getting rid of folding

This commit is contained in:
Stepyreva, Evgenya 2020-10-23 05:59:41 +03:00
parent 6f271a4439
commit 85405dab0a
4 changed files with 54 additions and 134 deletions

View File

@ -23,8 +23,6 @@ namespace ngraph {
namespace pass {
class TRANSFORMATIONS_API MimicSetBatchSize;
class TRANSFORMATIONS_API DisableCFForPriorBoxes;
class TRANSFORMATIONS_API EnableCFForPriorBoxes;
} // namespace pass
} // namespace ngraph
@ -41,23 +39,7 @@ class TRANSFORMATIONS_API EnableCFForPriorBoxes;
* This transformation should be executed only while setBatchSize method call
*/
class ngraph::pass::MimicSetBatchSize: public ngraph::pass::MatcherPass {
public:
NGRAPH_RTTI_DECLARATION;
MimicSetBatchSize();
};
/**
* @ingroup ie_transformation_common_api
* @brief DisableCFForPriorBoxes and EnableCFForPriorBoxes transformations are needed to avoid unnecessary PriorBox folding
*/
class ngraph::pass::DisableCFForPriorBoxes: public ngraph::pass::FunctionPass {
public:
NGRAPH_RTTI_DECLARATION;
bool run_on_function(std::shared_ptr<ngraph::Function> f) override;
};
class ngraph::pass::EnableCFForPriorBoxes: public ngraph::pass::FunctionPass {
class ngraph::pass::MimicSetBatchSize : public ngraph::pass::FunctionPass {
public:
NGRAPH_RTTI_DECLARATION;
bool run_on_function(std::shared_ptr<ngraph::Function> f) override;

