Update benchmarks articles (#14438)
Update performance_benchmarks_faq.md Update performance_int8_vs_fp32.md
This commit is contained in:
parent
4171f258b2
commit
88b116af66
@ -1,71 +1,153 @@
|
||||
# Performance Information Frequently Asked Questions {#openvino_docs_performance_benchmarks_faq}
|
||||
# Performance Information F.A.Q. {#openvino_docs_performance_benchmarks_faq}
|
||||
|
||||
The following questions (Q#) and answers (A) are related to published [performance benchmarks](./performance_benchmarks.md).
|
||||
|
||||
#### Q1: How often do performance benchmarks get updated?
|
||||
**A**: New performance benchmarks are typically published on every `major.minor` release of the Intel® Distribution of OpenVINO™ toolkit.
|
||||
@sphinxdirective
|
||||
|
||||
#### Q2: Where can I find the models used in the performance benchmarks?
|
||||
**A**: All models used are included in the GitHub repository of [Open Model Zoo](https://github.com/openvinotoolkit/open_model_zoo).
|
||||
.. dropdown:: How often do performance benchmarks get updated?
|
||||
|
||||
#### Q3: Will there be any new models added to the list used for benchmarking?
|
||||
**A**: The models used in the performance benchmarks were chosen based on general adoption and usage in deployment scenarios. New models that support a diverse set of workloads and usage are added periodically.
|
||||
New performance benchmarks are typically published on every
|
||||
`major.minor` release of the Intel® Distribution of OpenVINO™ toolkit.
|
||||
|
||||
#### Q4: What does "CF" or "TF" in the graphs stand for?
|
||||
**A**: The "CF" means "Caffe", and "TF" means "TensorFlow".
|
||||
.. dropdown:: Where can I find the models used in the performance benchmarks?
|
||||
|
||||
#### Q5: How can I run the benchmark results on my own?
|
||||
**A**: All of the performance benchmarks were generated using the open-source tool within the Intel® Distribution of OpenVINO™ toolkit called `benchmark_app`. This tool is available in both [C++](../../samples/cpp/benchmark_app/README.md) and [Python](../../tools/benchmark_tool/README.md).
|
||||
All models used are included in the GitHub repository of `Open Model Zoo <https://github.com/openvinotoolkit/open_model_zoo>`_.
|
||||
|
||||
#### Q6: What image sizes are used for the classification network models?
|
||||
**A**: The image size used in inference depends on the benchmarked network. The table below presents the list of input sizes for each network model:
|
||||
.. dropdown:: Will there be any new models added to the list used for benchmarking?
|
||||
|
||||
| **Model** | **Public Network** | **Task** | **Input Size** (Height x Width) |
|
||||
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------|-----------------------------------|
|
||||
| [bert-base-cased](https://github.com/PaddlePaddle/PaddleNLP/tree/v2.1.1) | BERT | question / answer | 124 |
|
||||
| [bert-large-uncased-whole-word-masking-squad-int8-0001](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/intel/bert-large-uncased-whole-word-masking-squad-int8-0001) | BERT-large | question / answer | 384 |
|
||||
| [bert-small-uncased-whole-masking-squad-0002](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/intel/bert-small-uncased-whole-word-masking-squad-0002) | BERT-small | question / answer | 384 |
|
||||
| [brain-tumor-segmentation-0001-MXNET](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/brain-tumor-segmentation-0001) | brain-tumor-segmentation-0001 | semantic segmentation | 128x128x128 |
|
||||
| [brain-tumor-segmentation-0002-CF2](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/brain-tumor-segmentation-0002) | brain-tumor-segmentation-0002 | semantic segmentation | 128x128x128 |
|
||||
| [deeplabv3-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/deeplabv3) | DeepLab v3 Tf | semantic segmentation | 513x513 |
|
||||
| [densenet-121-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/densenet-121-tf) | Densenet-121 Tf | classification | 224x224 |
|
||||
