[Ref][Core][Opset13] NMSRotated-13 core shell and reference implementation (#19907)

* nms_r_init

* Add tests

* Update nms refs

* Update onnx import

* Add nms rotated utils

* Remove soft sigma and align constructors

* Fix typo

* Style apply

* Add namespace for iou

* Update opset comment

* Revert cpu changes

* onnx test cleanup

* Update input types validation

* Align shape_infer boxes

* Test update

* Fix warning

* Temporary evaluate support for tests

* Add counterclockwise support

* Remove box_encoding attr

* Fix clockwise box idx

* More tests

* Update opset test

* Update boxes shape validation

* Type prop tests

* HostTensor to ov Tensor migration

* Update output_type set get output_type_attr

* Move setters and getters to cpp

* Add visitor test

* Cleanup

* Remove temp eval

* Headers adjustment

* use float for division

* Fix ref tests run

* Tests and style code refactor

* Move type check into box_last_dim

* Update visitor test namespace

* Check input type loop

* Remove nms_rotated namespace and rename ref function

* avoid copies in filling output tensor

* Update shape var name

* remove static from riou func

* Update nms_rot utils

* Move nms rot util to ov reference namespace

* use std::cos and std:::sin

* Update struct name

* Explain usage of postprocessing

* Update element type desc in error message

* Add more comments

* Adjust rotated util float types

* Fix name conflicts and warnings

* Update opset test ops number

* Move int input check to the loop

* Short box_def_size init

* Move remove static_output from shape_infer params

* Align float zero

* Update third-party-programs

* Fix TensorIt for CI

* Add op check test
This commit is contained in:
Katarzyna Mitrus 2023-09-29 19:48:45 +02:00 committed by GitHub
parent 77e043d342
commit 86bf038417
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
20 changed files with 2075 additions and 7 deletions

View File

@ -1666,3 +1666,210 @@ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
-------------------------------------------------------------
31. Detectron2 (https://github.com/facebookresearch/detectron2)
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -0,0 +1,64 @@
// Copyright (C) 2018-2023 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#pragma once
#include "openvino/op/op.hpp"
namespace ov {
namespace op {
namespace v13 {
/// \brief NMSRotated operation
///
class OPENVINO_API NMSRotated : public Op {
public:
OPENVINO_OP("NMSRotated", "opset13", op::Op);
NMSRotated() = default;
/// \brief Constructs a NMSRotated operation.
///
/// \param boxes Node containing the coordinates of the bounding boxes
/// \param scores Node containing the scores of the bounding boxes
/// \param max_output_boxes_per_class Node containing maximum number of boxes to be
/// selected per class
/// \param iou_threshold Node containing intersection over union threshold
/// \param score_threshold Node containing minimum score threshold
/// \param sort_result_descending Specifies whether it is necessary to sort selected
/// boxes across batches
/// \param output_type Specifies the output type of the first and third output
/// \param clockwise Specifies the direction of the rotation
NMSRotated(const Output<Node>& boxes,
const Output<Node>& scores,
const Output<Node>& max_output_boxes_per_class,
const Output<Node>& iou_threshold,
const Output<Node>& score_threshold,
const bool sort_result_descending = true,
const ov::element::Type& output_type = ov::element::i64,
const bool clockwise = true);
bool visit_attributes(AttributeVisitor& visitor) override;
void validate_and_infer_types() override;
std::shared_ptr<Node> clone_with_new_inputs(const OutputVector& new_args) const override;
bool get_sort_result_descending() const;
void set_sort_result_descending(const bool sort_result_descending);
element::Type get_output_type_attr() const;
void set_output_type_attr(const element::Type& output_type);
bool get_clockwise() const;
void set_clockwise(const bool clockwise);
protected:
bool m_sort_result_descending = true;
ov::element::Type m_output_type = ov::element::i64;
bool m_clockwise = true;
};
} // namespace v13
} // namespace op
} // namespace ov

View File

@ -110,6 +110,7 @@
#include "openvino/op/multiply.hpp"
#include "openvino/op/mvn.hpp"
#include "openvino/op/negative.hpp"
#include "openvino/op/nms_rotated.hpp"
#include "openvino/op/non_max_suppression.hpp"
#include "openvino/op/non_zero.hpp"
#include "openvino/op/normalize_l2.hpp"

View File

@ -210,3 +210,4 @@ _OPENVINO_OP_REG(ScatterElementsUpdate, ov::op::v12)
// New operations added in opset13
_OPENVINO_OP_REG(BitwiseNot, ov::op::v13)
_OPENVINO_OP_REG(NMSRotated, ov::op::v13)

View File

@ -0,0 +1,32 @@
// Copyright (C) 2018-2023 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#pragma once
#include "openvino/core/shape.hpp"
#include "openvino/reference/non_max_suppression.hpp"
namespace ov {
namespace reference {
void nms_rotated(const float* boxes_data,
const Shape& boxes_data_shape,
const float* scores_data,
const Shape& scores_data_shape,
int64_t max_output_boxes_per_class,
float iou_threshold,
float score_threshold,
float soft_nms_sigma,
int64_t* selected_indices,
const Shape& selected_indices_shape,
float* selected_scores,
const Shape& selected_scores_shape,
int64_t* valid_outputs,
bool sort_result_descending,
bool clockwise = true);
constexpr auto nms_rotated_postprocessing = ov::reference::nms_postprocessing;
} // namespace reference
} // namespace ov

View File

@ -0,0 +1,281 @@
// Copyright (C) 2018-2023 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
// Copyright (c) Facebook, Inc. and its affiliates.
// The implementation for rotated boxes intersection is based on the code from:
// https://github.com/facebookresearch/detectron2/blob/v0.6/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated_utils.h
#pragma once
#include <algorithm>
#include <cassert>
#include <cmath>
namespace ov {
namespace reference {
namespace iou_rotated {
struct RotatedBox {
float x_ctr, y_ctr, w, h, a;
};
struct Point2D {
float x, y;
Point2D(const float px = 0.f, const float py = 0.f) : x(px), y(py) {}
Point2D operator+(const Point2D& p) const {
return Point2D(x + p.x, y + p.y);
}
Point2D& operator+=(const Point2D& p) {
x += p.x;
y += p.y;
return *this;
}
Point2D operator-(const Point2D& p) const {
return Point2D(x - p.x, y - p.y);
}
Point2D operator*(const float coeff) const {
return Point2D(x * coeff, y * coeff);
}
};
static inline float dot_2d(const Point2D& A, const Point2D& B) {
return A.x * B.x + A.y * B.y;
}
static inline float cross_2d(const Point2D& A, const Point2D& B) {
return A.x * B.y - B.x * A.y;
}
// Calculate box vertices rotated by angle (clockwise) over the box center
static inline void get_rotated_vertices(const RotatedBox& box, Point2D (&pts)[4]) {
// M_PI / 180. == 0.01745329251
auto theta = box.a; // angle already in radians
auto cosTheta2 = std::cos(theta) * 0.5f;
auto sinTheta2 = std::sin(theta) * 0.5f;
// y: top --> down; x: left --> right
// Left-Down
pts[0].x = box.x_ctr - sinTheta2 * box.h - cosTheta2 * box.w;
pts[0].y = box.y_ctr + cosTheta2 * box.h - sinTheta2 * box.w;
// Left-Top
pts[1].x = box.x_ctr + sinTheta2 * box.h - cosTheta2 * box.w;
pts[1].y = box.y_ctr - cosTheta2 * box.h - sinTheta2 * box.w;
// Right-Top
pts[2].x = 2 * box.x_ctr - pts[0].x;
pts[2].y = 2 * box.y_ctr - pts[0].y;
// Right-Down
pts[3].x = 2 * box.x_ctr - pts[1].x;
pts[3].y = 2 * box.y_ctr - pts[1].y;
}
// Find points defining area of the boxes intersection:
// - Find all intersection points between edges of the boxes
// - Find all corners of box1 within area of box2, and all corners of box2 within area of box1
static inline int get_intersection_points(const Point2D (&pts1)[4],
const Point2D (&pts2)[4],
Point2D (&intersections)[24]) {
// Line vector
// A line from p1 to p2 is: p1 + (p2-p1)*t, t=[0,1]
Point2D vec1[4], vec2[4];
for (int i = 0; i < 4; i++) {
vec1[i] = pts1[(i + 1) % 4] - pts1[i];
vec2[i] = pts2[(i + 1) % 4] - pts2[i];
}
// Line test - test all line combos for intersection
int num = 0; // number of intersections
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
// Solve for 2x2 Ax=b
float det = cross_2d(vec2[j], vec1[i]);
// This takes care of parallel lines
if (std::abs(det) <= 1e-14f) {
continue;
}
auto vec12 = pts2[j] - pts1[i];
auto t1 = cross_2d(vec2[j], vec12) / det;
auto t2 = cross_2d(vec1[i], vec12) / det;
if (t1 >= 0.0f && t1 <= 1.0f && t2 >= 0.0f && t2 <= 1.0f) {
intersections[num++] = pts1[i] + vec1[i] * t1;
}
}
}
// Check for vertices of rect1 inside rect2
{
const auto& AB = vec2[0];
const auto& DA = vec2[3];
auto ABdotAB = dot_2d(AB, AB);
auto ADdotAD = dot_2d(DA, DA);
for (int i = 0; i < 4; i++) {
// assume ABCD is the rectangle, and P is the point to be judged
// P is inside ABCD iff. P's projection on AB lies within AB
// and P's projection on AD lies within AD
auto AP = pts1[i] - pts2[0];
auto APdotAB = dot_2d(AP, AB);
auto APdotAD = -dot_2d(AP, DA);
if ((APdotAB >= 0) && (APdotAD >= 0) && (APdotAB <= ABdotAB) && (APdotAD <= ADdotAD)) {
intersections[num++] = pts1[i];
}
}
}
// Reverse the check - check for vertices of rect2 inside rect1
{
const auto& AB = vec1[0];
const auto& DA = vec1[3];
auto ABdotAB = dot_2d(AB, AB);
auto ADdotAD = dot_2d(DA, DA);
for (int i = 0; i < 4; i++) {
auto AP = pts2[i] - pts1[0];
auto APdotAB = dot_2d(AP, AB);
auto APdotAD = -dot_2d(AP, DA);
if ((APdotAB >= 0) && (APdotAD >= 0) && (APdotAB <= ABdotAB) && (APdotAD <= ADdotAD)) {
intersections[num++] = pts2[i];
}
}
}
return num;
}
static inline int convex_hull_graham(const Point2D (&p)[24],
const int num_in,
Point2D (&q)[24],
bool shift_to_zero = false) {
assert(num_in >= 2);
// Step 1:
// Find point with minimum y
// if more than 1 points have the same minimum y,
// pick the one with the minimum x.
int t = 0;
for (int i = 1; i < num_in; i++) {
if (p[i].y < p[t].y || (p[i].y == p[t].y && p[i].x < p[t].x)) {
t = i;
}
}
auto& start = p[t]; // starting point
// Step 2:
// Subtract starting point from every points (for sorting in the next step)
for (int i = 0; i < num_in; i++) {
q[i] = p[i] - start;
}
// Swap the starting point to position 0
std::swap(q[t], q[0]);
// Step 3:
// Sort point 1 ~ num_in according to their relative cross-product values
// (essentially sorting according to angles)
// If the angles are the same, sort according to their distance to origin
float dist[24];
for (int i = 0; i < num_in; i++) {
dist[i] = dot_2d(q[i], q[i]);
}
std::sort(q + 1, q + num_in, [](const Point2D& A, const Point2D& B) -> bool {
float temp = cross_2d(A, B);
if (std::abs(temp) < 1e-6f) {
return dot_2d(A, A) < dot_2d(B, B);
} else {
return temp > 0;
}
});
// compute distance to origin after sort, since the points are now different.
for (int i = 0; i < num_in; i++) {
dist[i] = dot_2d(q[i], q[i]);
}
// Step 4:
// Make sure there are at least 2 points (that don't overlap with each other)
// in the stack
int k; // index of the non-overlapped second point
for (k = 1; k < num_in; k++) {
if (dist[k] > 1e-8f) {
break;
}
}
if (k == num_in) {
// We reach the end, which means the convex hull is just one point
q[0] = p[t];
return 1;
}
q[1] = q[k];
int m = 2; // 2 points in the stack
// Step 5:
// Finally we can start the scanning process.
// When a non-convex relationship between the 3 points is found
// (either concave shape or duplicated points),
// we pop the previous point from the stack
// until the 3-point relationship is convex again, or
// until the stack only contains two points
for (int i = k + 1; i < num_in; i++) {
while (m > 1 && cross_2d(q[i] - q[m - 2], q[m - 1] - q[m - 2]) >= 0) {
m--;
}
q[m++] = q[i];
}
// Step 6 (Optional):
// In general sense we need the original coordinates, so we
// need to shift the points back (reverting Step 2)
// But if we're only interested in getting the area/perimeter of the shape
// We can simply return.
if (!shift_to_zero) {
for (int i = 0; i < m; i++) {
q[i] += start;
}
}
return m;
}
static inline float polygon_area(const Point2D (&q)[24], const int& m) {
if (m <= 2) {
return 0.f;
}
float area = 0.f;
for (int i = 1; i < m - 1; i++) {
area += std::abs(cross_2d(q[i] - q[0], q[i + 1] - q[0]));
}
return area / 2.0f;
}
static inline float rotated_boxes_intersection(const RotatedBox& box1, const RotatedBox& box2) {
// There are up to 4 x 4 + 4 + 4 = 24 intersections (including dups) returned
// from get_intersection_points
Point2D intersectPts[24], orderedPts[24];
Point2D pts1[4];
Point2D pts2[4];
get_rotated_vertices(box1, pts1);
get_rotated_vertices(box2, pts2);
// Find points defining area of the boxes intersection
int num = get_intersection_points(pts1, pts2, intersectPts);
if (num <= 2) {
return 0.f;
}
// Convex Hull to order the intersection points in clockwise order and find
// the contour area.
int num_convex = convex_hull_graham(intersectPts, num, orderedPts, true);
return polygon_area(orderedPts, num_convex);
}
} // namespace iou_rotated
} // namespace reference
} // namespace ov

