[CPU] Add cache support to transpose node (#9513)

* Add cache support to transpose

* Re-enable test case

* comments apply
This commit is contained in:
Tingqian Li 2022-01-18 16:29:32 +08:00 committed by GitHub
parent a2cf98bebb
commit 822cb48a1e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 367 additions and 324 deletions

View File

@ -12,6 +12,7 @@
#include "utils/bfloat16.hpp"
#include "cpu/x64/jit_generator.hpp"
#include <common/primitive_hashing_utils.hpp>
using namespace InferenceEngine;
using namespace MKLDNNPlugin;
@ -387,3 +388,25 @@ void PermuteKernel::referenceExecute(const uint8_t* src_data, uint8_t* dst_data,
}
});
}
size_t PermuteParams::hash() const {
using namespace dnnl::impl;
using namespace dnnl::impl::primitive_hashing;
size_t seed = 0;
seed = get_vector_hash(seed, src_block_dims);
seed = get_vector_hash(seed, dst_block_dims);
seed = get_vector_hash(seed, src_block_order);
seed = get_vector_hash(seed, dst_block_order);
seed = get_vector_hash(seed, order);
seed = hash_combine(seed, data_size);
return seed;
}
bool PermuteParams::operator==(const PermuteParams& rhs) const {
return (src_block_dims == rhs.src_block_dims) &&
(dst_block_dims == rhs.dst_block_dims) &&
(src_block_order == rhs.src_block_order) &&
(dst_block_order == rhs.dst_block_order) && (order == rhs.order) &&
(data_size == rhs.data_size);
}

View File

@ -17,6 +17,9 @@ struct PermuteParams {
InferenceEngine::SizeVector dst_block_order;
InferenceEngine::SizeVector order;
size_t data_size;
size_t hash() const;
bool operator==(const PermuteParams& rhs) const;
};
struct jit_permute_config_params {

View File

@ -7,12 +7,13 @@
#include <algorithm>
#include <string>
#include "mkldnn_extension_utils.h"
#include <common/primitive_hashing_utils.hpp>
using namespace mkldnn;
using namespace MKLDNNPlugin;
using namespace InferenceEngine;
bool MKLDNNTransposeNode::isSupportedOperation(const std::shared_ptr<const ov::Node>& op, std::string& errorMessage) noexcept {
try {
if (!one_of(op->get_type_info(),
@ -127,7 +128,19 @@ void MKLDNNTransposeNode::prepareParams() {
params.order.assign(orderPtr, orderPtr + orderLen);
}
execPtr = std::make_shared<TransposeJitExecutor>(params);
auto engine = getEngine();
auto builder = [&engine](const PermuteParams& key) -> std::shared_ptr<TransposeJitExecutor> {
return std::make_shared<TransposeJitExecutor>(key);
};
auto cache = getRuntimeCache();
auto result = cache->getOrCreate(params, builder);
if (!result.first) {
IE_THROW() << "Primitive descriptor was not found for node " << getName() << ".";
}
execPtr = result.first;
}
void MKLDNNTransposeNode::createPrimitive() {

View File

@ -1,323 +1,327 @@
//// Copyright (C) 2018-2021 Intel Corporation
//// SPDX-License-Identifier: Apache-2.0
////
// Copyright (C) 2018-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
//#include "test_utils/cpu_test_utils.hpp"
//#include "ngraph_functions/builders.hpp"
//
//// Since the Transpose ngraph operation is converted to the transpose node, we will use it in the transpose test
//
//using namespace InferenceEngine;
//using namespace CPUTestUtils;
//
//namespace CPULayerTestsDefinitions {
//
