net(model=args.model, core=core)
func = ng.function_from_cnn(net)
ops = func.get_ops()
out_layers = get_layers_list(ops, net.input_info, net.outputs, args.layers)
inputs = input_processing(args.model, net.input_info, args.input)
dump_dict = {}
for out_layer in out_layers:
log.info(f'Layer {out_layer} processing')
net_copy = get_net_copy_with_output(model=args.model, output=out_layer, core=core)
results = infer(net=net_copy, core=core, device=args.device, inputs=inputs, output=[out_layer])
if out_layer not in results:
continue
out_blob, pc = results[out_layer]
dump_dict[out_layer] = np.array({'blob': out_blob, 'pc': pc})
dump_output_file(args.model + '_' + args.device + '_dump.npz', dump_dict)
def load_mode(args):
core = get_plugin(args.device, args.l, args.config)
log.info(f'IR for {args.device} : {args.model}')
log.info(f'Loading blob from {args.load}')
net = get_net(model=args.model, core=core)
net_layers, net_inputs, net_outputs = get_model_info(net)
out_layers = get_layers_list(net_layers, net_inputs, net_outputs, args.layers)
print_input_layers(net_inputs)
print_output_layers(out_layers)
layers_map = manage_user_outputs_with_mapping(mapping=args.mapping, reference_mapping=args.reference_mapping,
user_layers=out_layers)
inputs = input_processing(args.model, net_inputs, args.input, layers_map)
global_accuracy = []
loaded = load_dump(args.load)
for out_layer in layers_map:
ref_out_layer = layers_map[out_layer]
if out_layer == ref_out_layer:
log.info(f'Layer {out_layer} statistics')
else:
log.info(f'Statistics \'{out_layer}\' vs \'{ref_out_layer}\'')
net_copy = get_net_copy_with_output(model=args.model, output=out_layer, core=core)
results = infer(net=net_copy, core=core, device=args.device, inputs=inputs, output=[out_layer])
if out_layer not in results:
continue
out_blob, pc = results[out_layer]
if ref_out_layer not in loaded:
continue
ref_out_blob = loaded[ref_out_layer]['blob']
a_m = accuracy_metrics(out_blob=out_blob, ref_out_blob=ref_out_blob)
if 'pc' in loaded[ref_out_layer]:
ref_pc = loaded[ref_out_layer]['pc']
performance_metrics(pc=pc, ref_pc=ref_pc)
blob_counters(out_blob=out_blob, ref_out_blob=ref_out_blob)
global_accuracy = update_global_accuracy_matrics(global_accuracy=global_accuracy, current_accuracy=a_m)
print_all_over_the_net_metrics(global_accuracy=global_accuracy)
def main():
set_logger(log.DEBUG)
args = validate_args(build_parser().parse_args())
log.info(f'Inference Engine:\n API version ............ {ie.__version__}', extra={'no_lvl': True})
set_verbosity(args.verbosity)
mode = find_out_cct_mode(args)
if mode == 1:
log.info('Cross check with one IR was enabled')
one_ir_mode(args)
elif mode == 2:
log.info('Cross check with two IRs was enabled')
two_ir_mode(args)
elif mode == 3:
log.info('Dump mode was enabled')
dump_mode(args)
elif mode == 4:
log.info('Load mode was enabled')
load_mode(args)
log.info("Execution successful")
if __name__ == '__main__':
main()

View File

@ -0,0 +1,40 @@
#!/usr/bin/env python3
# Copyright (C) 2018-2021 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
"""
Use this script to create a wheel with OpenVINO Cross Check Tool:
$ python setup.py sdist bdist_wheel
"""
from pathlib import Path
from setuptools import setup, find_packages
SETUP_DIR = Path(__file__).resolve().parent
def read_text(path):
return (SETUP_DIR / path).read_text()
setup(
name='cross_check_tool',
version='0.0.0',
author='Intel® Corporation',
license='OSI Approved :: Apache Software License',
author_email='openvino_pushbot@intel.com',
url='https://github.com/openvinotoolkit/openvino',
description='OpenVINO™ Cross Check Tool package',
entry_points={
'console_scripts': [
'cross_check_tool = openvino.tools.cross_check_tool.cross_check_tool:main'],
},
classifiers=[
'Programming Language :: Python :: 3',
'OSI Approved :: Apache Software License',
'Operating System :: OS Independent',
],
packages=find_packages(),
install_requires=read_text('requirements.txt'),
python_requires='>=3.6',
)