[TF FE] Support DynamicStitch operation (#13408)
* Delete unneccessary changes * codestyle * skip dynamic stitch layer tests for legacy frontend * apply review comments * fix unit tests, apply review comments
This commit is contained in:
parent
6bd099917a
commit
8a9890dbf1
77
src/frontends/tensorflow/src/op/parallel_dynamic_stitch.cpp
Normal file
77
src/frontends/tensorflow/src/op/parallel_dynamic_stitch.cpp
Normal file
@ -0,0 +1,77 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "op_table.hpp"
|
||||
#include "openvino/opsets/opset9.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace ov::opset9;
|
||||
|
||||
namespace ov {
|
||||
namespace frontend {
|
||||
namespace tensorflow {
|
||||
namespace op {
|
||||
|
||||
OutputVector translate_parallel_dynamic_stitch_op(const NodeContext& node) {
|
||||
// format for inputs: [indices1, indices2, ..., indicesN, data1, data2, ..., dataN]
|
||||
// so we expect at least 2 input and the total number of inputs must be divisible by 2
|
||||
default_op_checks(node, 2, {"ParallelDynamicStitch", "DynamicStitch"});
|
||||
auto in_size = node.get_input_size();
|
||||
TENSORFLOW_OP_VALIDATION(node,
|
||||
in_size % 2 == 0,
|
||||
"The total number of inputs to DynamicStitch or ParallelDynamicStitch operation "
|
||||
"must be divisible by 2.");
|
||||
|
||||
int N = static_cast<int>(in_size / 2);
|
||||
OutputVector indices_to_concat;
|
||||
OutputVector data_to_concat;
|
||||
auto data_element_type = node.get_input(N).get_element_type();
|
||||
auto const_minus_one = make_shared<Constant>(ov::element::i32, Shape{1}, -1);
|
||||
auto const_zero = make_shared<Constant>(ov::element::i32, Shape{1}, 0);
|
||||
auto const_one = make_shared<Constant>(ov::element::i32, Shape{1}, 1);
|
||||
for (int i = 0; i < N; ++i) {
|
||||
auto indices = node.get_input(i);
|
||||
auto data = node.get_input(N + i);
|
||||
|
||||
const auto& indices_pshape = indices.get_partial_shape();
|
||||
auto rank = indices_pshape.rank();
|
||||
TENSORFLOW_OP_VALIDATION(node,
|
||||
indices_pshape.rank().is_static(),
|
||||
"Only static rank for `indices` input is supported.");
|
||||
auto rank_val = rank.get_length();
|
||||
auto norm_indices = make_shared<Reshape>(indices, const_minus_one, false);
|
||||
if (rank_val < 1) {
|
||||
data = make_shared<Unsqueeze>(data, const_zero);
|
||||
} else if (rank_val > 1) {
|
||||
auto data_shape = make_shared<ShapeOf>(data, ov::element::i32);
|
||||
auto start = make_shared<Constant>(ov::element::i32, Shape{1}, rank_val);
|
||||
auto stop = make_shared<Constant>(ov::element::i32, Shape{1}, numeric_limits<int>::max());
|
||||
auto shape_of_single_element = make_shared<Slice>(data_shape, start, stop, const_one);
|
||||
auto new_shape = make_shared<Concat>(OutputVector{const_minus_one, shape_of_single_element}, 0);
|
||||
data = make_shared<Reshape>(data, new_shape, false);
|
||||
}
|
||||
data_to_concat.push_back(data);
|
||||
indices_to_concat.push_back(norm_indices);
|
||||
}
|
||||
auto update = make_shared<Concat>(data_to_concat, 0);