//using inputShapesPair = std::pair<std::vector<ov::PartialShape>, std::vector<std::vector<ov::Shape>>>;
//
//typedef std::tuple<
// inputShapesPair, // Input shapes
// std::vector<size_t>, // Input order
// InferenceEngine::Precision, // Net precision
// std::string, // Target device name
// std::map<std::string, std::string>, // Additional network configuration
// CPUSpecificParams> TransposeLayerCPUTestParamSet;
//
//class TransposeLayerCPUTest : public testing::WithParamInterface<TransposeLayerCPUTestParamSet>,
// virtual public LayerTestsUtils::LayerTestsCommon, public CPUTestsBase {
//public:
// static std::string getTestCaseName(testing::TestParamInfo<TransposeLayerCPUTestParamSet> obj) {
// Precision netPrecision;
// inputShapesPair inputShapes;
// std::vector<size_t> inputOrder;
// std::string targetDevice;
// CPUSpecificParams cpuParams;
// std::map<std::string, std::string> additionalConfig;
// std::tie(inputShapes, inputOrder, netPrecision, targetDevice, additionalConfig, cpuParams) = obj.param;
//
// std::ostringstream result;
// result << "DynShapes=" << CommonTestUtils::partialShape2str(inputShapes.first) << "_";
// result << "StatShapes=" << CommonTestUtils::vec2str(inputShapes.second) << "_";
// result << "inputOrder=" << CommonTestUtils::vec2str(inputOrder) << "_";
// result << "netPRC=" << netPrecision.name() << "_";
// result << "trgDev=" << targetDevice;
// result << CPUTestsBase::getTestCaseName(cpuParams);
// return result.str();
// }
//protected:
// void SetUp() override {
// Precision netPrecision;
// inputShapesPair inputShapes;
// std::vector<size_t> inputOrder;
// CPUSpecificParams cpuParams;
// std::map<std::string, std::string> additionalConfig;
// std::tie(inputShapes, inputOrder, netPrecision, targetDevice, additionalConfig, cpuParams) = this->GetParam();
// configuration.insert(additionalConfig.begin(), additionalConfig.end());
// inPrc = outPrc = netPrecision; // since the layer does not convert precisions
//
// std::tie(inFmts, outFmts, priority, selectedType) = cpuParams;
//
// selectedType = std::string("unknown_") + inPrc.name();
//
// targetStaticShapes.reserve(inputShapes.second.size());
// for (const auto& staticShape : inputShapes.second) {
// targetStaticShapes.push_back({staticShape});
// }
// inputDynamicShapes = { inputShapes.first };
//
// ov::Shape inputDataShape = targetStaticShapes.front().front();
//
// auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
// auto params = ngraph::builder::makeParams(ngPrc, {inputDataShape});
// auto paramOuts = ngraph::helpers::convert2OutputVector(
// ngraph::helpers::castOps2Nodes<ov::op::v0::Parameter>(params));
//
// const auto inOrderShape = inputOrder.empty() ? ov::Shape({0}) : ov::Shape({inputDataShape.size()});
// const auto inputOrderOp = std::make_shared<ov::op::v0::Constant>(ov::element::i64,
// inOrderShape,
// inputOrder);
// const auto transpose = std::make_shared<ov::op::v1::Transpose>(paramOuts.at(0), inputOrderOp);
// transpose->get_rt_info() = getCPUInfo();
// const ov::ResultVector results{std::make_shared<ov::op::v0::Result>(transpose)};
// function = std::make_shared<ov::Model>(results, params, "Transpose");