View File

@ -2,35 +2,35 @@
// SPDX-License-Identifier: Apache-2.0
//
#include <ngraph/pass/constant_folding.hpp>
#include <transformations/smart_reshape/mimic_set_batch_size.hpp>
NGRAPH_RTTI_DEFINITION(ngraph::pass::MimicSetBatchSize, "MimicSetBatchSize", 0);
ngraph::pass::MimicSetBatchSize::MimicSetBatchSize() {
auto reshape_label = ngraph::pattern::wrap_type<opset5::Reshape>({pattern::any_input(pattern::has_static_dim(0)),
ngraph::pattern::wrap_type<opset5::Constant>()},
[](const Output<Node> &output) { return output.get_partial_shape().rank().is_static() && output.get_partial_shape().rank().get_length() > 1; });
bool ngraph::pass::MimicSetBatchSize::run_on_function(std::shared_ptr<ngraph::Function> f) {
//
auto specialized_function = ngraph::clone_function(*f);
ngraph::pass::ConstantFolding().run_on_function(specialized_function);
std::map<std::string, float> scale;
for (const auto & node : specialized_function->get_ops()) {
if (const auto & reshape = std::dynamic_pointer_cast<opset5::Reshape>(node)) {
const auto in_pshape = reshape->get_input_partial_shape(0), out_pshape = reshape->get_output_partial_shape(0);
if (in_pshape.rank().is_dynamic() || in_pshape.rank().get_length() <= 1 || in_pshape[0].is_dynamic() ||
out_pshape.rank().is_dynamic() || out_pshape.rank().get_length() <= 1 || out_pshape[0].is_dynamic())
continue;
const auto & pattern = std::dynamic_pointer_cast<opset5::Constant>(reshape->get_input_node_shared_ptr(1));
if (pattern && pattern->cast_vector<int64_t>()[0] > 0) {
scale[reshape->get_friendly_name()] = static_cast<float>(out_pshape[0].get_length()) / static_cast<float>(in_pshape[0].get_length());
}
}
}
matcher_pass_callback callback = [=](pattern::Matcher &m) -> bool {
const auto & reshape = m.get_match_root();
auto pattern = std::dynamic_pointer_cast<opset5::Constant>(reshape->get_input_node_shared_ptr(1));
if (!pattern)
return false;
bool transformed = false;
for (auto & reshape : f->get_ops()) {
if (!is_type<opset5::Reshape>(reshape) || !scale.count(reshape->get_friendly_name()) || reshape->get_output_partial_shape(0).rank().is_dynamic())
continue;
const auto & pattern_vector = pattern->cast_vector<int64_t>();
if (pattern_vector.empty() || pattern_vector[0] < 1)
return false;
// mimicking old setBatchSize style (copied):
// float diff = static_cast<float>(dims.at(0)) / static_cast<float>(originalBatchSize);
// dims.at(0) = static_cast<size_t>(std::ceil(size * diff));
const auto & old_input_batch = static_cast<float>(reshape->get_input_partial_shape(0)[0].get_length());
const auto & old_output_batch = static_cast<float>(pattern_vector[0]);
const auto & scale = old_output_batch / old_input_batch;
const auto & shape_of = std::make_shared<opset5::ShapeOf>(reshape->get_input_source_output(0), pattern->get_element_type());
const auto & shape_of = std::make_shared<opset5::ShapeOf>(reshape->get_input_source_output(0), reshape->get_input_element_type(1));
const auto & new_input_batch = std::make_shared<ngraph::opset5::Gather>(
shape_of, ngraph::opset5::Constant::create(ngraph::element::i64, {1}, std::vector<int64_t>{0}),
ngraph::opset5::Constant::create(ngraph::element::i64, {}, std::vector<int64_t>{0}));
@ -39,75 +39,18 @@ ngraph::pass::MimicSetBatchSize::MimicSetBatchSize() {
