Remove deprecated Any op from nGraph (#2719)

This commit is contained in:
Mateusz Tabaka 2020-10-20 11:36:46 +02:00 committed by GitHub
parent 8002b16eb2
commit 83670dd5cb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 20 additions and 674 deletions

View File

@ -1,61 +0,0 @@
//*****************************************************************************
// Copyright 2017-2020 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include "ngraph/op/util/logical_reduction.hpp"
namespace ngraph
{
namespace op
{
namespace v0
{
/// \brief Logical "any" reduction operation.
class NGRAPH_DEPRECATED(
"This operation is deprecated and will be removed soon. Please don't use it.")
NGRAPH_API Any : public util::LogicalReduction
{
NGRAPH_SUPPRESS_DEPRECATED_START
public:
static constexpr NodeTypeInfo type_info{"Any", 0};
const NodeTypeInfo& get_type_info() const override { return type_info; }
/// \brief Constructs an "any" reduction operation.
Any() = default;
/// \brief Constructs an "any" reduction operation.
///
/// \param arg The tensor to be reduced.
/// \param reduction_axes The axis positions (0-based) to be eliminated.
Any(const Output<Node>& arg, const AxisSet& reduction_axes);
/// \brief Constructs an "any" reduction operation.
///
/// \param arg The tensor to be reduced.
/// \param reduction_axes The axis positions (0-based) to be eliminated.
Any(const Output<Node>& arg, const Output<Node>& reduction_axes);
virtual std::shared_ptr<Node>
clone_with_new_inputs(const OutputVector& new_args) const override;
bool visit_attributes(AttributeVisitor& visitor) override { return true; }
/// \return The default value for Any.
virtual std::shared_ptr<Node> get_default_value() const override;
NGRAPH_SUPPRESS_DEPRECATED_END
};
}
NGRAPH_SUPPRESS_DEPRECATED_START
using v0::Any;
NGRAPH_SUPPRESS_DEPRECATED_END
}
}

View File

@ -33,7 +33,6 @@ NGRAPH_OP(Acos, ngraph::op::v0, 0)
NGRAPH_OP(Acosh, ngraph::op::v3, 3)
NGRAPH_OP(Add, ngraph::op::v0, 0)
NGRAPH_OP(Add, ngraph::op::v1, 1)
NGRAPH_OP(Any, ngraph::op::v0, 0)
NGRAPH_OP(Asin, ngraph::op::v0, 0)
NGRAPH_OP(Asinh, ngraph::op::v3, 3)
NGRAPH_OP(Atan, ngraph::op::v0, 0)

View File

@ -23,7 +23,6 @@
#include "ngraph/op/acosh.hpp"
#include "ngraph/op/add.hpp"
#include "ngraph/op/and.hpp"
#include "ngraph/op/any.hpp"
#include "ngraph/op/asin.hpp"
#include "ngraph/op/asinh.hpp"
#include "ngraph/op/assign.hpp"

View File

@ -1,55 +0,0 @@
//*****************************************************************************
// Copyright 2017-2020 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <cmath>
#include "ngraph/coordinate_transform.hpp"
#include "ngraph/shape_util.hpp"
namespace ngraph
{
namespace runtime
{
namespace reference
{
static inline void any(const char* arg,
char* out,
const Shape& in_shape,
const AxisSet& reduction_axes,
bool keep_dims)
{
CoordinateTransform output_transform(reduce(in_shape, reduction_axes, keep_dims));
for (const Coordinate& output_coord : output_transform)
{
out[output_transform.index(output_coord)] = 0;
}
CoordinateTransform input_transform(in_shape);
for (const Coordinate& input_coord : input_transform)
{
Coordinate output_coord = reduce(input_coord, reduction_axes, keep_dims);
out[output_transform.index(output_coord)] =
out[output_transform.index(output_coord)] ||
arg[input_transform.index(input_coord)];
}
}
}
}
}