// }
//};
//
//TEST_P(TransposeLayerCPUTest, CompareWithRefs) {
// SKIP_IF_CURRENT_TEST_IS_DISABLED()
//
// Run();
// CheckPluginRelatedResults(executableNetwork, "Transpose");
//}
//
//namespace {
//std::map<std::string, std::string> additional_config;
//
//const auto cpuParams_nChw16c = CPUSpecificParams {{nChw16c}, {}, {}, {}};
//const auto cpuParams_nCdhw16c = CPUSpecificParams {{nCdhw16c}, {}, {}, {}};
//
//const auto cpuParams_nChw8c = CPUSpecificParams {{nChw8c}, {}, {}, {}};
//const auto cpuParams_nCdhw8c = CPUSpecificParams {{nCdhw8c}, {}, {}, {}};
//
//const auto cpuParams_nhwc = CPUSpecificParams {{nhwc}, {}, {}, {}};
//const auto cpuParams_ndhwc = CPUSpecificParams {{ndhwc}, {}, {}, {}};
//
//const auto cpuParams_nchw = CPUSpecificParams {{nchw}, {}, {}, {}};
//const auto cpuParams_ncdhw = CPUSpecificParams {{ncdhw}, {}, {}, {}};
//
//const std::vector<InferenceEngine::Precision> netPrecisions = {
// Precision::I8,
// Precision::BF16,
// Precision::FP32
//};
//
//const std::vector<InferenceEngine::Precision> netPrecisionsPerChannels = {
// Precision::I8,
// Precision::FP32
//};
//
//const std::vector<inputShapesPair> staticInputShapes4D = {
// {
// {},
// { // Static shapes
// {{2, 16, 21, 10}}
// }
// },
// {
// {},
// { // Static shapes
// {{3, 16, 11, 12}}
// }
// },
// {
// {},
// { // Static shapes
// {{4, 32, 16, 14}}
// }
// },
// {
// {},
// { // Static shapes
// {{16, 32, 5, 16}}
// }
// }
//};
//const std::vector<inputShapesPair> dynamicInputShapes4D = {
// {
// { // Origin dynamic shapes
// {ov::Dimension(1, 20), ov::Dimension(10, 40), ov::Dimension(10, 40), ov::Dimension(10, 40)}
// },
// { // Dynamic shapes instances
// {{1, 32, 21, 10}},
// {{2, 25, 11, 12}},
// {{4, 15, 16, 14}},
// {{7, 10, 20, 16}}
// }
// },
// {
// { // Origin dynamic shapes
// {-1, -1, -1, -1}
// },
// { // Dynamic shapes instances
// {{1, 24, 21, 8}},
// {{2, 16, 11, 6}}
// }
// }
//};
//
//const std::vector<std::vector<size_t>> inputOrder4D = {
// std::vector<size_t>{0, 1, 2, 3},
// std::vector<size_t>{0, 2, 3, 1},
// std::vector<size_t>{0, 2, 1, 3},
// std::vector<size_t>{1, 0, 2, 3},
// std::vector<size_t>{},
//};
//
//const std::vector<std::vector<size_t>> inputOrderPerChannels4D = {
// std::vector<size_t>{0, 1, 2, 3},
// std::vector<size_t>{0, 2, 1, 3},
// std::vector<size_t>{1, 0, 2, 3},
// std::vector<size_t>{},
//};
//
//const std::vector<CPUSpecificParams> CPUParams4D = {
// cpuParams_nChw16c,
// cpuParams_nChw8c,
// cpuParams_nchw,
//};
//
//INSTANTIATE_TEST_SUITE_P(smoke_staticShapes4D_Transpose, TransposeLayerCPUTest,
// ::testing::Combine(
// ::testing::ValuesIn(staticInputShapes4D),
// ::testing::ValuesIn(inputOrder4D),
// ::testing::ValuesIn(netPrecisions),
// ::testing::Values(CommonTestUtils::DEVICE_CPU),
// ::testing::Values(additional_config),
// ::testing::ValuesIn(CPUParams4D)),
// TransposeLayerCPUTest::getTestCaseName);
//
//INSTANTIATE_TEST_SUITE_P(smoke_dynamicShapes4D_Transpose, TransposeLayerCPUTest,
// ::testing::Combine(
// ::testing::ValuesIn(dynamicInputShapes4D),
// ::testing::ValuesIn(inputOrder4D),
// ::testing::ValuesIn(netPrecisions),