std::make_shared<opset5::Ceiling>(
std::make_shared<opset5::Multiply>(
std::make_shared<opset5::Convert>(new_input_batch, element::f32),
opset5::Constant::create(element::f32, {1}, {scale}))),
pattern->get_element_type());
opset5::Constant::create(element::f32, {1}, {scale[reshape->get_friendly_name()]}))),
reshape->get_input_element_type(1));
auto new_reshape_pattern = new_output_batch;
const auto rank = pattern_vector.size();
if (rank > 1) {
std::vector<int64_t> non_batch_dims(rank - 1);
std::vector<int64_t> non_batch_dims(reshape->get_output_partial_shape(0).rank().get_length() - 1);
std::iota(non_batch_dims.begin(), non_batch_dims.end(), 1);
const auto & non_batch_dims_node = std::make_shared<ngraph::opset5::Gather>(
pattern,
reshape->input_value(1),
ngraph::opset5::Constant::create(ngraph::element::i64, {non_batch_dims.size()}, non_batch_dims),
ngraph::opset5::Constant::create(ngraph::element::i64, {}, std::vector<int64_t>{0}));
new_reshape_pattern = std::make_shared<opset5::Concat>(OutputVector{new_reshape_pattern, non_batch_dims_node}, 0);
}
auto new_reshape_pattern = std::make_shared<opset5::Concat>(OutputVector{new_output_batch, non_batch_dims_node}, 0);
reshape->input(1).replace_source_output(new_reshape_pattern->output(0));
return true;
};
auto m = std::make_shared<ngraph::pattern::Matcher>(reshape_label, "MimicSetBatchSize");
register_matcher(m, callback);
}
void set_folding_for_PriorBox(std::shared_ptr<ngraph::Node> prior_box, bool flag) {
std::string rt_info_disable_cf = "DISABLED_CONSTANT_FOLDING";
static std::unordered_set<ngraph::NodeTypeInfo> allowed_to_skip = {
ngraph::opset1::Convert::type_info,
ngraph::opset1::StridedSlice::type_info,
};
static std::unordered_set<ngraph::NodeTypeInfo> types_to_find = {
ngraph::opset1::ShapeOf::type_info,
ngraph::opset3::ShapeOf::type_info,
};
std::deque<std::shared_ptr<ngraph::Node>> nodes;
nodes.push_back(prior_box->get_input_node_shared_ptr(0));
nodes.push_back(prior_box->get_input_node_shared_ptr(1));
while (!nodes.empty()) {
auto curr_node = nodes.front();
nodes.pop_front();
if (allowed_to_skip.count(curr_node->get_type_info())) {
nodes.push_back(curr_node->get_input_node_shared_ptr(0));
} else if (types_to_find.count(curr_node->get_type_info())) {
auto& rt_info = curr_node->get_rt_info();
if (flag && rt_info.count(rt_info_disable_cf))
rt_info.erase(rt_info_disable_cf);
if (!flag)
rt_info[rt_info_disable_cf];
}
transformed = true;
}
return transformed;
}
NGRAPH_RTTI_DEFINITION(ngraph::pass::DisableCFForPriorBoxes, "DisableCFForPriorBoxes", 0);
bool ngraph::pass::DisableCFForPriorBoxes::run_on_function(std::shared_ptr<ngraph::Function> f) {
for (const auto & node : f->get_ops())
if (ngraph::is_type<opset1::PriorBox>(node) || ngraph::is_type<opset1::PriorBoxClustered>(node)) {
set_folding_for_PriorBox(node, false);
}
return false;
}
NGRAPH_RTTI_DEFINITION(ngraph::pass::EnableCFForPriorBoxes, "EnableCFForPriorBoxes", 0);
bool ngraph::pass::EnableCFForPriorBoxes::run_on_function(std::shared_ptr<ngraph::Function> f) {
for (const auto & node : f->get_ops())
if (ngraph::is_type<opset1::PriorBox>(node) || ngraph::is_type<opset1::PriorBoxClustered>(node)) {
set_folding_for_PriorBox(node, true);
}
return false;
}