View File

@ -0,0 +1,222 @@
// Copyright (C) 2018-2023 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include "openvino/reference/nms_rotated.hpp"
#include <algorithm>
#include <cmath>
#include <queue>
#include <vector>
#include "openvino/reference/nms_rotated_util.hpp"
namespace ov {
namespace reference {
namespace nms_detail {
using iou_rotated::RotatedBox;
static float rotated_intersection_over_union(const RotatedBox& boxI, const RotatedBox& boxJ) {
const auto intersection = iou_rotated::rotated_boxes_intersection(boxI, boxJ);
const auto areaI = boxI.w * boxI.h;
const auto areaJ = boxJ.w * boxJ.h;
if (areaI <= 0.0f || areaJ <= 0.0f) {
return 0.0f;
}
const auto union_area = areaI + areaJ - intersection;
return intersection / union_area;
}
struct SelectedIndex {
SelectedIndex(int64_t batch_idx, int64_t class_idx, int64_t box_idx)
: batch_index(batch_idx),
class_index(class_idx),
box_index(box_idx) {}
SelectedIndex() = default;
int64_t batch_index = 0;
int64_t class_index = 0;
int64_t box_index = 0;
};
struct SelectedScore {
SelectedScore(float batch_idx, float class_idx, float score)
: batch_index{batch_idx},
class_index{class_idx},
box_score{score} {}
SelectedScore() = default;
float batch_index = 0.0f;
float class_index = 0.0f;
float box_score = 0.0f;
};
struct BoxInfo {
BoxInfo(const RotatedBox& r, int64_t idx, float sc, int64_t suppress_idx, int64_t batch_idx, int64_t class_idx)
: box{r},
index{idx},
suppress_begin_index{suppress_idx},
batch_index{batch_idx},
class_index{class_idx},
score{sc} {}
BoxInfo() = default;
inline bool operator<(const BoxInfo& rhs) const {
return score < rhs.score || (score == rhs.score && index > rhs.index);
}
RotatedBox box;
int64_t index = 0;
int64_t suppress_begin_index = 0;
int64_t batch_index = 0;
int64_t class_index = 0;
float score = 0.0f;
};
} // namespace nms_detail
void nms_rotated(const float* boxes_data,
const Shape& boxes_data_shape,
const float* scores_data,
const Shape& scores_data_shape,
int64_t max_output_boxes_per_class,
float iou_threshold,
float score_threshold,
float soft_nms_sigma,
int64_t* selected_indices,
const Shape& selected_indices_shape,
float* selected_scores,
const Shape& selected_scores_shape,
int64_t* valid_outputs,
const bool sort_result_descending,
const bool clockwise) {
using iou_rotated::RotatedBox;
using nms_detail::BoxInfo;
using nms_detail::SelectedIndex;
using nms_detail::SelectedScore;
// The code for softsigma is kept to simplify unification with NMS code,
// but for NMSRotated softsigma is not supported (always 0.0);
float scale = 0.0f;
bool soft_nms = false;
if (soft_nms_sigma > 0.0f) {
scale = -0.5f / soft_nms_sigma;
soft_nms = true;
}
auto get_score_scale = [iou_threshold, scale, soft_nms](float iou) {
const float weight = std::exp(scale * iou * iou);
return (soft_nms || iou <= iou_threshold) ? weight : 0.0f;
};
// boxes shape: {num_batches, num_boxes, 5}
// scores shape: {num_batches, num_classes, num_boxes}
int64_t num_batches = static_cast<int64_t>(scores_data_shape[0]);
int64_t num_classes = static_cast<int64_t>(scores_data_shape[1]);
int64_t num_boxes = static_cast<int64_t>(boxes_data_shape[1]);
SelectedIndex* selected_indices_ptr = reinterpret_cast<SelectedIndex*>(selected_indices);
SelectedScore* selected_scores_ptr = reinterpret_cast<SelectedScore*>(selected_scores);
size_t boxes_per_class = static_cast<size_t>(max_output_boxes_per_class);
std::vector<BoxInfo> filteredBoxes;
for (int64_t batch = 0; batch < num_batches; batch++) {
const float* boxesPtr = boxes_data + batch * num_boxes * 5;
RotatedBox* r = reinterpret_cast<RotatedBox*>(const_cast<float*>(boxesPtr));
for (int64_t class_idx = 0; class_idx < num_classes; class_idx++) {
const float* scoresPtr = scores_data + batch * (num_classes * num_boxes) + class_idx * num_boxes;
std::vector<BoxInfo> candidate_boxes;
candidate_boxes.reserve(num_boxes);
for (int64_t box_idx = 0; box_idx < num_boxes; box_idx++) {
if (scoresPtr[box_idx] > score_threshold) {
// Convert counterclockwise to clockwise
if (!clockwise) {
r[box_idx].a *= -1;
}
candidate_boxes.emplace_back(r[box_idx], box_idx, scoresPtr[box_idx], 0, batch, class_idx);
}
}
std::priority_queue<BoxInfo> sorted_boxes(std::less<BoxInfo>(), std::move(candidate_boxes));
std::vector<BoxInfo> selected;
// Get the next box with top score, filter by iou_threshold
BoxInfo next_candidate;
float original_score;
while (!sorted_boxes.empty() && selected.size() < boxes_per_class) {
next_candidate = sorted_boxes.top();
original_score = next_candidate.score;
sorted_boxes.pop();
bool should_hard_suppress = false;
for (int64_t j = static_cast<int64_t>(selected.size()) - 1; j >= next_candidate.suppress_begin_index;
--j) {
// The main difference between NMS and NMSRotated is the calculation of iou for rotated boxes
float iou = nms_detail::rotated_intersection_over_union(next_candidate.box, selected[j].box);
next_candidate.score *= get_score_scale(iou);
if ((iou > iou_threshold) && !soft_nms) {
should_hard_suppress = true;
break;
}
if (next_candidate.score <= score_threshold) {
break;
}
}
next_candidate.suppress_begin_index = selected.size();
if (!should_hard_suppress) {
if (next_candidate.score == original_score) {
selected.push_back(next_candidate);
continue;
}
if (next_candidate.score > score_threshold) {
sorted_boxes.push(next_candidate);
}
}
}
for (const auto& box_info : selected) {
filteredBoxes.push_back(box_info);
}
}
}
if (sort_result_descending) {
std::reverse(filteredBoxes.begin(), filteredBoxes.end());
}
size_t max_num_of_selected_indices = selected_indices_shape[0];
size_t output_size = std::min(filteredBoxes.size(), max_num_of_selected_indices);
*valid_outputs = output_size;
size_t idx;
for (idx = 0; idx < output_size; idx++) {
const auto& box_info = filteredBoxes[idx];
selected_indices_ptr[idx] = SelectedIndex{box_info.batch_index, box_info.class_index, box_info.index};
selected_scores_ptr[idx] = SelectedScore{static_cast<float>(box_info.batch_index),
static_cast<float>(box_info.class_index),
box_info.score};
}
for (; idx < max_num_of_selected_indices; idx++) {
selected_indices_ptr[idx] = SelectedIndex{0, 0, 0};
selected_scores_ptr[idx] = SelectedScore{0.0f, 0.0f, 0.0f};
}
}
} // namespace reference
} // namespace ov

View File

@ -6,6 +6,7 @@
#include "compare.hpp"
#include "dimension_util.hpp"
#include "openvino/op/nms_rotated.hpp"
#include "openvino/op/non_max_suppression.hpp"
#include "utils.hpp"
@ -59,11 +60,15 @@ void num_boxes(const Node* const op, const std::vector<TShape>& input_shapes) {
template <class TShape>
void boxes_last_dim(const Node* const op, const std::vector<TShape>& input_shapes) {
using TDim = typename TShape::value_type;
TDim box_def_size = ov::is_type<v13::NMSRotated>(op) ? 5 : 4;
NODE_SHAPE_INFER_CHECK(op,
input_shapes,
input_shapes[0][2].compatible(4),
"The last dimension of the 'boxes' input must be equal to 4");
input_shapes[0][2].compatible(box_def_size),
"The last dimension of the 'boxes' input must be equal to ",
box_def_size);
}
template <class T>
void shapes(const Node* op, const std::vector<T>& input_shapes) {
const auto inputs_size = input_shapes.size();
@ -201,6 +206,7 @@ std::vector<TRShape> shape_infer(const Node* op,
selected_boxes *= scores_shape[0].get_max_length();
selected_boxes *= scores_shape[1].get_max_length();
}
nms::validate::boxes_last_dim(op, input_shapes);
}
@ -284,5 +290,15 @@ std::vector<TRShape> shape_infer(const NonMaxSuppression* op,
return nms::shape_infer(op, input_shapes, ta, static_output);
}
} // namespace v9
namespace v13 {
template <class T, class TRShape = result_shape_t<T>>
std::vector<TRShape> shape_infer(const NMSRotated* op,
const std::vector<T>& input_shapes,
const ITensorAccessor& ta = make_tensor_accessor()) {
constexpr bool static_output = !std::is_same<T, PartialShape>::value;
return nms::shape_infer(op, input_shapes, ta, static_output);
}
} // namespace v13
} // namespace op
} // namespace ov