// ::testing::Values(CommonTestUtils::DEVICE_CPU),
// ::testing::Values(additional_config),
// ::testing::Values(CPUSpecificParams{})),
// TransposeLayerCPUTest::getTestCaseName);
//
//INSTANTIATE_TEST_SUITE_P(smoke_staticShapes4D_PermutePerChannels, TransposeLayerCPUTest,
// ::testing::Combine(
// ::testing::ValuesIn(staticInputShapes4D),
// ::testing::ValuesIn(inputOrderPerChannels4D),
// ::testing::ValuesIn(netPrecisionsPerChannels),
// ::testing::Values(CommonTestUtils::DEVICE_CPU),
// ::testing::Values(additional_config),
// ::testing::Values(cpuParams_nhwc)),
// TransposeLayerCPUTest::getTestCaseName);
//
//INSTANTIATE_TEST_SUITE_P(smoke_dynamicShapes4D_PermutePerChannels, TransposeLayerCPUTest,
// ::testing::Combine(
// ::testing::ValuesIn(dynamicInputShapes4D),
// ::testing::ValuesIn(inputOrderPerChannels4D),
// ::testing::ValuesIn(netPrecisionsPerChannels),
// ::testing::Values(CommonTestUtils::DEVICE_CPU),
// ::testing::Values(additional_config),
// ::testing::Values(CPUSpecificParams{})),
// TransposeLayerCPUTest::getTestCaseName);
//
//const std::vector<inputShapesPair> staticInputShapes5D = {
// {
// {},
// { // Static shapes
// {{2, 16, 5, 6, 5}},
// {{3, 16, 6, 5, 6}},
// {{4, 32, 5, 6, 5}},
// {{5, 32, 6, 5, 6}}
// }
// }
//};
//const std::vector<inputShapesPair> dynamicInputShapes5D = {
// {
// { // Origin dynamic shapes
// {ov::Dimension(1, 20), ov::Dimension(5, 150), ov::Dimension(5, 40), ov::Dimension(5, 40), ov::Dimension(5, 40)}
// },
// { // Dynamic shapes instances
// {{1, 32, 5, 6, 5}},
// {{2, 32, 6, 5, 6}},
// {{4, 55, 5, 6, 5}},
// {{3, 129, 6, 5, 6}}
// }
// }
//};
//
//const std::vector<std::vector<size_t>> inputOrder5D = {
// std::vector<size_t>{0, 1, 2, 3, 4},
// std::vector<size_t>{0, 4, 2, 3, 1},
// std::vector<size_t>{0, 4, 2, 1, 3},
// std::vector<size_t>{0, 2, 3, 4, 1},
// std::vector<size_t>{0, 2, 4, 3, 1},
// std::vector<size_t>{0, 3, 2, 4, 1},
// std::vector<size_t>{0, 3, 1, 4, 2},
// std::vector<size_t>{1, 0, 2, 3, 4},
// std::vector<size_t>{},
//};
//
//const std::vector<std::vector<size_t>> inputOrderPerChannels5D = {
// std::vector<size_t>{0, 1, 2, 3, 4},
// std::vector<size_t>{0, 4, 2, 3, 1},
// std::vector<size_t>{0, 4, 2, 1, 3},
// std::vector<size_t>{0, 2, 4, 3, 1},
// std::vector<size_t>{0, 3, 2, 4, 1},
// std::vector<size_t>{0, 3, 1, 4, 2},
// std::vector<size_t>{1, 0, 2, 3, 4},
// std::vector<size_t>{},
//};
//
//const std::vector<CPUSpecificParams> CPUParams5D = {
// cpuParams_nCdhw16c,
// cpuParams_nCdhw8c,
// cpuParams_ncdhw,
//};
//
//INSTANTIATE_TEST_SUITE_P(smoke_staticShapes5D_Transpose, TransposeLayerCPUTest,
// ::testing::Combine(
// ::testing::ValuesIn(staticInputShapes5D),
// ::testing::ValuesIn(inputOrder5D),
// ::testing::ValuesIn(netPrecisions),
// ::testing::Values(CommonTestUtils::DEVICE_CPU),
// ::testing::Values(additional_config),
// ::testing::ValuesIn(CPUParams5D)),
// TransposeLayerCPUTest::getTestCaseName);
//
//INSTANTIATE_TEST_SUITE_P(smoke_dynamicShapes5D_Transpose, TransposeLayerCPUTest,
// ::testing::Combine(
// ::testing::ValuesIn(dynamicInputShapes5D),
// ::testing::ValuesIn(inputOrder5D),
// ::testing::ValuesIn(netPrecisions),