View File

@ -19,7 +19,6 @@
#include <cmath>
#include "ngraph/coordinate_transform.hpp"
#include "ngraph/runtime/reference/any.hpp"
#include "ngraph/shape_util.hpp"
namespace ngraph
@ -59,7 +58,23 @@ namespace ngraph
const AxisSet& reduction_axes,
bool keep_dims)
{
runtime::reference::any(arg, out, input_shape, reduction_axes, keep_dims);
CoordinateTransform output_transform(
reduce(input_shape, reduction_axes, keep_dims));
for (const Coordinate& output_coord : output_transform)
{
out[output_transform.index(output_coord)] = 0;
}
CoordinateTransform input_transform(input_shape);
for (const Coordinate& input_coord : input_transform)
{
Coordinate output_coord = reduce(input_coord, reduction_axes, keep_dims);
out[output_transform.index(output_coord)] =
out[output_transform.index(output_coord)] ||
arg[input_transform.index(input_coord)];
}
}
}
}

View File

@ -1,48 +0,0 @@
//*****************************************************************************
// Copyright 2017-2020 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include "ngraph/op/any.hpp"
#include "ngraph/graph_util.hpp"
NGRAPH_SUPPRESS_DEPRECATED_START
using namespace std;
using namespace ngraph;
constexpr NodeTypeInfo op::Any::type_info;
op::Any::Any(const Output<Node>& arg, const AxisSet& reduction_axes)
: LogicalReduction(arg, reduction_axes)
{
constructor_validate_and_infer_types();
}
op::Any::Any(const Output<Node>& arg, const Output<Node>& reduction_axes)
: LogicalReduction(arg, reduction_axes)
{
constructor_validate_and_infer_types();
}
shared_ptr<Node> op::Any::clone_with_new_inputs(const OutputVector& new_args) const
{
check_new_args_count(this, new_args);
return make_shared<Any>(new_args.at(0), new_args.at(1));
}
shared_ptr<Node> op::Any::get_default_value() const
{
return ngraph::make_constant_from_string("0", get_element_type(), get_shape());
}

View File

@ -16,10 +16,8 @@
#include "constant_folding.hpp"
#include "ngraph/log.hpp"
#include "ngraph/op/any.hpp"
#include "ngraph/op/reduce_logical_and.hpp"
#include "ngraph/op/reduce_logical_or.hpp"
#include "ngraph/runtime/reference/any.hpp"
#include "ngraph/runtime/reference/logical_reduction.hpp"
NGRAPH_SUPPRESS_DEPRECATED_START
@ -33,15 +31,7 @@ static shared_ptr<op::Constant> fold_constant_logical_reduction(shared_ptr<op::C
runtime::AlignedBuffer buffer(shape_size(reduction_node->get_shape()) * sizeof(char));
char* data_ptr = buffer.get_ptr<char>();
if (auto any = as_type_ptr<::ngraph::op::Any>(reduction_node))
{
runtime::reference::any(constant->get_data_ptr<char>(),
data_ptr,
reduction_node->get_input_shape(0),
any->get_reduction_axes(),
false);
}
else if (auto reduce_and = as_type_ptr<::ngraph::op::v1::ReduceLogicalAnd>(reduction_node))
if (auto reduce_and = as_type_ptr<::ngraph::op::v1::ReduceLogicalAnd>(reduction_node))
{
const auto reduction_axes = reduce_and->get_reduction_axes();
const auto input_shape = reduce_and->get_input_shape(0);
@ -78,9 +68,8 @@ void pass::ConstantFolding::construct_constant_logical_reduction()
auto constant_axes_label =
make_shared<pattern::op::Label>(element::i64, Shape{2}, pattern::has_class<op::Constant>());
auto is_supported_reduction = [](std::shared_ptr<Node> n) {
return (pattern::has_class<::ngraph::op::Any>()(n) ||
pattern::has_class<::ngraph::op::v1::ReduceLogicalAnd>()(n) ||
pattern::has_class<::ngraph::op::v1::ReduceLogicalOr>()(n));
return pattern::has_class<::ngraph::op::v1::ReduceLogicalAnd>()(n) ||
pattern::has_class<::ngraph::op::v1::ReduceLogicalOr>()(n);
};
auto reduction =
std::make_shared<pattern::op::Any>(element::i32,