View File

@ -0,0 +1,121 @@
// Copyright (C) 2018-2023 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include "openvino/op/nms_rotated.hpp"
#include "itt.hpp"
#include "nms_shape_inference.hpp"
#include "openvino/core/attribute_visitor.hpp"
#include "openvino/op/util/op_types.hpp"
namespace ov {
namespace op {
namespace nms_rotated {
namespace validate {
namespace {
void input_types(const Node* op) {
const auto inputs_size = op->get_input_size();
NODE_VALIDATION_CHECK(op, inputs_size == 5, "Expected 5 inputs to be provided.");
constexpr size_t integer_input_idx = 2;
for (size_t i = 0; i < inputs_size; ++i) {
if (i == integer_input_idx) {
NODE_VALIDATION_CHECK(op,
op->get_input_element_type(integer_input_idx).is_integral_number() ||
op->get_input_element_type(integer_input_idx).is_dynamic(),
"Expected integer type as element type for the input at: 2");
} else {
NODE_VALIDATION_CHECK(op,
op->get_input_element_type(i).is_real() || op->get_input_element_type(i).is_dynamic(),
"Expected floating point type as element type for the input at: ",
i);
}
}
}
} // namespace
} // namespace validate
} // namespace nms_rotated
} // namespace op
// ------------------------------ v13 ------------------------------
op::v13::NMSRotated::NMSRotated(const Output<Node>& boxes,
const Output<Node>& scores,
const Output<Node>& max_output_boxes_per_class,
const Output<Node>& iou_threshold,
const Output<Node>& score_threshold,
const bool sort_result_descending,
const element::Type& output_type,
const bool clockwise)
: Op({boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold}),
m_sort_result_descending{sort_result_descending},
m_output_type{output_type},
m_clockwise{clockwise} {
constructor_validate_and_infer_types();
}
std::shared_ptr<Node> op::v13::NMSRotated::clone_with_new_inputs(const OutputVector& new_args) const {
OV_OP_SCOPE(v13_NMSRotated_clone_with_new_inputs);
check_new_args_count(this, new_args);
NODE_VALIDATION_CHECK(this, new_args.size() == 5, "Number of inputs must be 5");
return std::make_shared<op::v13::NMSRotated>(new_args.at(0),
new_args.at(1),
new_args.at(2),
new_args.at(3),
new_args.at(4),
m_sort_result_descending,
m_output_type,
m_clockwise);
}
bool op::v13::NMSRotated::visit_attributes(AttributeVisitor& visitor) {
OV_OP_SCOPE(v13_NMSRotated_visit_attributes);
visitor.on_attribute("sort_result_descending", m_sort_result_descending);
visitor.on_attribute("output_type", m_output_type);
visitor.on_attribute("clockwise", m_clockwise);
return true;
}
void op::v13::NMSRotated::validate_and_infer_types() {
OV_OP_SCOPE(v13_NMSRotated_validate_and_infer_types);
OPENVINO_SUPPRESS_DEPRECATED_START
const auto input_shapes = get_node_input_partial_shapes(*this);
OPENVINO_SUPPRESS_DEPRECATED_END
const auto output_shapes = shape_infer(this, input_shapes);
nms_rotated::validate::input_types(this);
NODE_VALIDATION_CHECK(this,
m_output_type == element::i64 || m_output_type == element::i32,
"The `output_type` attribute (related to the first and third output) must be i32 or i64.");
set_output_type(0, m_output_type, output_shapes[0]);
set_output_type(1, element::f32, output_shapes[1]);
set_output_type(2, m_output_type, output_shapes[2]);
}
bool op::v13::NMSRotated::get_sort_result_descending() const {
return m_sort_result_descending;
}
void op::v13::NMSRotated::set_sort_result_descending(const bool sort_result_descending) {
m_sort_result_descending = sort_result_descending;
}
element::Type op::v13::NMSRotated::get_output_type_attr() const {
return m_output_type;
}
void op::v13::NMSRotated::set_output_type_attr(const element::Type& output_type) {
m_output_type = output_type;
}
bool op::v13::NMSRotated::get_clockwise() const {
return m_clockwise;
}
void op::v13::NMSRotated::set_clockwise(const bool clockwise) {
m_clockwise = clockwise;
}
} // namespace ov

View File

@ -53,10 +53,10 @@ ov::op::util::ActivationFunction ov::op::util::get_activation_func_by_name(const
using ActivationFunctionMap = std::unordered_map<std::string, op::util::ActivationFunction>;
static ActivationFunctionMap func_map{
{"sigmoid", op::util::ActivationFunction{sigmoid}},
{"tanh", op::util::ActivationFunction{tanh}},
{"relu", op::util::ActivationFunction{relu}},
{"hardsigmoid", op::util::ActivationFunction{hardsigmoid, 0.2f, 0.5f}},
{"sigmoid", op::util::ActivationFunction{::sigmoid}},
{"tanh", op::util::ActivationFunction{::tanh}},
{"relu", op::util::ActivationFunction{::relu}},
{"hardsigmoid", op::util::ActivationFunction{::hardsigmoid, 0.2f, 0.5f}},
};
auto func_it = func_map.find(func_name);

View File

@ -71,7 +71,7 @@ INSTANTIATE_TEST_SUITE_P(opset,
OpsetTestParams{ov::get_opset10, 177},
OpsetTestParams{ov::get_opset11, 177},
OpsetTestParams{ov::get_opset12, 178},
OpsetTestParams{ov::get_opset13, 179}),
OpsetTestParams{ov::get_opset13, 180}),
OpsetTestNameGenerator{});
class MyOpOld : public ov::op::Op {