// ::testing::Values(CommonTestUtils::DEVICE_CPU),
// ::testing::Values(additional_config),
// ::testing::Values(CPUSpecificParams{})),
// TransposeLayerCPUTest::getTestCaseName);
//
//INSTANTIATE_TEST_SUITE_P(smoke_staticShapes5D_PermutePerChannels, TransposeLayerCPUTest,
// ::testing::Combine(
// ::testing::ValuesIn(staticInputShapes5D),
// ::testing::ValuesIn(inputOrderPerChannels5D),
// ::testing::ValuesIn(netPrecisionsPerChannels),
// ::testing::Values(CommonTestUtils::DEVICE_CPU),
// ::testing::Values(additional_config),
// ::testing::Values(cpuParams_ndhwc)),
// TransposeLayerCPUTest::getTestCaseName);
//
//INSTANTIATE_TEST_SUITE_P(smoke_dynamicShapes5D_PermutePerChannels, TransposeLayerCPUTest,
// ::testing::Combine(
// ::testing::ValuesIn(dynamicInputShapes5D),
// ::testing::ValuesIn(inputOrderPerChannels5D),
// ::testing::ValuesIn(netPrecisionsPerChannels),
// ::testing::Values(CommonTestUtils::DEVICE_CPU),
// ::testing::Values(additional_config),
// ::testing::Values(CPUSpecificParams{})),
// TransposeLayerCPUTest::getTestCaseName);
//
//} // namespace
//} // namespace CPULayerTestsDefinitions
#include "test_utils/cpu_test_utils.hpp"
#include "ngraph_functions/builders.hpp"
#include "shared_test_classes/base/ov_subgraph.hpp"
// Since the Transpose ngraph operation is converted to the transpose node, we will use it in the transpose test
using namespace InferenceEngine;
using namespace CPUTestUtils;
using namespace ov::test;
namespace CPULayerTestsDefinitions {
typedef std::tuple<
InputShape, // Input shapes
std::vector<size_t>, // Input order
InferenceEngine::Precision, // Net precision
std::string, // Target device name
std::map<std::string, std::string>, // Additional network configuration
CPUSpecificParams> TransposeLayerCPUTestParamSet;
class TransposeLayerCPUTest : public testing::WithParamInterface<TransposeLayerCPUTestParamSet>,
public ov::test::SubgraphBaseTest, public CPUTestsBase {
public:
static std::string getTestCaseName(testing::TestParamInfo<TransposeLayerCPUTestParamSet> obj) {
Precision netPrecision;
InputShape inputShapes;
std::vector<size_t> inputOrder;
std::string targetDevice;
CPUSpecificParams cpuParams;
std::map<std::string, std::string> additionalConfig;
std::tie(inputShapes, inputOrder, netPrecision, targetDevice, additionalConfig, cpuParams) = obj.param;
std::ostringstream result;
result << "IS=" << CommonTestUtils::partialShape2str({inputShapes.first}) << "_";
result << "TS=(";
for (const auto& shape : inputShapes.second) {
result << CommonTestUtils::vec2str(shape) << "_";
}
result << ")_";
result << "inputOrder=" << CommonTestUtils::vec2str(inputOrder) << "_";
result << "netPRC=" << netPrecision.name() << "_";
result << "trgDev=" << targetDevice;
result << CPUTestsBase::getTestCaseName(cpuParams);
return result.str();
}
protected:
void SetUp() override {
Precision netPrecision;
InputShape inputShapes;
std::vector<size_t> inputOrder;
CPUSpecificParams cpuParams;
std::map<std::string, std::string> additionalConfig;
std::tie(inputShapes, inputOrder, netPrecision, targetDevice, additionalConfig, cpuParams) = this->GetParam();
configuration.insert(additionalConfig.begin(), additionalConfig.end());