| [efficientdet-d0](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/efficientdet-d0-tf) | Efficientdet | classification | 512x512 |
|
||||
| [facenet-20180408-102900-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/facenet-20180408-102900) | FaceNet TF | face recognition | 160x160 |
|
||||
| [Facedetection0200](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/intel/face-detection-0200) | FaceDetection0200 | detection | 256x256 |
|
||||
| [faster_rcnn_resnet50_coco-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/faster_rcnn_resnet50_coco) | Faster RCNN Tf | object detection | 600x1024 |
|
||||
| [forward-tacotron-duration-prediction](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/forward-tacotron) | ForwardTacotron | text to speech | 241 |
|
||||
| [inception-v4-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/googlenet-v4-tf) | Inception v4 Tf (aka GoogleNet-V4) | classification | 299x299 |
|
||||
| [inception-v3-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/googlenet-v3) | Inception v3 Tf | classification | 299x299 |
|
||||
| [mask_rcnn_resnet50_atrous_coco](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/mask_rcnn_resnet50_atrous_coco) | Mask R-CNN ResNet50 Atrous | instance segmentation | 800x1365 |
|
||||
| [mobilenet-ssd-CF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/mobilenet-ssd) | SSD (MobileNet)_COCO-2017_Caffe | object detection | 300x300 |
|
||||
| [mobilenet-v2-1.0-224-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/mobilenet-v2-1.0-224) | MobileNet v2 Tf | classification | 224x224 |
|
||||
| [mobilenet-v2-pytorch](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/mobilenet-v2-pytorch ) | Mobilenet V2 PyTorch | classification | 224x224 |
|
||||
| [Mobilenet-V3-small](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/mobilenet-v3-small-1.0-224-tf) | Mobilenet-V3-1.0-224 | classifier | 224x224 |
|
||||
| [Mobilenet-V3-large](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/mobilenet-v3-large-1.0-224-tf) | Mobilenet-V3-1.0-224 | classifier | 224x224 |
|
||||
| [pp-ocr-rec](https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.1/) | PP-OCR | optical character recognition | 32x640 |
|
||||
| [pp-yolo](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1) | PP-YOLO | detection | 640x640 |
|
||||
| [resnet-18-pytorch](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/resnet-18-pytorch) | ResNet-18 PyTorch | classification | 224x224 |
|
||||
| [resnet-50-pytorch](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/resnet-50-pytorch) | ResNet-50 v1 PyTorch | classification | 224x224 |
|
||||
| [resnet-50-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/resnet-50-tf) | ResNet-50_v1_ILSVRC-2012 | classification | 224x224 |
|
||||
| [yolo_v4-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/yolo-v4-tf) | Yolo-V4 TF | object detection | 608x608 |
|
||||
| [ssd_mobilenet_v1_coco-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssd_mobilenet_v1_coco) | ssd_mobilenet_v1_coco | object detection | 300x300 |
|
||||
| [ssdlite_mobilenet_v2-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssdlite_mobilenet_v2) | ssdlite_mobilenet_v2 | object detection | 300x300 |
|
||||
| [unet-camvid-onnx-0001](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/intel/unet-camvid-onnx-0001) | U-Net | semantic segmentation | 368x480 |
|
||||
| [yolo-v3-tiny-tf](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/yolo-v3-tiny-tf) | YOLO v3 Tiny | object detection | 416x416 |
|
||||
| [yolo-v3](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/yolo-v3-tf) | YOLO v3 | object detection | 416x416 |
|
||||
| [ssd-resnet34-1200-onnx](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssd-resnet34-1200-onnx) | ssd-resnet34 onnx model | object detection | 1200x1200 |
|
||||
The models used in the performance benchmarks were chosen based
|
||||
on general adoption and usage in deployment scenarios. New models that
|
||||
support a diverse set of workloads and usage are added periodically.