View File

@ -0,0 +1,370 @@
// Copyright (C) 2018-2023 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include "openvino/op/nms_rotated.hpp"
#include "common_test_utils/test_assertions.hpp"
#include "common_test_utils/type_prop.hpp"
#include "openvino/op/constant.hpp"
using namespace std;
using namespace ov;
using namespace testing;
template <class TOp>
class NMSRotatedCommonTest : public TypePropOpTest<TOp> {};
TYPED_TEST_SUITE_P(NMSRotatedCommonTest);
TYPED_TEST_P(NMSRotatedCommonTest, incorrect_boxes_rank) {
const auto boxes = make_shared<op::v0::Parameter>(element::f32, Shape{1, 2, 5, 4});
const auto scores = make_shared<op::v0::Parameter>(element::f32, Shape{1, 2, 3});
const auto scalar_int = make_shared<op::v0::Parameter>(element::i32, Shape{});
const auto scalar_fp = make_shared<op::v0::Parameter>(element::f32, Shape{});
OV_EXPECT_THROW(ignore = this->make_op(boxes, scores, scalar_int, scalar_fp, scalar_fp),
NodeValidationFailure,
HasSubstr("Expected a 3D tensor for the 'boxes' input"));
}
TYPED_TEST_P(NMSRotatedCommonTest, incorrect_scores_rank) {
const auto boxes = make_shared<op::v0::Parameter>(element::f32, Shape{1, 2, 5});
const auto scores = make_shared<op::v0::Parameter>(element::f32, Shape{1, 2});
const auto scalar_int = make_shared<op::v0::Parameter>(element::i32, Shape{});
const auto scalar_fp = make_shared<op::v0::Parameter>(element::f32, Shape{});
OV_EXPECT_THROW(ignore = this->make_op(boxes, scores, scalar_int, scalar_fp, scalar_fp),
NodeValidationFailure,
HasSubstr("Expected a 3D tensor for the 'scores' input"));
}
TYPED_TEST_P(NMSRotatedCommonTest, incorrect_scheme_num_batches) {
const auto boxes = make_shared<op::v0::Parameter>(element::f32, Shape{1, 2, 5});
const auto scores = make_shared<op::v0::Parameter>(element::f32, Shape{2, 2, 3});
const auto scalar_int = make_shared<op::v0::Parameter>(element::i32, Shape{});
const auto scalar_fp = make_shared<op::v0::Parameter>(element::f32, Shape{});
OV_EXPECT_THROW(ignore = this->make_op(boxes, scores, scalar_int, scalar_fp, scalar_fp),
NodeValidationFailure,
HasSubstr("The first dimension of both 'boxes' and 'scores' must match"));
}
TYPED_TEST_P(NMSRotatedCommonTest, incorrect_scheme_num_boxes) {
const auto boxes = make_shared<op::v0::Parameter>(element::f32, Shape{1, 2, 5});
const auto scores = make_shared<op::v0::Parameter>(element::f32, Shape{1, 2, 3});
const auto scalar_int = make_shared<op::v0::Parameter>(element::i32, Shape{});
const auto scalar_fp = make_shared<op::v0::Parameter>(element::f32, Shape{});
OV_EXPECT_THROW(ignore = this->make_op(boxes, scores, scalar_int, scalar_fp, scalar_fp),
NodeValidationFailure,
HasSubstr("'boxes' and 'scores' input shapes must match at the second and third "
"dimension respectively"));
}
TYPED_TEST_P(NMSRotatedCommonTest, incorrect_boxes_last_dim) {
const auto boxes = make_shared<op::v0::Parameter>(element::f32, Shape{1, 2, 3});
const auto scores = make_shared<op::v0::Parameter>(element::f32, Shape{1, 2, 2});
const auto scalar_int = make_shared<op::v0::Parameter>(element::i32, Shape{});
const auto scalar_fp = make_shared<op::v0::Parameter>(element::f32, Shape{});
OV_EXPECT_THROW(ignore = this->make_op(boxes, scores, scalar_int, scalar_fp, scalar_fp),
NodeValidationFailure,
HasSubstr("The last dimension of the 'boxes' input must be equal to 5"));
}
TYPED_TEST_P(NMSRotatedCommonTest, input_types_check) {
const auto param_fp = make_shared<op::v0::Parameter>(element::f32, PartialShape::dynamic());
const auto param_int = make_shared<op::v0::Parameter>(element::i32, PartialShape::dynamic());
OV_EXPECT_THROW(ignore = this->make_op(param_int, param_fp, param_int, param_fp, param_fp),
NodeValidationFailure,
HasSubstr("Expected floating point type as element type for the input at: 0"));
OV_EXPECT_THROW(ignore = this->make_op(param_fp, param_int, param_int, param_fp, param_fp),
NodeValidationFailure,
HasSubstr("Expected floating point type as element type for the input at: 1"));
OV_EXPECT_THROW(ignore = this->make_op(param_fp, param_fp, param_fp, param_fp, param_fp),
NodeValidationFailure,
HasSubstr("Expected integer type as element type for the input at: 2"));
OV_EXPECT_THROW(ignore = this->make_op(param_fp, param_fp, param_int, param_int, param_fp),
NodeValidationFailure,
HasSubstr("Expected floating point type as element type for the input at: 3"));
OV_EXPECT_THROW(ignore = this->make_op(param_fp, param_fp, param_int, param_fp, param_int),
NodeValidationFailure,
HasSubstr("Expected floating point type as element type for the input at: 4"));
}
TYPED_TEST_P(NMSRotatedCommonTest, output_type_attr_check) {
const auto param_fp = make_shared<op::v0::Parameter>(element::f32, PartialShape::dynamic());
const auto param_int = make_shared<op::v0::Parameter>(element::i32, PartialShape::dynamic());
OV_EXPECT_THROW(
ignore = this->make_op(param_fp, param_fp, param_int, param_fp, param_fp, true, element::f16),
NodeValidationFailure,
HasSubstr("The `output_type` attribute (related to the first and third output) must be i32 or i64"));
}
REGISTER_TYPED_TEST_SUITE_P(NMSRotatedCommonTest,
incorrect_boxes_rank,
incorrect_scores_rank,
incorrect_scheme_num_batches,
incorrect_scheme_num_boxes,
incorrect_boxes_last_dim,
input_types_check,
output_type_attr_check);
using NMSRotatedCommonTypes = testing::Types<op::v13::NMSRotated>;
INSTANTIATE_TYPED_TEST_SUITE_P(type_prop, NMSRotatedCommonTest, NMSRotatedCommonTypes);
template <class TOp>
using NMSRotatedDynamicOutputTest = NMSRotatedCommonTest<TOp>;
TYPED_TEST_SUITE_P(NMSRotatedDynamicOutputTest);
TYPED_TEST_P(NMSRotatedDynamicOutputTest, scalar_inputs_check) {
const auto boxes = make_shared<op::v0::Parameter>(element::f32, Shape{1, 2, 5});
const auto scores = make_shared<op::v0::Parameter>(element::f32, Shape{1, 2, 2});
const auto max_output_boxes_per_class = op::v0::Constant::create(element::i32, Shape{}, {1000});
const auto scalar_fp = make_shared<op::v0::Parameter>(element::f32, Shape{});
const auto non_0d_or_1d = make_shared<op::v0::Parameter>(element::f32, Shape{2});
OV_EXPECT_THROW(ignore = this->make_op(boxes, scores, non_0d_or_1d, scalar_fp, scalar_fp),
NodeValidationFailure,
HasSubstr("Expected 0D or 1D tensor for the 'max_output_boxes_per_class' input"));
OV_EXPECT_THROW(ignore = this->make_op(boxes, scores, max_output_boxes_per_class, non_0d_or_1d, scalar_fp),
NodeValidationFailure,
HasSubstr("Expected 0D or 1D tensor for the 'iou_threshold' input"));
OV_EXPECT_THROW(ignore = this->make_op(boxes, scores, max_output_boxes_per_class, scalar_fp, non_0d_or_1d),
NodeValidationFailure,
HasSubstr("Expected 0D or 1D tensor for the 'score_threshold' input"));
}
TYPED_TEST_P(NMSRotatedDynamicOutputTest, boxes_scores_static_max_out_param) {
const auto boxes = make_shared<op::v0::Parameter>(element::f32, Shape{5, 2, 5});
const auto scores = make_shared<op::v0::Parameter>(element::f32, Shape{5, 3, 2});
const auto scalar_int = make_shared<op::v0::Parameter>(element::i32, Shape{});
const auto scalar_fp = op::v0::Constant::create(element::f32, Shape{}, {0.5});
const auto op = this->make_op(boxes, scores, scalar_int, scalar_fp, scalar_fp);
EXPECT_THAT(op->outputs(),
ElementsAre(Property("Indicies type", &Output<Node>::get_element_type, element::i64),
Property("Scores type", &Output<Node>::get_element_type, element::f32),
Property("Outputs type", &Output<Node>::get_element_type, element::i64)));
EXPECT_THAT(op->outputs(),
ElementsAre(Property("Indicies shape", &Output<Node>::get_partial_shape, PartialShape({-1, 3})),
Property("Scores shape", &Output<Node>::get_partial_shape, PartialShape({-1, 3})),
Property("Outputs shape", &Output<Node>::get_partial_shape, PartialShape({1}))));
}
TYPED_TEST_P(NMSRotatedDynamicOutputTest, num_boxes_gt_max_out_boxes) {
auto boxes_shape = PartialShape{2, 7, 5};
auto scores_shape = PartialShape{2, 5, 7};
set_shape_labels(boxes_shape, 10);
set_shape_labels(scores_shape, 20);
const auto boxes = make_shared<op::v0::Parameter>(element::f32, boxes_shape);
const auto scores = make_shared<op::v0::Parameter>(element::f32, scores_shape);
const auto max_output_boxes_per_class = op::v0::Constant::create(element::i32, Shape{}, {3});
const auto iou_threshold = make_shared<op::v0::Parameter>(element::f32, Shape{});
const auto score_threshold = make_shared<op::v0::Parameter>(element::f32, Shape{});
const auto op = this->make_op(boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold);
EXPECT_THAT(op->outputs(),
ElementsAre(Property("Indicies type", &Output<Node>::get_element_type, element::i64),
Property("Scores type", &Output<Node>::get_element_type, element::f32),
Property("Outputs type", &Output<Node>::get_element_type, element::i64)));
EXPECT_THAT(op->outputs(),
ElementsAre(Property("Indicies shape", &Output<Node>::get_partial_shape, PartialShape({{0, 30}, 3})),
Property("Scores shape", &Output<Node>::get_partial_shape, PartialShape({{0, 30}, 3})),
Property("Outputs shape", &Output<Node>::get_partial_shape, PartialShape({1}))));
EXPECT_THAT(get_shape_labels(op->get_output_partial_shape(0)), Each(no_label));
EXPECT_THAT(get_shape_labels(op->get_output_partial_shape(1)), Each(no_label));
EXPECT_THAT(get_shape_labels(op->get_output_partial_shape(2)), Each(no_label));
}
TYPED_TEST_P(NMSRotatedDynamicOutputTest, num_boxes_lt_max_out_boxes) {
const auto boxes = make_shared<op::v0::Parameter>(element::f32, Shape{2, 7, 5});
const auto scores = make_shared<op::v0::Parameter>(element::f32, Shape{2, 5, 7});
const auto max_output_boxes_per_class = op::v0::Constant::create(element::i16, Shape{}, {1000});
const auto iou_threshold = make_shared<op::v0::Parameter>(element::f32, Shape{});
const auto score_threshold = make_shared<op::v0::Parameter>(element::f32, Shape{});
const auto op = this->make_op(boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold);
EXPECT_THAT(op->outputs(),
ElementsAre(Property("Indicies type", &Output<Node>::get_element_type, element::i64),
Property("Scores type", &Output<Node>::get_element_type, element::f32),
Property("Outputs type", &Output<Node>::get_element_type, element::i64)));
EXPECT_THAT(op->outputs(),
ElementsAre(Property("Indicies shape", &Output<Node>::get_partial_shape, PartialShape({{0, 70}, 3})),
Property("Scores shape", &Output<Node>::get_partial_shape, PartialShape({{0, 70}, 3})),
Property("Outputs shape", &Output<Node>::get_partial_shape, PartialShape({1}))));
}
TYPED_TEST_P(NMSRotatedDynamicOutputTest, max_out_boxes_is_zero) {
const auto boxes = make_shared<op::v0::Parameter>(element::f32, Shape{2, 7, 5});
const auto scores = make_shared<op::v0::Parameter>(element::f32, Shape{2, 5, 7});
const auto max_output_boxes_per_class = op::v0::Constant::create(element::i16, Shape{}, {0});
const auto iou_threshold = make_shared<op::v0::Parameter>(element::f32, Shape{});
const auto score_threshold = make_shared<op::v0::Parameter>(element::f32, Shape{});
const auto op = this->make_op(boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold);
EXPECT_THAT(op->outputs(),
ElementsAre(Property("Indicies type", &Output<Node>::get_element_type, element::i64),
Property("Scores type", &Output<Node>::get_element_type, element::f32),
Property("Outputs type", &Output<Node>::get_element_type, element::i64)));
EXPECT_THAT(op->outputs(),
ElementsAre(Property("Indicies shape", &Output<Node>::get_partial_shape, PartialShape({0, 3})),
Property("Scores shape", &Output<Node>::get_partial_shape, PartialShape({0, 3})),
Property("Outputs shape", &Output<Node>::get_partial_shape, PartialShape({1}))));
}
TYPED_TEST_P(NMSRotatedDynamicOutputTest, interval_shapes_labels) {
auto boxes_shape = PartialShape{{0, 2}, {0, 7}, 5};
auto scores_shape = PartialShape{{0, 2}, {0, 5}, {1, 7}};
set_shape_labels(boxes_shape, 10);
set_shape_labels(scores_shape, 20);
const auto boxes = make_shared<op::v0::Parameter>(element::f32, boxes_shape);
const auto scores = make_shared<op::v0::Parameter>(element::f32, scores_shape);
const auto max_output_boxes_per_class = op::v0::Constant::create(element::i16, Shape{}, {1000});
const auto iou_threshold = make_shared<op::v0::Parameter>(element::f32, Shape{});
const auto score_threshold = make_shared<op::v0::Parameter>(element::f32, Shape{});
const auto op = this->make_op(boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold);
EXPECT_THAT(op->outputs(),
ElementsAre(Property("Indicies type", &Output<Node>::get_element_type, element::i64),
Property("Scores type", &Output<Node>::get_element_type, element::f32),
Property("Outputs type", &Output<Node>::get_element_type, element::i64)));
EXPECT_THAT(op->outputs(),
ElementsAre(Property("Indicies shape", &Output<Node>::get_partial_shape, PartialShape({{0, 70}, 3})),
Property("Scores shape", &Output<Node>::get_partial_shape, PartialShape({{0, 70}, 3})),
Property("Outputs shape", &Output<Node>::get_partial_shape, PartialShape({1}))));
EXPECT_THAT(get_shape_labels(op->get_output_partial_shape(0)), Each(no_label));
EXPECT_THAT(get_shape_labels(op->get_output_partial_shape(1)), Each(no_label));
EXPECT_THAT(get_shape_labels(op->get_output_partial_shape(2)), Each(no_label));
}
TYPED_TEST_P(NMSRotatedDynamicOutputTest, num_box_dynamic_dim_max_boxes_per_class_as_const) {
auto boxes_shape = PartialShape{2, -1, 5};
auto scores_shape = PartialShape{2, {0, 5}, {1, 7}};
set_shape_labels(boxes_shape, 10);
set_shape_labels(scores_shape, 20);
const auto boxes = make_shared<op::v0::Parameter>(element::f32, boxes_shape);
const auto scores = make_shared<op::v0::Parameter>(element::f32, scores_shape);
const auto max_output_boxes_per_class = op::v0::Constant::create(element::i16, Shape{}, {5});
const auto iou_threshold = make_shared<op::v0::Parameter>(element::f32, Shape{});
const auto score_threshold = make_shared<op::v0::Parameter>(element::f32, Shape{});
const auto op = this->make_op(boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold);
EXPECT_THAT(op->outputs(),
ElementsAre(Property("Indicies shape", &Output<Node>::get_partial_shape, PartialShape({-1, 3})),
Property("Scores shape", &Output<Node>::get_partial_shape, PartialShape({-1, 3})),
Property("Outputs shape", &Output<Node>::get_partial_shape, PartialShape({1}))));
EXPECT_THAT(get_shape_labels(op->get_output_partial_shape(0)), Each(no_label));
EXPECT_THAT(get_shape_labels(op->get_output_partial_shape(1)), Each(no_label));
EXPECT_THAT(get_shape_labels(op->get_output_partial_shape(2)), Each(no_label));
}
TYPED_TEST_P(NMSRotatedDynamicOutputTest, output_shape_i32) {
const auto boxes = make_shared<op::v0::Parameter>(element::f32, Shape{2, 7, 5});
const auto scores = make_shared<op::v0::Parameter>(element::f32, Shape{2, 5, 7});
const auto max_output_boxes_per_class = op::v0::Constant::create(element::i16, Shape{}, {3});
const auto iou_threshold = make_shared<op::v0::Parameter>(element::f32, Shape{});
const auto score_threshold = make_shared<op::v0::Parameter>(element::f32, Shape{});
const auto op =
this->make_op(boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold, true, element::i32);
EXPECT_THAT(op->outputs(),
ElementsAre(Property("Indicies type", &Output<Node>::get_element_type, element::i32),
Property("Scores type", &Output<Node>::get_element_type, element::f32),
Property("Outputs type", &Output<Node>::get_element_type, element::i32)));
EXPECT_THAT(op->outputs(),
ElementsAre(Property("Indicies shape", &Output<Node>::get_partial_shape, PartialShape({{0, 30}, 3})),
Property("Scores shape", &Output<Node>::get_partial_shape, PartialShape({{0, 30}, 3})),
Property("Outputs shape", &Output<Node>::get_partial_shape, PartialShape({1}))));
}
TYPED_TEST_P(NMSRotatedDynamicOutputTest, dynamic_boxes_and_scores) {
const auto boxes = make_shared<op::v0::Parameter>(element::f32, PartialShape::dynamic());
const auto scores = make_shared<op::v0::Parameter>(element::f32, PartialShape::dynamic());
const auto max_output_boxes_per_class = op::v0::Constant::create(element::i16, Shape{}, {3});
const auto iou_threshold = make_shared<op::v0::Parameter>(element::f32, Shape{});
const auto score_threshold = make_shared<op::v0::Parameter>(element::f32, Shape{});
const auto op = this->make_op(boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold);
EXPECT_THAT(op->outputs(),
ElementsAre(Property("Indicies type", &Output<Node>::get_element_type, element::i64),
Property("Scores type", &Output<Node>::get_element_type, element::f32),
Property("Outputs type", &Output<Node>::get_element_type, element::i64)));
EXPECT_THAT(op->outputs(),
ElementsAre(Property("Indicies shape", &Output<Node>::get_partial_shape, PartialShape({-1, 3})),
Property("Scores shape", &Output<Node>::get_partial_shape, PartialShape({-1, 3})),
Property("Outputs shape", &Output<Node>::get_partial_shape, PartialShape({1}))));
}
TYPED_TEST_P(NMSRotatedDynamicOutputTest, dynamic_types) {
const auto boxes = make_shared<op::v0::Parameter>(element::dynamic, Shape{5, 2, 5});
const auto scores = make_shared<op::v0::Parameter>(element::dynamic, Shape{5, 3, 2});
const auto scalar_int = make_shared<op::v0::Parameter>(element::i32, Shape{});
const auto scalar_fp = make_shared<op::v0::Parameter>(element::f32, Shape{});
const auto op = this->make_op(boxes, scores, scalar_int, scalar_fp, scalar_fp);
EXPECT_THAT(op->outputs(),
ElementsAre(Property("Indicies type", &Output<Node>::get_element_type, element::i64),
Property("Scores type", &Output<Node>::get_element_type, element::f32),
Property("Outputs type", &Output<Node>::get_element_type, element::i64)));
EXPECT_THAT(op->outputs(),
ElementsAre(Property("Indicies shape", &Output<Node>::get_partial_shape, PartialShape({-1, 3})),
Property("Scores shape", &Output<Node>::get_partial_shape, PartialShape({-1, 3})),
Property("Outputs shape", &Output<Node>::get_partial_shape, PartialShape({1}))));
}
TYPED_TEST_P(NMSRotatedDynamicOutputTest, scores_shape_is_dynamic_rank) {
const auto boxes = make_shared<op::v0::Parameter>(element::dynamic, Shape{5, 2, 5});
const auto scores = make_shared<op::v0::Parameter>(element::dynamic, PartialShape::dynamic());
const auto max_output_boxes_per_class = op::v0::Constant::create(element::i16, Shape{}, {3});
const auto iou_threshold = make_shared<op::v0::Parameter>(element::f32, Shape{});
const auto score_threshold = make_shared<op::v0::Parameter>(element::f32, Shape{});
const auto op = this->make_op(boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold);
EXPECT_THAT(op->outputs(),
ElementsAre(Property("Indicies type", &Output<Node>::get_element_type, element::i64),
Property("Scores type", &Output<Node>::get_element_type, element::f32),
Property("Outputs type", &Output<Node>::get_element_type, element::i64)));
EXPECT_THAT(op->outputs(),
ElementsAre(Property("Indicies shape", &Output<Node>::get_partial_shape, PartialShape({-1, 3})),
Property("Scores shape", &Output<Node>::get_partial_shape, PartialShape({-1, 3})),
Property("Outputs shape", &Output<Node>::get_partial_shape, PartialShape({1}))));
}
REGISTER_TYPED_TEST_SUITE_P(NMSRotatedDynamicOutputTest,
scalar_inputs_check,
boxes_scores_static_max_out_param,
num_boxes_gt_max_out_boxes,
num_boxes_lt_max_out_boxes,
max_out_boxes_is_zero,
interval_shapes_labels,
num_box_dynamic_dim_max_boxes_per_class_as_const,
output_shape_i32,
dynamic_boxes_and_scores,
dynamic_types,
scores_shape_is_dynamic_rank);
using NMSRotatedDynamicOutputTypes = testing::Types<op::v13::NMSRotated>;
INSTANTIATE_TYPED_TEST_SUITE_P(type_prop, NMSRotatedDynamicOutputTest, NMSRotatedDynamicOutputTypes);