inType = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
outType = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
std::tie(inFmts, outFmts, priority, selectedType) = cpuParams;
selectedType = makeSelectedTypeStr("unknown", inType);
init_input_shapes({inputShapes});
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
auto params = ngraph::builder::makeDynamicParams(inType, { inputDynamicShapes[0] });
const auto inputOrderOp = std::make_shared<ov::op::v0::Constant>(ov::element::i64,
ov::Shape({inputOrder.size()}),
inputOrder);
const auto transpose = std::make_shared<ov::op::v1::Transpose>(params[0], inputOrderOp);
transpose->get_rt_info() = getCPUInfo();
const ov::ResultVector results{std::make_shared<ov::op::v0::Result>(transpose)};
function = std::make_shared<ngraph::Function>(results, params, "TransposeLayerCPUTest");
functionRefs = ngraph::clone_function(*function);
}
};
TEST_P(TransposeLayerCPUTest, CompareWithRefs) {
SKIP_IF_CURRENT_TEST_IS_DISABLED()
run();
CheckPluginRelatedResults(executableNetwork, "Transpose");
}
namespace {
std::map<std::string, std::string> additional_config;
const auto cpuParams_nChw16c = CPUSpecificParams {{nChw16c}, {}, {}, {}};
const auto cpuParams_nCdhw16c = CPUSpecificParams {{nCdhw16c}, {}, {}, {}};
const auto cpuParams_nChw8c = CPUSpecificParams {{nChw8c}, {}, {}, {}};
const auto cpuParams_nCdhw8c = CPUSpecificParams {{nCdhw8c}, {}, {}, {}};
const auto cpuParams_nhwc = CPUSpecificParams {{nhwc}, {}, {}, {}};
const auto cpuParams_ndhwc = CPUSpecificParams {{ndhwc}, {}, {}, {}};
const auto cpuParams_nchw = CPUSpecificParams {{nchw}, {}, {}, {}};
const auto cpuParams_ncdhw = CPUSpecificParams {{ncdhw}, {}, {}, {}};
const std::vector<InferenceEngine::Precision> netPrecisions = {
Precision::I8,
Precision::BF16,
Precision::FP32
};
const std::vector<InferenceEngine::Precision> netPrecisionsPerChannels = {Precision::I8, Precision::FP32};
const std::vector<InputShape> staticInputShapes4DC16 = {InputShape{// dynamic
{-1, 16, -1, -1},
// target
{{2, 16, 21, 10}, {3, 16, 11, 12}, {2, 16, 21, 10}}}};
const std::vector<InputShape> staticInputShapes4DC32 = {InputShape{// dynamic
{-1, 32, -1, -1},
// target
{{4, 32, 16, 14}, {16, 32, 5, 16}, {4, 32, 16, 14}}}};
const std::vector<InputShape> dynamicInputShapes4D = {
InputShape{// dynamic
{ov::Dimension(1, 20), ov::Dimension(10, 40), ov::Dimension(10, 40), ov::Dimension(10, 40)},
// target
{{1, 32, 21, 10}, {2, 25, 11, 12}, {4, 15, 16, 14}, {7, 10, 20, 16}, {1, 32, 21, 10}}},
InputShape{// dynamic
{-1, -1, -1, -1},
// target
{{1, 24, 21, 8}, {2, 16, 11, 6}, {1, 24, 21, 8}}}
};
const std::vector<std::vector<size_t>> inputOrder4D = {
std::vector<size_t>{0, 1, 2, 3},
std::vector<size_t>{0, 2, 3, 1},
std::vector<size_t>{0, 2, 1, 3},
std::vector<size_t>{1, 0, 2, 3},
std::vector<size_t>{},
};
const std::vector<std::vector<size_t>> inputOrderPerChannels4D = {
std::vector<size_t>{0, 1, 2, 3},
std::vector<size_t>{0, 2, 1, 3},
std::vector<size_t>{1, 0, 2, 3},
std::vector<size_t>{},
};
const std::vector<CPUSpecificParams> CPUParams4D = {
cpuParams_nChw16c,
cpuParams_nChw8c,
cpuParams_nchw,