View File

@ -96,7 +96,6 @@ set(SRC
shape.cpp
specialize_function.cpp
tensor.cpp
type_prop/any.cpp
type_prop/assign.cpp
type_prop/avg_pool.cpp
type_prop/batch_norm.cpp
@ -260,7 +259,6 @@ set(MULTI_TEST_SRC
backend/acosh.in.cpp
backend/add.in.cpp
backend/aliased_output.in.cpp
backend/any.in.cpp
backend/api.in.cpp
backend/asin.in.cpp
backend/asinh.in.cpp

View File

@ -1,280 +0,0 @@
//*****************************************************************************
// Copyright 2017-2020 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <string>
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "ngraph/runtime/tensor.hpp"
#include "runtime/backend.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/random.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
NGRAPH_SUPPRESS_DEPRECATED_START
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
// Trivial case with no reduced axes.
NGRAPH_TEST(${BACKEND_NAME}, any_trivial)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::boolean, shape);
auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::boolean, shape);
copy_data(a, vector<char>{0, 1, 1, 0});
auto result = backend->create_tensor(element::boolean, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_EQ((vector<char>{0, 1, 1, 0}), read_vector<char>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, any_2x2_to_scalar_true)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::boolean, shape);
auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{0, 1}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::boolean, shape);
copy_data(a, vector<char>{0, 1, 1, 0});
auto result = backend->create_tensor(element::boolean, Shape{});
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_EQ((vector<char>{1}), read_vector<char>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, any_2x2_to_scalar_false)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::boolean, shape);
auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{0, 1}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::boolean, shape);
copy_data(a, vector<char>{0, 0, 0, 0});
auto result = backend->create_tensor(element::boolean, Shape{});
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_EQ((vector<char>{0}), read_vector<char>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, any_2x0_to_scalar)
{
Shape shape{2, 0};
auto A = make_shared<op::Parameter>(element::boolean, shape);
auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{0, 1}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::boolean, shape);
auto result = backend->create_tensor(element::boolean, Shape{});
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_EQ((vector<char>{0}), read_vector<char>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, any_2x3_eliminate_col_dim)
{
Shape shape{2, 3};
auto A = make_shared<op::Parameter>(element::boolean, shape);
auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{1}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::boolean, shape);
copy_data(a, test::NDArray<char, 2>({{0, 1, 0}, {0, 0, 0}}).get_vector());
auto result = backend->create_tensor(element::boolean, Shape{2});
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_EQ((vector<char>{1, 0}), read_vector<char>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, any_2x3_eliminate_row_dim)
{
Shape shape{2, 3};
auto A = make_shared<op::Parameter>(element::boolean, shape);
auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{0}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::boolean, shape);
copy_data(a, test::NDArray<char, 2>({{0, 1, 0}, {0, 0, 1}}).get_vector());
auto result = backend->create_tensor(element::boolean, Shape{3});
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_EQ((vector<char>{0, 1, 1}), read_vector<char>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, any_2x2x3_eliminate_dim_0)
{
Shape shape{2, 2, 3};
auto A = make_shared<op::Parameter>(element::boolean, shape);
auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{0}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::boolean, shape);
copy_data(
a, test::NDArray<char, 3>({{{0, 1, 0}, {0, 0, 1}}, {{1, 0, 1}, {0, 0, 0}}}).get_vector());
auto result = backend->create_tensor(element::boolean, Shape{2, 3});
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_EQ((vector<char>{1, 1, 1, 0, 0, 1}), read_vector<char>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, any_2x2x3_eliminate_dim_1)
{
Shape shape{2, 2, 3};