|
||||
|
||||
#### Q7: Where can I purchase the specific hardware used in the benchmarking?
|
||||
**A**: Intel partners with vendors all over the world. For a list of Hardware Manufacturers, see the [Intel® AI: In Production Partners & Solutions Catalog](https://www.intel.com/content/www/us/en/internet-of-things/ai-in-production/partners-solutions-catalog.html) . For more details, see the [Supported Devices](../OV_Runtime_UG/supported_plugins/Supported_Devices.md) documentation. Before purchasing any hardware, you can test and run models remotely, using [Intel® DevCloud for the Edge](http://devcloud.intel.com/edge/).
|
||||
.. dropdown:: How can I run the benchmark results on my own?
|
||||
|
||||
#### Q8: How can I optimize my models for better performance or accuracy?
|
||||
**A**: Set of guidelines and recommendations to optimize models are available in the [optimization guide](../optimization_guide/dldt_optimization_guide.md). Join the conversation in the [Community Forum](https://software.intel.com/en-us/forums/intel-distribution-of-openvino-toolkit) for further support.
|
||||
All of the performance benchmarks were generated using the
|
||||
open-source tool within the Intel® Distribution of OpenVINO™ toolkit
|
||||
called `benchmark_app`. This tool is available in both `C++ <https://github.com/openvinotoolkit/openvino/blob/master/samples/cpp/benchmark_app/README.md>`_ and `Python <https://github.com/openvinotoolkit/openvino/blob/master/tools/benchmark_tool/README.md>`_.
|
||||
|
||||
#### Q9: Why are INT8 optimized models used for benchmarking on CPUs with no VNNI support?
|
||||
**A**: The benefit of low-precision optimization using the OpenVINO™ toolkit model optimizer extends beyond processors supporting VNNI through Intel® DL Boost. The reduced bit width of INT8 compared to FP32 allows Intel® CPU to process the data faster. Therefore, it offers better throughput on any converted model, regardless of the intrinsically supported low-precision optimizations within Intel® hardware. For comparison on boost factors for different network models and a selection of Intel® CPU architectures, including AVX-2 with Intel® Core™ i7-8700T, and AVX-512 (VNNI) with Intel® Xeon® 5218T and Intel® Xeon® 8270, refer to the [Model Accuracy for INT8 and FP32 Precision](performance_int8_vs_fp32.md) article.
|
||||
.. dropdown:: What image sizes are used for the classification network models?
|
||||
|
||||
#### Q10: Where can I search for OpenVINO™ performance results based on HW-platforms?
|
||||
**A**: The website format has changed in order to support more common approach of searching for the performance results of a given neural network model on different HW-platforms. As opposed to reviewing performance of a given HW-platform when working with different neural network models.
|
||||
The image size used in inference depends on the benchmarked
|
||||
network. The table below presents the list of input sizes for each
|
||||
network model:
|
||||
|
||||
#### Q11: How is Latency measured?
|
||||
**A**: Latency is measured by running the OpenVINO™ Runtime in synchronous mode. In this mode, each frame or image is processed through the entire set of stages (pre-processing, inference, post-processing) before the next frame or image is processed. This KPI is relevant for applications where the inference on a single image is required. For example, the analysis of an ultra sound image in a medical application or the analysis of a seismic image in the oil & gas industry. Other use cases include real or near real-time applications, e.g. the response of industrial robot to changes in its environment and obstacle avoidance for autonomous vehicles, where a quick response to the result of the inference is required.