};
INSTANTIATE_TEST_SUITE_P(smoke_staticShapes4DC16_Transpose, TransposeLayerCPUTest,
::testing::Combine(
::testing::ValuesIn(staticInputShapes4DC16),
::testing::ValuesIn(inputOrder4D),
::testing::ValuesIn(netPrecisions),
::testing::Values(CommonTestUtils::DEVICE_CPU),
::testing::Values(additional_config),
::testing::ValuesIn(CPUParams4D)),
TransposeLayerCPUTest::getTestCaseName);
INSTANTIATE_TEST_SUITE_P(smoke_staticShapes4DC32_Transpose, TransposeLayerCPUTest,
::testing::Combine(
::testing::ValuesIn(staticInputShapes4DC32),
::testing::ValuesIn(inputOrder4D),
::testing::ValuesIn(netPrecisions),
::testing::Values(CommonTestUtils::DEVICE_CPU),
::testing::Values(additional_config),
::testing::ValuesIn(CPUParams4D)),
TransposeLayerCPUTest::getTestCaseName);
INSTANTIATE_TEST_SUITE_P(smoke_dynamicShapes4D_Transpose, TransposeLayerCPUTest,
::testing::Combine(
::testing::ValuesIn(dynamicInputShapes4D),
::testing::ValuesIn(inputOrder4D),
::testing::ValuesIn(netPrecisions),
::testing::Values(CommonTestUtils::DEVICE_CPU),
::testing::Values(additional_config),
::testing::Values(CPUSpecificParams{})),
TransposeLayerCPUTest::getTestCaseName);
INSTANTIATE_TEST_SUITE_P(smoke_staticShapes4DC16_PermutePerChannels, TransposeLayerCPUTest,
::testing::Combine(
::testing::ValuesIn(staticInputShapes4DC16),
::testing::ValuesIn(inputOrderPerChannels4D),
::testing::ValuesIn(netPrecisionsPerChannels),
::testing::Values(CommonTestUtils::DEVICE_CPU),
::testing::Values(additional_config),
::testing::Values(cpuParams_nhwc)),
TransposeLayerCPUTest::getTestCaseName);
INSTANTIATE_TEST_SUITE_P(smoke_staticShapes4DC32_PermutePerChannels, TransposeLayerCPUTest,
::testing::Combine(
::testing::ValuesIn(staticInputShapes4DC32),
::testing::ValuesIn(inputOrderPerChannels4D),
::testing::ValuesIn(netPrecisionsPerChannels),
::testing::Values(CommonTestUtils::DEVICE_CPU),
::testing::Values(additional_config),
::testing::Values(cpuParams_nhwc)),
TransposeLayerCPUTest::getTestCaseName);
INSTANTIATE_TEST_SUITE_P(smoke_dynamicShapes4D_PermutePerChannels, TransposeLayerCPUTest,
::testing::Combine(
::testing::ValuesIn(dynamicInputShapes4D),
::testing::ValuesIn(inputOrderPerChannels4D),
::testing::ValuesIn(netPrecisionsPerChannels),
::testing::Values(CommonTestUtils::DEVICE_CPU),
::testing::Values(additional_config),
::testing::Values(CPUSpecificParams{})),
TransposeLayerCPUTest::getTestCaseName);
const std::vector<InputShape> staticInputShapes5DC16 = {InputShape{
// dynamic
{-1, 16, -1, -1, -1},
// Static shapes
{{2, 16, 5, 6, 5}, {3, 16, 6, 5, 6}, {2, 16, 5, 6, 5}}}
};
const std::vector<InputShape> staticInputShapes5DC32 = {InputShape{
// dynamic
{-1, 32, -1, -1, -1},
// Static shapes
{{4, 32, 5, 6, 5}, {5, 32, 6, 5, 6}, {4, 32, 5, 6, 5}}}
};
const std::vector<InputShape> dynamicInputShapes5D = {InputShape{
// dynamic
{ov::Dimension(1, 20), ov::Dimension(5, 150), ov::Dimension(5, 40), ov::Dimension(5, 40), ov::Dimension(5, 40)},
// target
{{1, 32, 5, 6, 5}, {2, 32, 6, 5, 6}, {4, 55, 5, 6, 5}, {3, 129, 6, 5, 6}, {1, 32, 5, 6, 5}}}
};
const std::vector<std::vector<size_t>> inputOrder5D = {
std::vector<size_t>{0, 1, 2, 3, 4},
std::vector<size_t>{0, 4, 2, 3, 1},