auto A = make_shared<op::Parameter>(element::boolean, shape);
auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{1}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::boolean, shape);
copy_data(
a, test::NDArray<char, 3>({{{0, 1, 0}, {0, 0, 1}}, {{1, 0, 1}, {0, 0, 0}}}).get_vector());
auto result = backend->create_tensor(element::boolean, Shape{2, 3});
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_EQ((vector<char>{0, 1, 1, 1, 0, 1}), read_vector<char>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, any_2x2x3_eliminate_dim_2)
{
Shape shape{2, 2, 3};
auto A = make_shared<op::Parameter>(element::boolean, shape);
auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{2}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::boolean, shape);
copy_data(
a, test::NDArray<char, 3>({{{0, 1, 0}, {0, 0, 1}}, {{1, 0, 1}, {0, 0, 0}}}).get_vector());
auto result = backend->create_tensor(element::boolean, Shape{2, 2});
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_EQ((vector<char>{1, 1, 1, 0}), read_vector<char>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, any_2x2x3_eliminate_dims_0_1)
{
Shape shape{2, 2, 3};
auto A = make_shared<op::Parameter>(element::boolean, shape);
auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{0, 1}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::boolean, shape);
copy_data(
a, test::NDArray<char, 3>({{{0, 1, 0}, {0, 0, 1}}, {{1, 0, 1}, {0, 0, 0}}}).get_vector());
auto result = backend->create_tensor(element::boolean, Shape{3});
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_EQ((vector<char>{1, 1, 1}), read_vector<char>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, any_2x2x3_eliminate_dims_0_2)
{
Shape shape{2, 2, 3};
auto A = make_shared<op::Parameter>(element::boolean, shape);
auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{0, 2}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::boolean, shape);
copy_data(
a, test::NDArray<char, 3>({{{0, 1, 0}, {0, 0, 1}}, {{1, 0, 1}, {0, 0, 0}}}).get_vector());
auto result = backend->create_tensor(element::boolean, Shape{2});
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_EQ((vector<char>{1, 1}), read_vector<char>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, any_2x2x3_eliminate_dims_1_2)
{
Shape shape{2, 2, 3};
auto A = make_shared<op::Parameter>(element::boolean, shape);
auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{1, 2}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::boolean, shape);
copy_data(
a, test::NDArray<char, 3>({{{0, 1, 0}, {0, 0, 1}}, {{1, 0, 1}, {0, 0, 0}}}).get_vector());
auto result = backend->create_tensor(element::boolean, Shape{2});
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_EQ((vector<char>{1, 1}), read_vector<char>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, any_2x2x3_eliminate_dims_0_1_2)
{
Shape shape{2, 2, 3};
auto A = make_shared<op::Parameter>(element::boolean, shape);
auto f = make_shared<Function>(make_shared<op::Any>(A, AxisSet{0, 1, 2}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::boolean, shape);
copy_data(
a, test::NDArray<char, 3>({{{0, 1, 0}, {0, 0, 1}}, {{1, 0, 1}, {0, 0, 0}}}).get_vector());
auto result = backend->create_tensor(element::boolean, Shape{});
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_EQ((vector<char>{1}), read_vector<char>(result));
}

View File

@ -1444,34 +1444,6 @@ TEST(constant_folding, const_reduce_logical_and__keepdims_3d)
ASSERT_EQ(values_expected, values_out);
}
TEST(constant_folding, const_any)
{
Shape input_shape{3, 3};
vector<char> values_in{1, 0, 0, 1, 0, 1, 0, 0, 0};
auto constant = op::Constant::create(element::boolean, input_shape, values_in);
auto convert = make_shared<op::Any>(constant, AxisSet{1});
convert->set_friendly_name("test");
auto f = make_shared<Function>(convert, ParameterVector{});
pass::Manager pass_manager;
pass_manager.register_pass<pass::ConstantFolding>();
pass_manager.run_passes(f);
ASSERT_EQ(count_ops_of_type<op::Any>(f), 0);
ASSERT_EQ(count_ops_of_type<op::Constant>(f), 1);
auto new_const =
as_type_ptr<op::Constant>(f->get_results().at(0)->input_value(0).get_node_shared_ptr());
ASSERT_TRUE(new_const);
ASSERT_EQ(new_const->get_friendly_name(), "test");
auto values_out = new_const->get_vector<char>();
vector<char> values_expected{1, 1, 0};
ASSERT_EQ(values_expected, values_out);
}
TEST(constant_folding, const_reduce_logical_or__no_keepdims)
{
const Shape input_shape{3, 3};