View File

@ -0,0 +1,59 @@
// Copyright (C) 2018-2023 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include "openvino/op/nms_rotated.hpp"
#include <gtest/gtest.h>
#include "visitors/visitors.hpp"
using ov::Shape;
using ov::op::v0::Parameter;
using ov::test::NodeBuilder;
TEST(attributes, nms_rotated_v13_default_attributes) {
NodeBuilder::get_ops().register_factory<ov::op::v13::NMSRotated>();
auto boxes = std::make_shared<Parameter>(ov::element::f32, Shape{1, 1, 5});
auto scores = std::make_shared<Parameter>(ov::element::f32, Shape{1, 1, 1});
auto max_out = std::make_shared<Parameter>(ov::element::i32, Shape{});
auto iou_tresh = std::make_shared<Parameter>(ov::element::f32, Shape{});
auto score_tresh = std::make_shared<Parameter>(ov::element::f32, Shape{});
auto nms = std::make_shared<ov::op::v13::NMSRotated>(boxes, scores, max_out, iou_tresh, score_tresh);
NodeBuilder builder(nms, {boxes, scores, max_out, iou_tresh, score_tresh});
auto g_nms = ov::as_type_ptr<ov::op::v13::NMSRotated>(builder.create());
EXPECT_EQ(g_nms->get_sort_result_descending(), nms->get_sort_result_descending());
EXPECT_EQ(g_nms->get_output_type_attr(), nms->get_output_type_attr());
EXPECT_EQ(g_nms->get_clockwise(), nms->get_clockwise());
}
TEST(attributes, nms_rotated_v13_custom_attributes) {
NodeBuilder::get_ops().register_factory<ov::op::v13::NMSRotated>();
auto boxes = std::make_shared<Parameter>(ov::element::f32, Shape{1, 1, 5});
auto scores = std::make_shared<Parameter>(ov::element::f32, Shape{1, 1, 1});
auto max_out = std::make_shared<Parameter>(ov::element::i32, Shape{});
auto iou_tresh = std::make_shared<Parameter>(ov::element::f32, Shape{});
auto score_tresh = std::make_shared<Parameter>(ov::element::f32, Shape{});
auto sort_results_desc = false;
auto output_elem_type = ov::element::i32;
auto clockwise = false;
auto nms = std::make_shared<ov::op::v13::NMSRotated>(boxes,
scores,
max_out,
iou_tresh,
score_tresh,
sort_results_desc,
output_elem_type,
clockwise);
NodeBuilder builder(nms, {boxes, scores, max_out, iou_tresh, score_tresh});
auto g_nms = ov::as_type_ptr<ov::op::v13::NMSRotated>(builder.create());
EXPECT_EQ(g_nms->get_sort_result_descending(), nms->get_sort_result_descending());
EXPECT_EQ(g_nms->get_output_type_attr(), nms->get_output_type_attr());
EXPECT_EQ(g_nms->get_clockwise(), nms->get_clockwise());
}

View File

@ -0,0 +1,41 @@
// Copyright (C) 2018-2023 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#pragma once
#include <numeric>
#include "openvino/core/deprecated.hpp"
OPENVINO_SUPPRESS_DEPRECATED_START
#include "default_opset.hpp"
#include "onnx_import/core/node.hpp"
#include "openvino/core/node_vector.hpp"
#include "openvino/opsets/opset13.hpp"
namespace ngraph {
namespace onnx_import {
namespace op {
namespace set_1 {
inline OutputVector nms_rotated(const Node& node) {
auto iou_threshold = node.get_attribute_value<float>("iou_threshold");
auto score_threshold = node.get_attribute_value<float>("score_threshold");
auto max_output_boxes_per_class =
default_opset::Constant::create(element::i64, Shape{1}, {std::numeric_limits<int64_t>::max()});
auto iou_threshold_const = default_opset::Constant::create(element::f32, Shape{}, {iou_threshold});
auto score_threshold_const = default_opset::Constant::create(element::f32, Shape{}, {score_threshold});
auto nms = std::make_shared<ov::opset13::NMSRotated>(node.get_ng_inputs().at(0),
node.get_ng_inputs().at(1),
max_output_boxes_per_class,
iou_threshold_const,
score_threshold_const);
return {nms->output(0)};
}
} // namespace set_1
} // namespace op
} // namespace onnx_import
} // namespace ngraph
OPENVINO_SUPPRESS_DEPRECATED_END

View File

@ -104,6 +104,7 @@
#include "op/mod.hpp"
#include "op/mul.hpp"
#include "op/neg.hpp"
#include "op/nms_rotated.hpp"
#include "op/non_max_suppression.hpp"
#include "op/non_zero.hpp"
#include "op/not.hpp"
@ -310,6 +311,7 @@ void OperatorsBridge::overwrite_operator(const std::string& name, const std::str
static const char* const MICROSOFT_DOMAIN = "com.microsoft";
static const char* const PYTORCH_ATEN_DOMAIN = "org.pytorch.aten";
static const char* const MMDEPLOY_DOMAIN = "mmdeploy";
#define REGISTER_OPERATOR(name_, ver_, fn_) \
m_map[""][name_].emplace(ver_, std::bind(op::set_##ver_::fn_, std::placeholders::_1));
@ -561,6 +563,7 @@ OperatorsBridge::OperatorsBridge() {
REGISTER_OPERATOR_WITH_DOMAIN(MICROSOFT_DOMAIN, "Trilu", 1, trilu);
REGISTER_OPERATOR_WITH_DOMAIN(PYTORCH_ATEN_DOMAIN, "adaptive_avg_pool2d", 1, adaptive_avg_pooling2d);
REGISTER_OPERATOR_WITH_DOMAIN(MMDEPLOY_DOMAIN, "NMSRotated", 1, nms_rotated);
}
#undef REGISTER_OPERATOR