|
||||
auto indices = make_shared<Concat>(indices_to_concat, 0);
|
||||
auto data_shape = make_shared<ShapeOf>(update, ov::element::i32);
|
||||
|
||||
auto zero = make_shared<Constant>(data_element_type, Shape{}, 0);
|
||||
auto zeros = make_shared<Broadcast>(zero, data_shape);
|
||||
auto max_idx = make_shared<ReduceMax>(indices, Constant::create(element::i32, {1}, {0}), true);
|
||||
auto stop = make_shared<Add>(max_idx->output(0), const_one);
|
||||
auto start = make_shared<Constant>(ov::element::i32, Shape{1}, 0);
|
||||
auto axis = make_shared<Constant>(ov::element::i32, Shape{1}, 0);
|
||||
auto sliced_zeros = make_shared<Slice>(zeros, start, stop, const_one, axis);
|
||||
|
||||
auto result = make_shared<ScatterUpdate>(sliced_zeros, indices, update, const_zero);
|
||||
set_node_name(node.get_name(), result);
|
||||
return result->outputs();
|
||||
}
|
||||
|
||||
} // namespace op
|
||||
} // namespace tensorflow
|
||||
} // namespace frontend
|
||||
} // namespace ov
|
@ -77,6 +77,7 @@ OP_CONVERTER(translate_max_pool_op);
|
||||
OP_CONVERTER(translate_non_max_suppression_op);
|
||||
OP_CONVERTER(translate_normalize_l2_op);
|
||||
OP_CONVERTER(translate_pad_op);
|
||||
OP_CONVERTER(translate_parallel_dynamic_stitch_op);
|
||||
OP_CONVERTER(translate_placeholder_op);
|
||||
OP_CONVERTER(translate_placeholder_with_default_op);
|
||||
OP_CONVERTER(translate_no_op);
|
||||
@ -257,6 +258,8 @@ const std::map<std::string, CreatorFunction> get_supported_ops() {
|
||||
{"Pack", translate_pack_op},
|
||||
{"Pad", translate_pad_op},
|
||||
{"PadV2", translate_pad_op},
|
||||
{"DynamicStitch", translate_parallel_dynamic_stitch_op},
|
||||
{"ParallelDynamicStitch", translate_parallel_dynamic_stitch_op},
|
||||
{"Placeholder", translate_placeholder_op},
|
||||
{"PlaceholderWithDefault", translate_placeholder_with_default_op},
|
||||
{"PreventGradient", translate_identity_op},
|
||||
|
@ -86,7 +86,7 @@ def summarize_graph(model_path, output_nodes_for_freeze=None, reshape_net=None):
|
||||
node_dict['type'] = tf.DType(node.attr['dtype'].type).name
|
||||
node_dict['shape'] = str(node.attr['shape'].shape.dim).replace('\n', '').replace(' ', '').replace(
|
||||
'size:', '').replace('[', '').replace(']', '')
|
||||
node_dict['shape'] = tuple(map(lambda x: int(x), node_dict['shape'].split(',')))
|
||||
node_dict['shape'] = tuple(map(lambda x: int(x) if x else 0, node_dict['shape'].split(',')))
|
||||
placeholders[node.name] = node_dict
|
||||
if node.op == "Variable" or node.op == "VariableV2":
|
||||
variables.append(node.name)
|
||||
|
@ -0,0 +1,91 @@
|
||||
# Copyright (C) 2018-2022 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import tensorflow as tf
|
||||
from common.tf_layer_test_class import CommonTFLayerTest
|
||||
|
||||
|
||||
class TestParallelDynamicStitch(CommonTFLayerTest):
|
||||
def _prepare_input(self, inputs_info):
|
||||
inputs_data = {}
|
||||
num_elements = 0
|
||||
assert len(inputs_info) % 2 == 0, "Number of inputs should be divisible by 2."