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Model
|
||||
- Public Network
|
||||
- Task
|
||||
- Input Size
|
||||
* - :ref:`bert-base-cased<https://github.com/PaddlePaddle/PaddleNLP/tree/v2.1.1>`
|
||||
- BERT
|
||||
- question / answer
|
||||
- 124
|
||||
* - :ref:`bert-large-uncased-whole-word-masking-squad-int8-0001<https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/intel/bert-large-uncased-whole-word-masking-squad-int8-0001>`
|
||||
- BERT-large
|
||||
- question / answer
|
||||
- 384
|
||||
* - :ref:`deeplabv3-TF<https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/deeplabv3>`
|
||||
- DeepLab v3 Tf
|
||||
- semantic segmentation
|
||||
- 513x513
|
||||
* - :ref:`densenet-121-TF<https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/densenet-121-tf>`
|
||||
- Densenet-121 Tf
|
||||
- classification
|
||||
- 224x224
|
||||
* - :ref:`efficientdet-d0<https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/efficientdet-d0-tf>`
|
||||
- Efficientdet
|
||||
- classification
|
||||
- 512x512
|
||||
* - :ref:`faster_rcnn_resnet50_coco-TF<https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/faster_rcnn_resnet50_coco>`
|
||||
- Faster RCNN Tf
|
||||
- object detection
|
||||
- 600x1024
|
||||
* - :ref:`inception-v4-TF<https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/googlenet-v4-tf>`
|
||||
- Inception v4 Tf (aka GoogleNet-V4)
|
||||
- classification
|
||||
- 299x299
|
||||
* - :ref:`mobilenet-ssd-CF<https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/mobilenet-ssd>`
|
||||
- SSD (MobileNet)_COCO-2017_Caffe
|
||||
- object detection
|
||||
- 300x300
|
||||
* - :ref:`mobilenet-v2-pytorch<https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/mobilenet-v2-pytorch>`
|
||||
- Mobilenet V2 PyTorch
|
||||
- classification
|
||||
- 224x224
|
||||
* - :ref:`resnet-18-pytorch<https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/resnet-18-pytorch>`
|
||||
- ResNet-18 PyTorch
|
||||
- classification
|
||||
- 224x224
|
||||
* - :ref:`resnet-50-TF<https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/resnet-50-tf>`
|
||||
- ResNet-50_v1_ILSVRC-2012
|
||||
- classification
|
||||
- 224x224
|
||||
* - :ref:`ssd-resnet34-1200-onnx <https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssd-resnet34-1200-onnx>`
|
||||
- ssd-resnet34 onnx model
|
||||
- object detection
|
||||
- 1200x1200
|
||||
* - :ref:`unet-camvid-onnx-0001<https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/intel/unet-camvid-onnx-0001>`
|
||||
- U-Net
|
||||
- semantic segmentation
|
||||
- 368x480
|
||||
* - :ref:`yolo-v3-tiny-tf<https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/yolo-v3-tiny-tf>`
|
||||
- YOLO v3 Tiny
|
||||
- object detection
|
||||
- 416x416
|
||||
* - :ref:`yolo_v4-TF<https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/yolo-v4-tf>`
|
||||
- Yolo-V4 TF
|
||||
- object detection
|
||||
- 608x608
|
||||
|
||||
|
||||
.. dropdown:: Where can I purchase the specific hardware used in the benchmarking?
|
||||
|
||||
Intel partners with vendors all over the world. For a list of Hardware Manufacturers, see the
|
||||
[Intel® AI: In Production Partners & Solutions Catalog](https://www.intel.com/content/www/us/en/internet-of-things/ai-in-production/partners-solutions-catalog.html).
|
||||
For more details, see the [Supported Devices](../OV_Runtime_UG/supported_plugins/Supported_Devices.md)
|
||||
documentation. Before purchasing any hardware, you can test and run
|
||||
models remotely, using [Intel® DevCloud for the Edge](http://devcloud.intel.com/edge/).
|
||||
|
||||
.. dropdown:: How can I optimize my models for better performance or accuracy?
|
||||
|
||||
Set of guidelines and recommendations to optimize models are available in the
|
||||
[optimization guide](../optimization_guide/dldt_optimization_guide.md).
|
||||
Join the conversation in the [Community Forum](https://software.intel.com/en-us/forums/intel-distribution-of-openvino-toolkit)
|
||||
for further support.
|
||||
|
||||
.. dropdown:: Why are INT8 optimized models used for benchmarking on CPUs with no VNNI support?