View File

@ -22,15 +22,10 @@ bool ngraph::pass::SetBatchSize::run_on_function(std::shared_ptr<ngraph::Functio
ngraph::pass::Manager manager;
// This pass must be called first in pipeline
manager.register_pass<ngraph::pass::InitNodeInfo>();
manager.register_pass<ngraph::pass::DisableCFForPriorBoxes>();
manager.register_pass<ngraph::pass::ConstantFolding>();
manager.register_pass<ngraph::pass::EnableCFForPriorBoxes>();
manager.register_pass<ngraph::pass::SharedSqueeze>();
manager.register_pass<ngraph::pass::SqueezeStridedSlice>();
manager.register_pass<ngraph::pass::StridedSliceSqueeze>();
manager.register_pass<ngraph::pass::ReshapeTo1D>();
manager.register_pass<ngraph::pass::MimicSetBatchSize>();
manager.run_passes(f);
return true;

View File

@ -26,12 +26,6 @@ ngraph::pass::StridedSliceSqueeze::StridedSliceSqueeze() {
if (!const_axes || !slice)
return false;
const auto & slice_plan = get_slice_plan(slice);
if (slice_plan.begins.empty() || slice_plan.reshape_in_shape != slice_plan.reshape_out_shape || !slice_plan.reverse_axes.empty())
return false;
const auto & axes = normalize_axes(squeeze->description(), const_axes->cast_vector<int64_t>(), squeeze->get_input_partial_shape(0).rank());
auto begin = std::dynamic_pointer_cast<ngraph::opset5::Constant>(slice->input_value(1).get_node_shared_ptr());
auto end = std::dynamic_pointer_cast<ngraph::opset5::Constant>(slice->input_value(2).get_node_shared_ptr());
auto strides = std::dynamic_pointer_cast<ngraph::opset5::Constant>(slice->input_value(3).get_node_shared_ptr());
@ -47,17 +41,21 @@ ngraph::pass::StridedSliceSqueeze::StridedSliceSqueeze() {
auto shrink_axis_mask = slice->get_shrink_axis_mask().empty() ? std::vector<int64_t>(begin_mask.size(), 0) : slice->get_shrink_axis_mask();
auto ellipsis_mask = slice->get_ellipsis_mask().empty() ? std::vector<int64_t>(begin_mask.size(), 0) : slice->get_ellipsis_mask();
for (const auto & axis : axes) {
if ((slice_plan.ends[axis] - slice_plan.begins[axis]) != 1 && slice_plan.strides[axis] == 1)
auto is_zero_vec = [](const std::vector<int64_t> & mask){ return std::all_of(mask.begin(), mask.end(), [](const int64_t& i){ return i == 0; }); };
if (!is_zero_vec(new_axis_mask) || !is_zero_vec(shrink_axis_mask) || !is_zero_vec(ellipsis_mask))
return false;
begin_vec[axis] = slice_plan.begins[axis];
end_vec[axis] = slice_plan.ends[axis];
strides_vec[axis] = 1;
if (!std::all_of(strides_vec.begin(), strides_vec.end(), [](const int64_t& i){ return i == 1; }))
return false;
const auto & axes = normalize_axes(squeeze->description(), const_axes->cast_vector<int64_t>(), squeeze->get_input_partial_shape(0).rank());
for (const auto & axis : axes) {
begin_vec[axis] = 0;
end_vec[axis] = 1;
begin_mask[axis] = 0;
end_mask[axis] = 0;
new_axis_mask[axis] = 0;
shrink_axis_mask[axis] = 1;
ellipsis_mask[axis] = 0;
}
auto new_slice = std::make_shared<opset5::StridedSlice>(
@ -89,12 +87,6 @@ ngraph::pass::SqueezeStridedSlice::SqueezeStridedSlice() {
if (!const_axes || !slice)
return false;
const auto & slice_plan = get_slice_plan(slice);
if (slice_plan.begins.empty() || slice_plan.reshape_in_shape != slice_plan.reshape_out_shape || !slice_plan.reverse_axes.empty())
return false;
auto axes = normalize_axes(squeeze->description(), const_axes->cast_vector<int64_t>(), squeeze->get_input_partial_shape(0).rank());
std::sort(axes.begin(), axes.end());
auto begin = std::dynamic_pointer_cast<ngraph::opset5::Constant>(slice->input_value(1).get_node_shared_ptr());
auto end = std::dynamic_pointer_cast<ngraph::opset5::Constant>(slice->input_value(2).get_node_shared_ptr());
auto strides = std::dynamic_pointer_cast<ngraph::opset5::Constant>(slice->input_value(3).get_node_shared_ptr());
@ -110,6 +102,14 @@ ngraph::pass::SqueezeStridedSlice::SqueezeStridedSlice() {
auto shrink_axis_mask = slice->get_shrink_axis_mask().empty() ? std::vector<int64_t>(begin_mask.size(), 0) : slice->get_shrink_axis_mask();
auto ellipsis_mask = slice->get_ellipsis_mask().empty() ? std::vector<int64_t>(begin_mask.size(), 0) : slice->get_ellipsis_mask();
auto is_zero_vec = [](const std::vector<int64_t> & mask){ return std::all_of(mask.begin(), mask.end(), [](const int64_t& i){ return i == 0; }); };
if (!is_zero_vec(new_axis_mask) || !is_zero_vec(shrink_axis_mask) || !is_zero_vec(ellipsis_mask))
return false;
if (!std::all_of(strides_vec.begin(), strides_vec.end(), [](const int64_t& i){ return i == 1; }))
return false;
auto axes = normalize_axes(squeeze->description(), const_axes->cast_vector<int64_t>(), squeeze->get_input_partial_shape(0).rank());
std::sort(axes.begin(), axes.end());
for (const auto & axis : axes) {
begin_vec.insert(begin_vec.begin() + axis, 0);
end_vec.insert(end_vec.begin() + axis, 1);