View File

@ -0,0 +1,131 @@
// Copyright (C) 2018-2023 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include "openvino/reference/nms_rotated.hpp"
#include "evaluate_node.hpp"
#include "evaluates_map.hpp"
#include "openvino/op/nms_rotated.hpp"
#include "openvino/reference/non_max_suppression.hpp"
using namespace ov;
namespace {
struct InfoForNMSRotated {
int64_t max_output_boxes_per_class;
float iou_threshold;
float score_threshold;
float soft_nms_sigma;
Shape out_shape;
Shape boxes_shape;
Shape scores_shape;
std::vector<float> boxes_data;
std::vector<float> scores_data;
size_t out_shape_size;
bool sort_result_descending;
element::Type output_type;
bool clockwise;
};
constexpr size_t boxes_port = 0;
constexpr size_t scores_port = 1;
PartialShape infer_selected_indices_shape(const TensorVector& inputs, size_t max_output_boxes_per_class) {
const auto boxes_shape = inputs[boxes_port].get_shape();
const auto scores_shape = inputs[scores_port].get_shape();
// NMSRotated produces triplets
// that have the following format: [batch_index, class_index, box_index]
PartialShape result = {Dimension::dynamic(), 3};
if (boxes_shape.size() > 0 && scores_shape.size() > 0) {
const auto num_boxes_boxes = boxes_shape[1];
const auto num_boxes = num_boxes_boxes;
const auto num_classes = scores_shape[1];
result[0] = std::min(num_boxes, max_output_boxes_per_class) * num_classes * scores_shape[0];
}
return result;
}
InfoForNMSRotated get_info_for_nms_eval(const std::shared_ptr<op::v13::NMSRotated>& nms, const TensorVector& inputs) {
InfoForNMSRotated result;
result.max_output_boxes_per_class = inputs.size() > 2 ? get_integers(inputs[2], Shape({}))[0] : 0;
result.iou_threshold = inputs.size() > 3 ? get_floats(inputs[3], Shape({}))[0] : 0.0f;
result.score_threshold = inputs.size() > 4 ? get_floats(inputs[4], Shape({}))[0] : 0.0f;
result.soft_nms_sigma = 0.0f;
auto selected_indices_shape = infer_selected_indices_shape(inputs, result.max_output_boxes_per_class);
result.out_shape = selected_indices_shape.to_shape();
result.boxes_shape = inputs[boxes_port].get_shape();
result.scores_shape = inputs[scores_port].get_shape();
result.boxes_data = get_floats(inputs[boxes_port], result.boxes_shape);
result.scores_data = get_floats(inputs[scores_port], result.scores_shape);
result.out_shape_size = shape_size(result.out_shape);
result.sort_result_descending = nms->get_sort_result_descending();
result.output_type = nms->get_output_type_attr();
result.clockwise = nms->get_clockwise();
return result;
}
template <element::Type_t ET>
bool evaluate(const std::shared_ptr<op::v13::NMSRotated>& op, TensorVector& outputs, const TensorVector& inputs) {
const auto& info = get_info_for_nms_eval(op, inputs);
std::vector<int64_t> selected_indices(info.out_shape_size);
std::vector<float> selected_scores(info.out_shape_size);
int64_t valid_outputs = 0;
reference::nms_rotated(info.boxes_data.data(),
info.boxes_shape,
info.scores_data.data(),
info.scores_shape,
info.max_output_boxes_per_class,
info.iou_threshold,
info.score_threshold,
info.soft_nms_sigma,
selected_indices.data(),
info.out_shape,
selected_scores.data(),
info.out_shape,
&valid_outputs,
info.sort_result_descending,
info.clockwise);
auto selected_scores_type = (outputs.size() < 2) ? element::f32 : outputs[1].get_element_type();
// Postprocessing steps are needed to align the shapes and types of the `indices` and the `scores` output.
// The shapes of the mentioned outputs have dynamic dimension defined by the number of the selected boxes.
// The values of `indices` are converted to the element type specified by corresponding output_type attribute.
// The values of `scores` are converted to the same type as the second input.
reference::nms_rotated_postprocessing(outputs,
info.output_type,
selected_indices,
selected_scores,
valid_outputs,
selected_scores_type);
return true;
}
} // namespace
template <>
bool evaluate_node<op::v13::NMSRotated>(std::shared_ptr<Node> node, TensorVector& outputs, const TensorVector& inputs) {
switch (node->get_output_element_type(1)) {
case element::Type_t::bf16:
return evaluate<element::Type_t::bf16>(as_type_ptr<op::v13::NMSRotated>(node), outputs, inputs);
case element::Type_t::f16:
return evaluate<element::Type_t::f16>(as_type_ptr<op::v13::NMSRotated>(node), outputs, inputs);
case element::Type_t::f64:
return evaluate<element::Type_t::f64>(as_type_ptr<op::v13::NMSRotated>(node), outputs, inputs);
case element::Type_t::f32:
return evaluate<element::Type_t::f32>(as_type_ptr<op::v13::NMSRotated>(node), outputs, inputs);
default:
OPENVINO_THROW(std::string("Unhandled data type ") + node->get_output_element_type(0).get_type_name() +
std::string("in evaluate_node()"));
}
}

View File

@ -449,6 +449,10 @@ extern template bool evaluate_node<ov::op::v13::BitwiseNot>(std::shared_ptr<ov::
ov::TensorVector& outputs,
const ov::TensorVector& inputs);
extern template bool evaluate_node<ov::op::v13::NMSRotated>(std::shared_ptr<ov::Node> node,
ov::TensorVector& outputs,
const ov::TensorVector& inputs);
extern template bool evaluate_node<ov::op::internal::AUGRUCell>(std::shared_ptr<ov::Node> node,
ov::TensorVector& outputs,
const ov::TensorVector& inputs);

View File

@ -151,6 +151,7 @@ _OPENVINO_OP_REG(Interpolate, op::v11)
_OPENVINO_OP_REG(GroupNormalization, ov::op::v12)
_OPENVINO_OP_REG(BitwiseNot, ov::op::v13)
_OPENVINO_OP_REG(NMSRotated, ov::op::v13)
_OPENVINO_OP_REG(AUGRUCell, ov::op::internal)
_OPENVINO_OP_REG(AUGRUSequence, ov::op::internal)