|
||||
data_input_cnt = len(inputs_info)//2
|
||||
for i in range(1, data_input_cnt + 1):
|
||||
indices_in_name = "indices{}".format(i)
|
||||
assert indices_in_name in inputs_info, "Test error: inputs_info must contain `{}`".format(indices_in_name)
|
||||
indices_shape = inputs_info[indices_in_name]
|
||||
num_elements = num_elements + np.prod(indices_shape, dtype=int)
|
||||
|
||||
indices_array = np.arange(np.random.randint(1, num_elements+1), dtype=np.intc)
|
||||
np.random.shuffle(indices_array)
|
||||
indices_array = np.resize(indices_array, num_elements)
|
||||
|
||||
idx = 0
|
||||
for i in range(1, data_input_cnt + 1):
|
||||
data_in_name = "data{}".format(i)
|
||||
indices_in_name = "indices{}".format(i)
|
||||
assert data_in_name in inputs_info, "Test error: inputs_info must contain `{}`".format(data_in_name)
|
||||
data_shape = inputs_info[data_in_name]
|
||||
indices_shape = inputs_info[indices_in_name]
|
||||
inputs_data[data_in_name] = np.random.randint(-50, 50, data_shape)
|
||||
|
||||
num_elements_i = np.prod(indices_shape, dtype=int)
|
||||
inputs_data[indices_in_name] = np.reshape(indices_array[idx:idx+num_elements_i], indices_shape)
|
||||
idx = idx + num_elements_i
|
||||
return inputs_data
|
||||
|
||||
def create_parallel_dynamic_stitch_net(self, data_input_cnt, shape_of_element, data_type):
|
||||
tf.compat.v1.reset_default_graph()
|
||||
# Create the graph and model
|
||||
with tf.compat.v1.Session() as sess:
|
||||
indices = []
|
||||
data = []
|
||||
data_shape = shape_of_element
|
||||
indices_shape = []
|
||||
|
||||
for i in range(1, data_input_cnt + 1):
|
||||
indices.append(tf.compat.v1.placeholder(tf.int32, indices_shape, 'indices{}'.format(i)))
|
||||
data.append(tf.compat.v1.placeholder(data_type, data_shape, 'data{}'.format(i)))
|
||||
data_shape.insert(0, i)
|
||||
indices_shape.insert(0, i)
|
||||
tf.dynamic_stitch(indices, data)
|
||||
tf.compat.v1.global_variables_initializer()
|
||||
|
||||
tf_net = sess.graph_def
|
||||
|
||||
return tf_net, None
|
||||
|
||||
test_data_basic = [
|
||||
dict(data_input_cnt=1, shape_of_element=[1], data_type=tf.float32),
|
||||
dict(data_input_cnt=2, shape_of_element=[2, 2], data_type=tf.float32),
|
||||
dict(data_input_cnt=3, shape_of_element=[2, 1, 2], data_type=tf.float32),
|
||||
]
|
||||
|
||||
@pytest.mark.parametrize("params", test_data_basic)
|
||||
@pytest.mark.precommit_tf_fe
|
||||
def test_parallel_dynamic_stitch_basic(self, params, ie_device, precision, ir_version, temp_dir,
|
||||
use_new_frontend, use_old_api):
|
||||
if not use_new_frontend:
|
||||
pytest.skip("DynamicStitch operation is not supported via legacy frontend.")
|
||||
self._test(*self.create_parallel_dynamic_stitch_net(**params),
|
||||
ie_device, precision, ir_version, temp_dir=temp_dir,
|
||||
use_new_frontend=use_new_frontend, use_old_api=use_old_api)
|
||||
|
||||
test_data_different_types = [
|
||||
dict(data_input_cnt=4, shape_of_element=[3, 2], data_type=tf.float64),
|
||||
dict(data_input_cnt=2, shape_of_element=[2, 2, 1], data_type=tf.int64),
|
||||
dict(data_input_cnt=3, shape_of_element=[2, 1, 2, 4], data_type=tf.int32),
|
||||
]
|
||||
|
||||
@pytest.mark.parametrize("params", test_data_different_types)
|
||||
@pytest.mark.nightly
|
||||
def test_parallel_dynamic_stitch_different_types(self, params, ie_device, precision, ir_version, temp_dir,
|
||||
use_new_frontend, use_old_api):
|
||||
if not use_new_frontend:
|
||||
pytest.skip("DynamicStitch operation is not supported via legacy frontend.")
|
||||
self._test(*self.create_parallel_dynamic_stitch_net(**params),
|
||||
ie_device, precision, ir_version, temp_dir=temp_dir,
|
||||
use_new_frontend=use_new_frontend, use_old_api=use_old_api)
|
Loading…
Reference in New Issue
Block a user