std::vector<size_t>{0, 4, 2, 1, 3},
std::vector<size_t>{0, 2, 3, 4, 1},
std::vector<size_t>{0, 2, 4, 3, 1},
std::vector<size_t>{0, 3, 2, 4, 1},
std::vector<size_t>{0, 3, 1, 4, 2},
std::vector<size_t>{1, 0, 2, 3, 4},
std::vector<size_t>{},
};
const std::vector<std::vector<size_t>> inputOrderPerChannels5D = {
std::vector<size_t>{0, 1, 2, 3, 4},
std::vector<size_t>{0, 4, 2, 3, 1},
std::vector<size_t>{0, 4, 2, 1, 3},
std::vector<size_t>{0, 2, 4, 3, 1},
std::vector<size_t>{0, 3, 2, 4, 1},
std::vector<size_t>{0, 3, 1, 4, 2},
std::vector<size_t>{1, 0, 2, 3, 4},
std::vector<size_t>{},
};
const std::vector<CPUSpecificParams> CPUParams5D = {
cpuParams_nCdhw16c,
cpuParams_nCdhw8c,
cpuParams_ncdhw,
};
INSTANTIATE_TEST_SUITE_P(smoke_staticShapes5DC16_Transpose, TransposeLayerCPUTest,
::testing::Combine(
::testing::ValuesIn(staticInputShapes5DC16),
::testing::ValuesIn(inputOrder5D),
::testing::ValuesIn(netPrecisions),
::testing::Values(CommonTestUtils::DEVICE_CPU),
::testing::Values(additional_config),
::testing::ValuesIn(CPUParams5D)),
TransposeLayerCPUTest::getTestCaseName);
INSTANTIATE_TEST_SUITE_P(smoke_staticShapes5DC32_Transpose, TransposeLayerCPUTest,
::testing::Combine(
::testing::ValuesIn(staticInputShapes5DC32),
::testing::ValuesIn(inputOrder5D),
::testing::ValuesIn(netPrecisions),
::testing::Values(CommonTestUtils::DEVICE_CPU),
::testing::Values(additional_config),
::testing::ValuesIn(CPUParams5D)),
TransposeLayerCPUTest::getTestCaseName);
INSTANTIATE_TEST_SUITE_P(smoke_dynamicShapes5D_Transpose, TransposeLayerCPUTest,
::testing::Combine(
::testing::ValuesIn(dynamicInputShapes5D),
::testing::ValuesIn(inputOrder5D),
::testing::ValuesIn(netPrecisions),
::testing::Values(CommonTestUtils::DEVICE_CPU),
::testing::Values(additional_config),
::testing::Values(CPUSpecificParams{})),
TransposeLayerCPUTest::getTestCaseName);
INSTANTIATE_TEST_SUITE_P(smoke_staticShapes5DC16_PermutePerChannels, TransposeLayerCPUTest,
::testing::Combine(
::testing::ValuesIn(staticInputShapes5DC16),
::testing::ValuesIn(inputOrderPerChannels5D),
::testing::ValuesIn(netPrecisionsPerChannels),
::testing::Values(CommonTestUtils::DEVICE_CPU),
::testing::Values(additional_config),
::testing::Values(cpuParams_ndhwc)),
TransposeLayerCPUTest::getTestCaseName);
INSTANTIATE_TEST_SUITE_P(smoke_staticShapes5DC32_PermutePerChannels, TransposeLayerCPUTest,
::testing::Combine(
::testing::ValuesIn(staticInputShapes5DC32),
::testing::ValuesIn(inputOrderPerChannels5D),
::testing::ValuesIn(netPrecisionsPerChannels),
::testing::Values(CommonTestUtils::DEVICE_CPU),
::testing::Values(additional_config),
::testing::Values(cpuParams_ndhwc)),
TransposeLayerCPUTest::getTestCaseName);
INSTANTIATE_TEST_SUITE_P(smoke_dynamicShapes5D_PermutePerChannels, TransposeLayerCPUTest,
::testing::Combine(
::testing::ValuesIn(dynamicInputShapes5D),
::testing::ValuesIn(inputOrderPerChannels5D),
::testing::ValuesIn(netPrecisionsPerChannels),
::testing::Values(CommonTestUtils::DEVICE_CPU),
::testing::Values(additional_config),
::testing::Values(CPUSpecificParams{})),
TransposeLayerCPUTest::getTestCaseName);
} // namespace
} // namespace CPULayerTestsDefinitions