View File

@ -56,15 +56,6 @@ namespace
EXPECT_FALSE(op::is_binary_elementwise_logical(&node));
}
void op_is_Any()
{
op::Any node;
EXPECT_FALSE(op::is_unary_elementwise_arithmetic(&node));
EXPECT_FALSE(op::is_binary_elementwise_arithmetic(&node));
EXPECT_FALSE(op::is_binary_elementwise_comparison(&node));
EXPECT_FALSE(op::is_binary_elementwise_logical(&node));
}
void op_is_Asin()
{
op::Asin node;

View File

@ -30,7 +30,6 @@
#include "ngraph/runtime/aligned_buffer.hpp"
#include "ngraph/runtime/reference/abs.hpp"
#include "ngraph/runtime/reference/acos.hpp"
#include "ngraph/runtime/reference/any.hpp"
#include "ngraph/runtime/reference/asin.hpp"
#include "ngraph/runtime/reference/atan.hpp"
#include "ngraph/runtime/reference/atan2.hpp"
@ -208,16 +207,6 @@ protected:
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::Any:
{
const op::Any* any = static_cast<const op::Any*>(&node);
reference::any(args[0]->get_data_ptr<const char>(),
out[0]->get_data_ptr<char>(),
node.get_input_shape(0),
any->get_reduction_axes(),
false);
break;
}
case OP_TYPEID::Asin:
{
size_t element_count = shape_size(node.get_output_shape(0));

View File

@ -53,7 +53,6 @@
NGRAPH_OP(Abs, ngraph::op)
NGRAPH_OP(Acos, ngraph::op)
NGRAPH_OP(Add, ngraph::op)
NGRAPH_OP(Any, ngraph::op)
NGRAPH_OP(Asin, ngraph::op)
NGRAPH_OP(Atan, ngraph::op)
NGRAPH_OP(AvgPool, ngraph::op::v0)