|
||||
|
||||
The benefit of low-precision optimization using the OpenVINO™
|
||||
toolkit model optimizer extends beyond processors supporting VNNI
|
||||
through Intel® DL Boost. The reduced bit width of INT8 compared to FP32
|
||||
allows Intel® CPU to process the data faster. Therefore, it offers
|
||||
better throughput on any converted model, regardless of the
|
||||
intrinsically supported low-precision optimizations within Intel®
|
||||
hardware. For comparison on boost factors for different network models
|
||||
and a selection of Intel® CPU architectures, including AVX-2 with Intel®
|
||||
Core™ i7-8700T, and AVX-512 (VNNI) with Intel® Xeon® 5218T and Intel®
|
||||
Xeon® 8270, refer to the [Model Accuracy for INT8 and FP32 Precision](performance_int8_vs_fp32.md) article.
|
||||
|
||||
.. dropdown:: Where can I search for OpenVINO™ performance results based on HW-platforms?
|
||||
|
||||
The website format has changed in order to support more common
|
||||
approach of searching for the performance results of a given neural
|
||||
network model on different HW-platforms. As opposed to reviewing
|
||||
performance of a given HW-platform when working with different neural
|
||||
network models.
|
||||
|
||||
.. dropdown:: How is Latency measured?
|
||||
|
||||
Latency is measured by running the OpenVINO™ Runtime in
|
||||
synchronous mode. In this mode, each frame or image is processed through
|
||||
the entire set of stages (pre-processing, inference, post-processing)
|
||||
before the next frame or image is processed. This KPI is relevant for
|
||||
applications where the inference on a single image is required. For
|
||||
example, the analysis of an ultra sound image in a medical application
|
||||
or the analysis of a seismic image in the oil & gas industry. Other use
|
||||
cases include real or near real-time applications, e.g. the response of
|
||||
industrial robot to changes in its environment and obstacle avoidance
|
||||
for autonomous vehicles, where a quick response to the result of the
|
||||
inference is required.
|
||||
|
||||
|
||||
@endsphinxdirective
|
@ -5,16 +5,16 @@ The following table presents the absolute accuracy drop calculated as the accura
|
||||
@sphinxdirective
|
||||
.. raw:: html
|
||||
|
||||
<table class="table">
|
||||
<table class="table" id="model-accuracy-and-perf-int8-fp32-table">
|
||||
<tr align="left">
|
||||
<th></th>
|
||||
<th></th>
|
||||
<th></th>
|
||||
<th>Intel® Core™ i9-12900K @ 3.2 GHz (AVX2)</th>
|
||||
<th>Intel® Xeon® 6338 @ 2.0 GHz (VNNI)</th>
|
||||
<th>iGPU Gen12LP (Intel® Core™ i9-12900K @ 3.2 GHz)</th>
|
||||
<th class="light-header">Intel® Core™ i9-12900K @ 3.2 GHz (AVX2)</th>
|
||||
<th class="light-header">Intel® Xeon® 6338 @ 2.0 GHz (VNNI)</th>
|
||||
<th class="light-header">iGPU Gen12LP (Intel® Core™ i9-12900K @ 3.2 GHz)</th>
|
||||
</tr>
|
||||
<tr align="left">
|
||||
<tr align="left" class="header">
|
||||
<th>OpenVINO Benchmark <br>Model Name</th>
|
||||
<th>Dataset</th>
|
||||
<th>Metric Name</th>
|
||||
@ -24,105 +24,105 @@ The following table presents the absolute accuracy drop calculated as the accura
|
||||
<td>bert-base-cased</td>
|
||||
<td>SST-2</td>
|
||||
<td>accuracy</td>
|
||||
<td>0.11</td>
|
||||
<td>0.34</td>
|
||||
<td>0.46</td>
|
||||
<td class="data">0.11</td>
|
||||
<td class="data">0.34</td>
|
||||
<td class="data">0.46</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>bert-large-uncased-whole-word-masking-squad-0001</td>