View File

@ -0,0 +1,495 @@
// Copyright (C) 2018-2023 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include <gtest/gtest.h>
#include "base_reference_test.hpp"
#include "openvino/opsets/opset1.hpp"
#include "openvino/opsets/opset13.hpp"
using namespace reference_tests;
using namespace ov;
namespace {
struct NMSRotatedParams {
reference_tests::Tensor boxes;
reference_tests::Tensor scores;
reference_tests::Tensor maxOutputBoxesPerClass;
reference_tests::Tensor iouThreshold;
reference_tests::Tensor scoreThreshold;
reference_tests::Tensor softNmsSigma;
bool clockwise = true;
reference_tests::Tensor expectedSelectedIndices;
reference_tests::Tensor expectedSelectedScores;
reference_tests::Tensor expectedValidOutputs;
std::string testcaseName;
};
struct Builder : ParamsBuilder<NMSRotatedParams> {
REFERENCE_TESTS_ADD_SET_PARAM(Builder, boxes);
REFERENCE_TESTS_ADD_SET_PARAM(Builder, scores);
REFERENCE_TESTS_ADD_SET_PARAM(Builder, maxOutputBoxesPerClass);
REFERENCE_TESTS_ADD_SET_PARAM(Builder, iouThreshold);
REFERENCE_TESTS_ADD_SET_PARAM(Builder, scoreThreshold);
REFERENCE_TESTS_ADD_SET_PARAM(Builder, softNmsSigma);
REFERENCE_TESTS_ADD_SET_PARAM(Builder, clockwise);
REFERENCE_TESTS_ADD_SET_PARAM(Builder, expectedSelectedIndices);
REFERENCE_TESTS_ADD_SET_PARAM(Builder, expectedSelectedScores);
REFERENCE_TESTS_ADD_SET_PARAM(Builder, expectedValidOutputs);
REFERENCE_TESTS_ADD_SET_PARAM(Builder, testcaseName);
};
class ReferenceNMSRotatedTest : public testing::TestWithParam<NMSRotatedParams>, public CommonReferenceTest {
public:
void SetUp() override {
const auto& params = GetParam();
function = CreateModel(params);
inputData = {params.boxes.data, params.scores.data};
refOutData = {params.expectedSelectedIndices.data,
params.expectedSelectedScores.data,
params.expectedValidOutputs.data};
}
static std::string getTestCaseName(const testing::TestParamInfo<NMSRotatedParams>& obj) {
const auto& param = obj.param;
std::ostringstream result;
result << "bType=" << param.boxes.type;
result << "_bShape=" << param.boxes.shape;
result << "_sType=" << param.scores.type;
result << "_sShape=" << param.scores.shape;
result << "_esiType=" << param.expectedSelectedIndices.type;
result << "_esiShape=" << param.expectedSelectedIndices.shape;
result << "_escType=" << param.expectedSelectedScores.type;
result << "_escShape=" << param.expectedSelectedScores.shape;
result << "_evoType=" << param.expectedValidOutputs.type;
result << "_evoShape=" << param.expectedValidOutputs.shape;
if (param.testcaseName != "") {
result << "_=" << param.testcaseName;
}
return result.str();
}
private:
static std::shared_ptr<Model> CreateModel(const NMSRotatedParams& params) {
const auto boxes = std::make_shared<opset1::Parameter>(params.boxes.type, params.boxes.shape);
const auto scores = std::make_shared<opset1::Parameter>(params.scores.type, params.scores.shape);
const auto max_output_boxes_per_class =
std::make_shared<opset1::Constant>(params.maxOutputBoxesPerClass.type,
params.maxOutputBoxesPerClass.shape,
params.maxOutputBoxesPerClass.data.data());
const auto iou_threshold = std::make_shared<opset1::Constant>(params.iouThreshold.type,
params.iouThreshold.shape,
params.iouThreshold.data.data());
const auto score_threshold = std::make_shared<opset1::Constant>(params.scoreThreshold.type,
params.scoreThreshold.shape,
params.scoreThreshold.data.data());
const auto nms = std::make_shared<opset13::NMSRotated>(boxes,
scores,
max_output_boxes_per_class,
iou_threshold,
score_threshold,
false,
params.expectedSelectedIndices.type,
params.clockwise);
return std::make_shared<Model>(nms->outputs(), ParameterVector{boxes, scores});
}
};
class ReferenceNMSRotatedTestWithoutConstants : public ReferenceNMSRotatedTest {
public:
void SetUp() override {
const auto& params = GetParam();
function = CreateModel(params);
inputData = {params.boxes.data,
params.scores.data,
params.maxOutputBoxesPerClass.data,
params.iouThreshold.data,
params.scoreThreshold.data};
refOutData = {params.expectedSelectedIndices.data,
params.expectedSelectedScores.data,
params.expectedValidOutputs.data};
}
private:
static std::shared_ptr<Model> CreateModel(const NMSRotatedParams& params) {
const auto boxes = std::make_shared<opset1::Parameter>(params.boxes.type, params.boxes.shape);
const auto scores = std::make_shared<opset1::Parameter>(params.scores.type, params.scores.shape);
const auto max_output_boxes_per_class =
std::make_shared<opset1::Parameter>(params.maxOutputBoxesPerClass.type,
params.maxOutputBoxesPerClass.shape);
const auto iou_threshold =
std::make_shared<opset1::Parameter>(params.iouThreshold.type, params.iouThreshold.shape);
const auto score_threshold =
std::make_shared<opset1::Parameter>(params.scoreThreshold.type, params.scoreThreshold.shape);
const auto nms = std::make_shared<opset13::NMSRotated>(boxes,
scores,
max_output_boxes_per_class,
iou_threshold,
score_threshold,
false,
params.expectedSelectedIndices.type,
params.clockwise);
return std::make_shared<Model>(
nms->outputs(),
ParameterVector{boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold});
}
};
TEST_P(ReferenceNMSRotatedTest, CompareWithRefs) {
Exec();
}
TEST_P(ReferenceNMSRotatedTestWithoutConstants, CompareWithRefs) {
Exec();
}
template <element::Type_t ET, element::Type_t ET_BOX, element::Type_t ET_TH, element::Type_t ET_IND>
std::vector<NMSRotatedParams> generateParams() {
using T = typename element_type_traits<ET>::value_type;
using T_BOX = typename element_type_traits<ET_BOX>::value_type;
using T_TH = typename element_type_traits<ET_TH>::value_type;
using T_IND = typename element_type_traits<ET_IND>::value_type;
std::vector<NMSRotatedParams> params{
Builder{}
.boxes(reference_tests::Tensor(ET, {1, 4, 5}, std::vector<T>{/*0*/ 7.0, 4.0, 8.0, 7.0, 0.5,
/*1*/ 4.0, 7.0, 9.0, 11.0, 0.6,
/*2*/ 4.0, 8.0, 10.0, 12.0, 0.3,
/*3*/ 2.0, 5.0, 13.0, 7.0, 0.6}))
.scores(reference_tests::Tensor(ET, {1, 1, 4}, std::vector<T>{0.65, 0.7, 0.55, 0.96}))
.maxOutputBoxesPerClass(reference_tests::Tensor(ET_BOX, {}, std::vector<T_BOX>{5000}))
.iouThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.5f}))
.scoreThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.softNmsSigma(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.expectedSelectedIndices(reference_tests::Tensor(
ET_IND,
{3, 3},
std::vector<T_IND>{0, 0, 3, 0, 0, 1, 0, 0, 0})) // batch 0, class 0, box_id (sorted max score first)
.expectedSelectedScores(
reference_tests::Tensor(ET_TH,
{3, 3},
std::vector<T_TH>{0.0, 0.0, 0.96, 0.0, 0.0, 0.7, 0.0, 0.0, 0.65}))
.expectedValidOutputs(reference_tests::Tensor(ET_IND, {1}, std::vector<T_IND>{3}))
.testcaseName("NMSRotated_new_rotation_basic"),
Builder{}
.boxes(reference_tests::Tensor(ET, {1, 4, 5}, std::vector<T>{/*0*/ 7.0, 4.0, 8.0, 7.0, 0.5,
/*1*/ 4.0, 7.0, 9.0, 11.0, 0.6,
/*2*/ 4.0, 8.0, 10.0, 12.0, 0.3,
/*3*/ 2.0, 5.0, 13.0, 7.0, 0.6}))
.scores(reference_tests::Tensor(ET, {1, 1, 4}, std::vector<T>{0.65, 0.7, 0.55, 0.96}))
.maxOutputBoxesPerClass(reference_tests::Tensor(ET_BOX, {}, std::vector<T_BOX>{2}))
.iouThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.5f}))
.scoreThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.softNmsSigma(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.expectedSelectedIndices(reference_tests::Tensor(
ET_IND,
{2, 3},
std::vector<T_IND>{0, 0, 3, 0, 0, 1})) // batch 0, class 0, box_id (sorted max score first)
.expectedSelectedScores(
reference_tests::Tensor(ET_TH, {2, 3}, std::vector<T_TH>{0.0, 0.0, 0.96, 0.0, 0.0, 0.7}))
.expectedValidOutputs(reference_tests::Tensor(ET_IND, {1}, std::vector<T_IND>{2}))
.testcaseName("NMSRotated_new_rotation_basic_max_out_2"),
Builder{}
.boxes(reference_tests::Tensor(ET, {1, 4, 5}, std::vector<T>{/*0*/ 7.0, 4.0, 8.0, 7.0, 0.5,
/*1*/ 4.0, 7.0, 9.0, 11.0, 0.6,
/*2*/ 4.0, 8.0, 10.0, 12.0, 0.3,
/*3*/ 2.0, 5.0, 13.0, 7.0, 0.6}))
.scores(reference_tests::Tensor(ET, {1, 1, 4}, std::vector<T>{0.65, 0.7, 0.55, 0.96}))
.maxOutputBoxesPerClass(reference_tests::Tensor(ET_BOX, {}, std::vector<T_BOX>{5000}))
.iouThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.5f}))
.scoreThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.67f}))
.softNmsSigma(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.expectedSelectedIndices(reference_tests::Tensor(
ET_IND,
{2, 3},
std::vector<T_IND>{0, 0, 3, 0, 0, 1})) // batch 0, class 0, box_id (sorted max score first)
.expectedSelectedScores(
reference_tests::Tensor(ET_TH, {2, 3}, std::vector<T_TH>{0.0, 0.0, 0.96, 0.0, 0.0, 0.7}))
.expectedValidOutputs(reference_tests::Tensor(ET_IND, {1}, std::vector<T_IND>{2}))
.testcaseName("NMSRotated_new_rotation_basic_score_tresh"),
Builder{}
.boxes(reference_tests::Tensor(ET, {1, 4, 5}, std::vector<T>{/*0*/ 7.0, 4.0, 8.0, 7.0, 0.5,
/*1*/ 4.0, 7.0, 9.0, 11.0, 0.6,
/*2*/ 4.0, 8.0, 10.0, 12.0, 0.3,
/*3*/ 2.0, 5.0, 13.0, 7.0, 0.6}))
.scores(reference_tests::Tensor(ET, {1, 1, 4}, std::vector<T>{0.65, 0.7, 0.55, 0.96}))
.maxOutputBoxesPerClass(reference_tests::Tensor(ET_BOX, {}, std::vector<T_BOX>{5000}))
.iouThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.3f}))
.scoreThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.softNmsSigma(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.expectedSelectedIndices(reference_tests::Tensor(ET_IND, {2, 3}, std::vector<T_IND>{0, 0, 3, 0, 0, 0}))
.expectedSelectedScores(
reference_tests::Tensor(ET_TH, {2, 3}, std::vector<T_TH>{0.0, 0.0, 0.96, 0.0, 0.0, 0.65}))
.expectedValidOutputs(reference_tests::Tensor(ET_IND, {1}, std::vector<T_IND>{2}))
.testcaseName("NMSRotated_new_rotation_2"),
Builder{}
.boxes(reference_tests::Tensor(
ET,
{1, 2, 5},
std::vector<T>{/*0*/ 8.0, 11.5, 4.0, 3.0, 0.5236, /*1*/ 11.0, 15.0, 8.0, 2.0, 0.7854}))
.scores(reference_tests::Tensor(ET, {1, 1, 2}, std::vector<T>{0.8, 0.8}))
.maxOutputBoxesPerClass(reference_tests::Tensor(ET_BOX, {}, std::vector<T_BOX>{5000}))
.iouThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.5f}))
.scoreThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.softNmsSigma(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.expectedSelectedIndices(reference_tests::Tensor(ET_IND, {2, 3}, std::vector<T_IND>{0, 0, 0, 0, 0, 1}))
.expectedSelectedScores(
reference_tests::Tensor(ET_TH, {2, 3}, std::vector<T_TH>{0.0, 0.0, 0.8, 0.0, 0.0, 0.8}))
.expectedValidOutputs(reference_tests::Tensor(ET_IND, {1}, std::vector<T_IND>{2}))
.testcaseName("NMSRotated_new_rotation_3"),
Builder{}
.boxes(reference_tests::Tensor(
ET,
{1, 2, 5},
std::vector<T>{/*0*/ 8.0, 11.5, 4.0, 3.0, 0.5236, /*1*/ 11.0, 15.0, 8.0, 2.0, 0.7854}))
.scores(reference_tests::Tensor(ET, {1, 1, 2}, std::vector<T>{0.8, 0.8}))
.maxOutputBoxesPerClass(reference_tests::Tensor(ET_BOX, {}, std::vector<T_BOX>{5000}))
.iouThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.1f}))
.scoreThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.softNmsSigma(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.expectedSelectedIndices(reference_tests::Tensor(ET_IND, {1, 3}, std::vector<T_IND>{0, 0, 0}))
.expectedSelectedScores(reference_tests::Tensor(ET_TH, {1, 3}, std::vector<T_TH>{0.0, 0.0, 0.8}))
.expectedValidOutputs(reference_tests::Tensor(ET_IND, {1}, std::vector<T_IND>{1}))
.testcaseName("NMSRotated_new_rotation_4"),
Builder{}
.boxes(reference_tests::Tensor(
ET,
{1, 2, 5},
std::vector<T>{/*0*/ 8.0, 11.5, 4.0, 3.0, 0.5236, /*1*/ 11.0, 15.0, 8.0, 2.0, 0.7854}))
.scores(reference_tests::Tensor(ET, {1, 1, 2}, std::vector<T>{0.7, 0.8}))
.maxOutputBoxesPerClass(reference_tests::Tensor(ET_BOX, {}, std::vector<T_BOX>{5000}))
.iouThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.1f}))
.scoreThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.softNmsSigma(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.expectedSelectedIndices(reference_tests::Tensor(ET_IND, {1, 3}, std::vector<T_IND>{0, 0, 1}))
.expectedSelectedScores(reference_tests::Tensor(ET_TH, {1, 3}, std::vector<T_TH>{0.0, 0.0, 0.8}))
.expectedValidOutputs(reference_tests::Tensor(ET_IND, {1}, std::vector<T_IND>{1}))
.testcaseName("NMSRotated_new_rotation_5"),
Builder{}
.boxes(
reference_tests::Tensor(ET,
{1, 2, 5},
std::vector<T>{/*0*/ 23.0, 3.5, 4.0, 5.0, 2.9, /*1*/ 22.0, 3.5, 4.0, 3.0, 5.3}))
.scores(reference_tests::Tensor(ET, {1, 1, 2}, std::vector<T>{0.7, 0.9}))