View File

@ -1,161 +0,0 @@
//*****************************************************************************
// Copyright 2017-2020 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/type_prop.hpp"
NGRAPH_SUPPRESS_DEPRECATED_START
using namespace std;
using namespace ngraph;
TEST(type_prop, any_deduce)
{
auto param_0 = make_shared<op::Parameter>(element::boolean, Shape{2, 4});
auto r0 = make_shared<op::Any>(param_0, AxisSet{0});
ASSERT_EQ(r0->get_element_type(), element::boolean);
ASSERT_EQ(r0->get_shape(), (Shape{4}));
auto r1 = make_shared<op::Any>(param_0, AxisSet{1});
ASSERT_EQ(r1->get_element_type(), element::boolean);
ASSERT_EQ(r1->get_shape(), (Shape{2}));
auto r01 = make_shared<op::Any>(param_0, AxisSet{0, 1});
ASSERT_EQ(r01->get_element_type(), element::boolean);
ASSERT_EQ(r01->get_shape(), (Shape{}));
auto r_none = make_shared<op::Any>(param_0, AxisSet{});
ASSERT_EQ(r_none->get_element_type(), element::boolean);
ASSERT_EQ(r_none->get_shape(), (Shape{2, 4}));
}
TEST(type_prop, any_deduce_et_dynamic)
{
auto param_0 = make_shared<op::Parameter>(element::dynamic, Shape{2, 4});
auto r0 = make_shared<op::Any>(param_0, AxisSet{0});
ASSERT_EQ(r0->get_element_type(), element::boolean);
ASSERT_EQ(r0->get_shape(), (Shape{4}));
auto r1 = make_shared<op::Any>(param_0, AxisSet{1});
ASSERT_EQ(r1->get_element_type(), element::boolean);
ASSERT_EQ(r1->get_shape(), (Shape{2}));
auto r01 = make_shared<op::Any>(param_0, AxisSet{0, 1});
ASSERT_EQ(r01->get_element_type(), element::boolean);
ASSERT_EQ(r01->get_shape(), (Shape{}));
auto r_none = make_shared<op::Any>(param_0, AxisSet{});
ASSERT_EQ(r_none->get_element_type(), element::boolean);
ASSERT_EQ(r_none->get_shape(), (Shape{2, 4}));
}
TEST(type_prop, any_et_non_boolean)
{
auto param_0 = make_shared<op::Parameter>(element::i32, Shape{2, 4});
try
{
auto r = make_shared<op::Any>(param_0, AxisSet{0, 1});
// Should have thrown, so fail if it didn't
FAIL() << "Did not detect invalid element type for Any";
}
catch (const NodeValidationFailure& error)
{
EXPECT_HAS_SUBSTRING(error.what(), std::string("Input element type must be boolean"));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop, any_axis_oob)
{
auto param_0 = make_shared<op::Parameter>(element::boolean, Shape{2, 4});
try
{
auto r = make_shared<op::Any>(param_0, AxisSet{0, 2, 1});
// Should have thrown, so fail if it didn't
FAIL() << "Did not detect out-of-bound axis for Any";
}
catch (const NodeValidationFailure& error)
{
EXPECT_HAS_SUBSTRING(error.what(), std::string("Reduction axis (2) is out of bounds"));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop, any_partial_rank_dynamic)
{
auto param = make_shared<op::Parameter>(element::boolean, PartialShape::dynamic());
auto axes = AxisSet{2385, 0, 4404}; // arbitrary
auto any = make_shared<op::Any>(param, axes);
EXPECT_EQ(any->get_output_element_type(0), element::boolean);
EXPECT_TRUE(any->get_output_partial_shape(0).is_dynamic());
}
TEST(type_prop, any_partial_rank_static_dynamic_ok_result_static)
{
auto param = make_shared<op::Parameter>(element::boolean,
PartialShape{1, 2, Dimension::dynamic(), 4, 5});
auto axes = AxisSet{2, 3};
auto any = make_shared<op::Any>(param, axes);
EXPECT_EQ(any->get_output_element_type(0), element::boolean);
EXPECT_EQ(any->get_shape(), (Shape{1, 2, 5}));
}
TEST(type_prop, any_partial_rank_static_dynamic_ok_result_dynamic)
{
auto param = make_shared<op::Parameter>(
element::boolean, PartialShape{1, 2, Dimension::dynamic(), 4, Dimension::dynamic()});
auto axes = AxisSet{2, 3};
auto any = make_shared<op::Any>(param, axes);
EXPECT_EQ(any->get_output_element_type(0), element::boolean);
EXPECT_TRUE(
any->get_output_partial_shape(0).same_scheme(PartialShape{1, 2, Dimension::dynamic()}));
}
TEST(type_prop, any_partial_rank_static_dynamic_axes_oob)
{
auto param = make_shared<op::Parameter>(
element::boolean, PartialShape{1, 2, Dimension::dynamic(), 4, Dimension::dynamic()});
auto axes = AxisSet{2, 5, 1};
try
{
auto any = make_shared<op::Any>(param, axes);
// Should have thrown, so fail if it didn't
FAIL() << "Did not detect out-of-bound axis for Any (rank-static dynamic input)";
}
catch (const NodeValidationFailure& error)
{
EXPECT_HAS_SUBSTRING(error.what(), std::string("Reduction axis (5) is out of bounds"));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}