|
||||
<td>SQUAD</td>
|
||||
<td>F1</td>
|
||||
<td>0.87</td>
|
||||
<td>1.11</td>
|
||||
<td>0.70</td>
|
||||
<td class="data">0.87</td>
|
||||
<td class="data">1.11</td>
|
||||
<td class="data">0.70</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>deeplabv3</td>
|
||||
<td>VOC2012</td>
|
||||
<td>mean_iou</td>
|
||||
<td>0.04</td>
|
||||
<td>0.04</td>
|
||||
<td>0.11</td>
|
||||
<td class="data">0.04</td>
|
||||
<td class="data">0.04</td>
|
||||
<td class="data">0.11</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>densenet-121</td>
|
||||
<td>ImageNet</td>
|
||||
<td>accuracy@top1</td>
|
||||
<td>0.56</td>
|
||||
<td>0.56</td>
|
||||
<td>0.63</td>
|
||||
<td class="data">0.56</td>
|
||||
<td class="data">0.56</td>
|
||||
<td class="data">0.63</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>efficientdet-d0</td>
|
||||
<td>COCO2017</td>
|
||||
<td>coco_precision</td>
|
||||
<td>0.63</td>
|
||||
<td>0.62</td>
|
||||
<td>0.45</td>
|
||||
<td class="data">0.63</td>
|
||||
<td class="data">0.62</td>
|
||||
<td class="data">0.45</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>faster_rcnn_<br>resnet50_coco</td>
|
||||
<td>COCO2017</td>
|
||||
<td>coco_<br>precision</td>
|
||||
<td>0.52</td>
|
||||
<td>0.55</td>
|
||||
<td>0.31</td>
|
||||
<td class="data">0.52</td>
|
||||
<td class="data">0.55</td>
|
||||
<td class="data">0.31</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>resnet-18</td>
|
||||
<td>ImageNet</td>
|
||||
<td>acc@top-1</td>
|
||||
<td>0.16</td>
|
||||
<td>0.16</td>
|
||||
<td>0.16</td>
|
||||
<td class="data">0.16</td>
|
||||
<td class="data">0.16</td>
|
||||
<td class="data">0.16</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>resnet-50</td>
|
||||
<td>ImageNet</td>
|
||||
<td>acc@top-1</td>
|
||||
<td>0.09</td>
|
||||
<td>0.09</td>
|
||||
<td>0.09</td>
|
||||
<td class="data">0.09</td>
|
||||
<td class="data">0.09</td>
|
||||
<td class="data">0.09</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>resnet-50-pytorch</td>
|
||||
<td>ImageNet</td>
|
||||
<td>acc@top-1</td>
|
||||
<td>0.13</td>
|
||||
<td>0.13</td>
|
||||
<td>0.11</td>
|
||||
<td class="data">0.13</td>
|
||||
<td class="data">0.13</td>
|
||||
<td class="data">0.11</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>ssd-resnet34-1200</td>
|
||||
<td>COCO2017</td>
|
||||
<td>COCO mAp</td>
|
||||
<td>0.09</td>
|
||||
<td>0.09</td>
|
||||
<td>0.13</td>
|
||||
<td class="data">0.09</td>
|
||||
<td class="data">0.09</td>
|
||||
<td class="data">0.13</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>unet-camvid-onnx-0001</td>
|
||||
<td>CamVid</td>
|
||||
<td>mean_iou@mean</td>
|
||||
<td>0.56</td>
|
||||
<td>0.56</td>
|
||||
<td>0.60</td>
|
||||
<td class="data">0.56</td>
|
||||
<td class="data">0.56</td>
|
||||
<td class="data">0.60</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>yolo-v3-tiny</td>
|
||||
<td>COCO2017</td>
|
||||
<td>COCO mAp</td>
|
||||
<td>0.12</td>
|
||||
<td>0.12</td>
|
||||
<td>0.17</td>
|
||||
<td class="data">0.12</td>
|
||||
<td class="data">0.12</td>
|
||||
<td class="data">0.17</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>yolo_v4</td>
|
||||
<td>COCO2017</td>
|
||||
<td>COCO mAp</td>
|
||||
<td>0.52</td>
|
||||
<td>0.52</td>
|
||||
<td>0.54</td>
|
||||
<td class="data">0.52</td>
|
||||
<td class="data">0.52</td>
|
||||
<td class="data">0.54</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user