.maxOutputBoxesPerClass(reference_tests::Tensor(ET_BOX, {}, std::vector<T_BOX>{5000}))
.iouThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.4f}))
.scoreThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.softNmsSigma(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.expectedSelectedIndices(reference_tests::Tensor(
ET_IND,
{1, 3},
std::vector<T_IND>{0, 0, 1})) // batch 0, class 0, box_id (sorted max score first)
.expectedSelectedScores(reference_tests::Tensor(ET_TH, {1, 3}, std::vector<T_TH>{0.0, 0.0, 0.9}))
.expectedValidOutputs(reference_tests::Tensor(ET_IND, {1}, std::vector<T_IND>{1}))
.testcaseName("NMSRotated_new_rotation_6"),
Builder{}
.boxes(reference_tests::Tensor(
ET,
{1, 2, 5},
std::vector<T>{/*0*/ 6.0, 34.0, 4.0, 8.0, -0.7854, /*1*/ 9.0, 32, 2.0, 4.0, 0.0}))
.scores(reference_tests::Tensor(ET, {1, 1, 2}, std::vector<T>{0.8, 0.7}))
.maxOutputBoxesPerClass(reference_tests::Tensor(ET_BOX, {}, std::vector<T_BOX>{5000}))
.iouThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.1f}))
.scoreThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.softNmsSigma(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.clockwise(true)
.expectedSelectedIndices(reference_tests::Tensor(ET_IND, {2, 3}, std::vector<T_IND>{0, 0, 0, 0, 0, 1}))
.expectedSelectedScores(
reference_tests::Tensor(ET_TH, {2, 3}, std::vector<T_TH>{0.0, 0.0, 0.8, 0.0, 0.0, 0.7}))
.expectedValidOutputs(reference_tests::Tensor(ET_IND, {1}, std::vector<T_IND>{2}))
.testcaseName("NMSRotated_new_rotation_negative_cw"),
Builder{}
.boxes(reference_tests::Tensor(
ET,
{1, 2, 5},
std::vector<T>{/*0*/ 6.0, 34.0, 4.0, 8.0, -0.7854, /*1*/ 9.0, 32, 2.0, 4.0, 0.0}))
.scores(reference_tests::Tensor(ET, {1, 1, 2}, std::vector<T>{0.8, 0.7}))
.maxOutputBoxesPerClass(reference_tests::Tensor(ET_BOX, {}, std::vector<T_BOX>{5000}))
.iouThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.1f}))
.scoreThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.softNmsSigma(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.clockwise(false)
.expectedSelectedIndices(reference_tests::Tensor(ET_IND, {1, 3}, std::vector<T_IND>{0, 0, 0}))
.expectedSelectedScores(reference_tests::Tensor(ET_TH, {1, 3}, std::vector<T_TH>{0.0, 0.0, 0.8}))
.expectedValidOutputs(reference_tests::Tensor(ET_IND, {1}, std::vector<T_IND>{1}))
.testcaseName("NMSRotated_new_rotation_negative_ccw"),
Builder{}
.boxes(reference_tests::Tensor(
ET,
{1, 2, 5},
std::vector<T>{/*0*/ 9.0, 32, 2.0, 4.0, 0.0, /*1*/ 6.0, 34.0, 4.0, 8.0, -0.7854}))
.scores(reference_tests::Tensor(ET, {1, 1, 2}, std::vector<T>{0.8, 0.7}))
.maxOutputBoxesPerClass(reference_tests::Tensor(ET_BOX, {}, std::vector<T_BOX>{5000}))
.iouThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.1f}))
.scoreThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.softNmsSigma(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.clockwise(false)
.expectedSelectedIndices(reference_tests::Tensor(ET_IND, {1, 3}, std::vector<T_IND>{0, 0, 0}))
.expectedSelectedScores(reference_tests::Tensor(ET_TH, {1, 3}, std::vector<T_TH>{0.0, 0.0, 0.8}))
.expectedValidOutputs(reference_tests::Tensor(ET_IND, {1}, std::vector<T_IND>{1}))
.testcaseName("NMSRotated_new_rotation_negative_ccw_reorder"),
Builder{}
.boxes(reference_tests::Tensor(
ET,
{1, 2, 5},
std::vector<T>{/*0*/ 6.0, 34.0, 4.0, 8.0, 0.7854, /*1*/ 9.0, 32, 2.0, 4.0, 0.0}))
.scores(reference_tests::Tensor(ET, {1, 1, 2}, std::vector<T>{0.8, 0.7}))
.maxOutputBoxesPerClass(reference_tests::Tensor(ET_BOX, {}, std::vector<T_BOX>{5000}))
.iouThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.1f}))
.scoreThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.softNmsSigma(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.clockwise(false)
.expectedSelectedIndices(reference_tests::Tensor(ET_IND, {2, 3}, std::vector<T_IND>{0, 0, 0, 0, 0, 1}))
.expectedSelectedScores(
reference_tests::Tensor(ET_TH, {2, 3}, std::vector<T_TH>{0.0, 0.0, 0.8, 0.0, 0.0, 0.7}))
.expectedValidOutputs(reference_tests::Tensor(ET_IND, {1}, std::vector<T_IND>{2}))
.testcaseName("NMSRotated_new_rotation_positive_ccw"),
Builder{}
.boxes(reference_tests::Tensor(
ET,
{1, 2, 5},
std::vector<T>{/*0*/ 6.0, 34.0, 4.0, 8.0, 0.7854, /*1*/ 9.0, 32, 2.0, 4.0, 0.0}))
.scores(reference_tests::Tensor(ET, {1, 1, 2}, std::vector<T>{0.8, 0.7}))
.maxOutputBoxesPerClass(reference_tests::Tensor(ET_BOX, {}, std::vector<T_BOX>{5000}))
.iouThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.1f}))
.scoreThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.softNmsSigma(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.clockwise(true)
.expectedSelectedIndices(reference_tests::Tensor(ET_IND, {1, 3}, std::vector<T_IND>{0, 0, 0}))
.expectedSelectedScores(reference_tests::Tensor(ET_TH, {1, 3}, std::vector<T_TH>{0.0, 0.0, 0.8}))
.expectedValidOutputs(reference_tests::Tensor(ET_IND, {1}, std::vector<T_IND>{1}))
.testcaseName("NMSRotated_new_rotation_positive_cw"),
Builder{}
.boxes(
reference_tests::Tensor(ET,
{1, 2, 5},
std::vector<T>{/*0*/ 23.0, 3.5, 4.0, 5.0, 2.9, /*1*/ 22.0, 3.5, 4.0, 3.0, 5.3}))
.scores(reference_tests::Tensor(ET, {1, 1, 2}, std::vector<T>{0.7, 0.9}))
.maxOutputBoxesPerClass(reference_tests::Tensor(ET_BOX, {}, std::vector<T_BOX>{5000}))
.iouThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.4f}))
.scoreThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.softNmsSigma(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.expectedSelectedIndices(reference_tests::Tensor(ET_IND, {1, 3}, std::vector<T_IND>{0, 0, 1}))
.expectedSelectedScores(reference_tests::Tensor(ET_TH, {1, 3}, std::vector<T_TH>{0.0, 0.0, 0.9}))
.expectedValidOutputs(reference_tests::Tensor(ET_IND, {1}, std::vector<T_IND>{1}))
.testcaseName("NMSRotated_new_rotation_7"),
Builder{}
.boxes(reference_tests::Tensor(ET,
{1, 4, 5},
std::vector<T>{
/*0*/ 23.0, 3.5, 4.0, 5.0, 2.9, /*1*/ 11.0, 15.0, 8.0, 2.0, 0.7854,
/*2*/ 22.0, 3.5, 4.0, 3.0, 5.3, /*3*/ 8.0, 11.5, 4.0, 3.0, 0.5236,
}))
.scores(reference_tests::Tensor(ET, {1, 1, 4}, std::vector<T>{0.9, 0.7, 0.6, 0.8}))
.maxOutputBoxesPerClass(reference_tests::Tensor(ET_BOX, {}, std::vector<T_BOX>{5000}))
.iouThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.4f}))
.scoreThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.softNmsSigma(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.expectedSelectedIndices(reference_tests::Tensor(
ET_IND,
{3, 3},
std::vector<T_IND>{0, 0, 0, 0, 0, 3, 0, 0, 1})) // batch 0, class 0, box_id (sorted max score first)
.expectedSelectedScores(
reference_tests::Tensor(ET_TH, {3, 3}, std::vector<T_TH>{0.0, 0.0, 0.9, 0.0, 0.0, 0.8, 0.0, 0.0, 0.7}))
.expectedValidOutputs(reference_tests::Tensor(ET_IND, {1}, std::vector<T_IND>{3}))
.testcaseName("NMSRotated_new_rotation_8"),
Builder{}
.boxes(reference_tests::Tensor(ET, {1, 6, 5}, std::vector<T>{/*0*/ 0.5, 0.5, 1.0, 1.0, 0.0,
/*1*/ 0.5, 0.6, 1.0, 1.0, 0.0,
/*2*/ 0.5, 0.4, 1.0, 1.0, 0.0,
/*3*/ 0.5, 10.5, 1.0, 1.0, 0.0,
/*4*/ 0.5, 10.6, 1.0, 1.0, 0.0,
/*5*/ 0.5, 100.5, 1.0, 1.0, 0.0}))
.scores(reference_tests::Tensor(ET, {1, 1, 6}, std::vector<T>{0.9, 0.75, 0.6, 0.95, 0.5, 0.3}))
.maxOutputBoxesPerClass(reference_tests::Tensor(ET_BOX, {}, std::vector<T_BOX>{3}))
.iouThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.5f}))
.scoreThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.softNmsSigma(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.expectedSelectedIndices(
reference_tests::Tensor(ET_IND, {3, 3}, std::vector<T_IND>{0, 0, 3, 0, 0, 0, 0, 0, 5}))
.expectedSelectedScores(
reference_tests::Tensor(ET_TH, {3, 3}, std::vector<T_TH>{0.0, 0.0, 0.95, 0.0, 0.0, 0.9, 0.0, 0.0, 0.3}))
.expectedValidOutputs(reference_tests::Tensor(ET_IND, {1}, std::vector<T_IND>{3}))
.testcaseName("NMSRotated_center_point_zero_angle"),
};
return params;
}
std::vector<NMSRotatedParams> generateCombinedParams() {
const std::vector<std::vector<NMSRotatedParams>> generatedParams{
generateParams<element::Type_t::f32, element::Type_t::i32, element::Type_t::f32, element::Type_t::i32>(),
generateParams<element::Type_t::f16, element::Type_t::i32, element::Type_t::f32, element::Type_t::i64>(),
generateParams<element::Type_t::f32, element::Type_t::i32, element::Type_t::f32, element::Type_t::i64>(),
};
std::vector<NMSRotatedParams> combinedParams;
for (const auto& params : generatedParams) {
std::move(params.begin(), params.end(), std::back_inserter(combinedParams));
}
return combinedParams;
}
template <element::Type_t ET, element::Type_t ET_BOX, element::Type_t ET_TH, element::Type_t ET_IND>
std::vector<NMSRotatedParams> generateParamsWithoutConstants() {
using T = typename element_type_traits<ET>::value_type;
using T_BOX = typename element_type_traits<ET_BOX>::value_type;
using T_TH = typename element_type_traits<ET_TH>::value_type;
using T_IND = typename element_type_traits<ET_IND>::value_type;
std::vector<NMSRotatedParams> params{
Builder{}
.boxes(reference_tests::Tensor(ET, {1, 6, 5}, std::vector<T>{/*0*/ 0.5, 0.5, 1.0, 1.0, 0.0,
/*1*/ 0.5, 0.6, 1.0, 1.0, 0.0,
/*2*/ 0.5, 0.4, 1.0, 1.0, 0.0,
/*3*/ 0.5, 10.5, 1.0, 1.0, 0.0,
/*4*/ 0.5, 10.6, 1.0, 1.0, 0.0,
/*5*/ 0.5, 100.5, 1.0, 1.0, 0.0}))
.scores(reference_tests::Tensor(ET, {1, 1, 6}, std::vector<T>{0.9, 0.75, 0.6, 0.95, 0.5, 0.3}))
.maxOutputBoxesPerClass(reference_tests::Tensor(ET_BOX, {}, std::vector<T_BOX>{3}))
.iouThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.5f}))
.scoreThreshold(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.softNmsSigma(reference_tests::Tensor(ET_TH, {}, std::vector<T_TH>{0.0f}))
.expectedSelectedIndices(
reference_tests::Tensor(ET_IND, {3, 3}, std::vector<T_IND>{0, 0, 3, 0, 0, 0, 0, 0, 5}))
.expectedSelectedScores(
reference_tests::Tensor(ET_TH, {3, 3}, std::vector<T_TH>{0.0, 0.0, 0.95, 0.0, 0.0, 0.9, 0.0, 0.0, 0.3}))
.expectedValidOutputs(reference_tests::Tensor(ET_IND, {1}, std::vector<T_IND>{3}))
.testcaseName("NMSRotated_suppress_by_IOU_and_scores_without_constants"),
};
return params;
}
std::vector<NMSRotatedParams> generateCombinedParamsWithoutConstants() {
const std::vector<std::vector<NMSRotatedParams>> generatedParams{
generateParamsWithoutConstants<element::Type_t::f32,
element::Type_t::i32,
element::Type_t::f32,
element::Type_t::i32>(),
generateParamsWithoutConstants<element::Type_t::f16,
element::Type_t::i32,
element::Type_t::f32,
element::Type_t::i64>(),
generateParamsWithoutConstants<element::Type_t::f32,
element::Type_t::i32,
element::Type_t::f32,
element::Type_t::i64>(),
};
std::vector<NMSRotatedParams> combinedParams;
for (const auto& params : generatedParams) {
combinedParams.insert(combinedParams.end(), params.begin(), params.end());
}
return combinedParams;
}
INSTANTIATE_TEST_SUITE_P(smoke_NMSRotated_With_Hardcoded_Refs,
ReferenceNMSRotatedTest,
testing::ValuesIn(generateCombinedParams()),
ReferenceNMSRotatedTest::getTestCaseName);
INSTANTIATE_TEST_SUITE_P(smoke_NMSRotated_With_Hardcoded_Refs,
ReferenceNMSRotatedTestWithoutConstants,
testing::ValuesIn(generateCombinedParamsWithoutConstants()),
ReferenceNMSRotatedTestWithoutConstants::getTestCaseName);
} // namespace

View File

@ -606,6 +606,25 @@ std::shared_ptr<ov::Model> generate(const std::shared_ptr<ov::op::v0::MatMul> &n
return std::make_shared<ov::Model>(results, params, "MatMul-1");
}
std::shared_ptr<ov::Model> generate(const std::shared_ptr<ov::op::v13::NMSRotated> &node) {
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape{{1, 6, 5}}),
std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape{{1, 1, 6}}),
std::make_shared<ov::op::v0::Parameter>(ov::element::i32, ov::Shape{}),
std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape{}),
std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape{})};
auto nms = std::make_shared<ov::op::v13::NMSRotated>(params[0],
params[1],
params[2],
params[3],
params[4],
true,
ov::element::i32,
true);
ov::ResultVector results{std::make_shared<ov::op::v0::Result>(nms)};
return std::make_shared<ov::Model>(results, params, "NMSRotated-13");
}
std::shared_ptr<ov::Model> generate(const std::shared_ptr<ov::op::v1::NonMaxSuppression> &node) {
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape{{1, 6, 4}}),
std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape{{1, 1, 6}}),