[ONNX] Set defaults in LSTMSequence even if dimensions are dynamic (#3491)

Ticket: 43221
This commit is contained in:
Mateusz Tabaka 2020-12-08 14:53:24 +01:00 committed by GitHub
parent 6888ffa328
commit 8b90c9e7e2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 551 additions and 134 deletions

View File

@ -60,62 +60,8 @@ namespace ngraph
LSTM_INPUT_P
};
enum class LSTMInputDimension
{
BATCH_SIZE,
SEQ_LENGTH,
NUM_DIRECTIONS,
HIDDEN_SIZE,
};
struct LSTMNgInputMap
{
// Check if input shape dimension at dimension_index is static
bool check_static_input_dim(LSTMInput input, const size_t dimension_index)
{
return m_input_map[input].get_partial_shape().rank().is_static() &&
m_input_map[input].get_partial_shape().rank().get_length() >
dimension_index &&
m_input_map[input].get_partial_shape()[dimension_index].is_static();
}
// Validate and handle dimensions required to create default inputs
void init_dim_map()
{
// batch_size
if (check_static_input_dim(LSTMInput::LSTM_INPUT_X, 0))
{
m_dim_map[LSTMInputDimension::BATCH_SIZE] =
m_input_map[LSTMInput::LSTM_INPUT_X]
.get_partial_shape()[0]
.get_length();
}
// seq_length
if (check_static_input_dim(LSTMInput::LSTM_INPUT_X, 1))
{
m_dim_map[LSTMInputDimension::SEQ_LENGTH] =
m_input_map[LSTMInput::LSTM_INPUT_X]
.get_partial_shape()[1]
.get_length();
}
// num_directions
if (check_static_input_dim(LSTMInput::LSTM_INPUT_R, 0))
{
m_dim_map[LSTMInputDimension::NUM_DIRECTIONS] =
m_input_map[LSTMInput::LSTM_INPUT_R]
.get_partial_shape()[0]
.get_length();
}
// hidden_size
if (check_static_input_dim(LSTMInput::LSTM_INPUT_R, 2))
{
m_dim_map[LSTMInputDimension::HIDDEN_SIZE] =
m_input_map[LSTMInput::LSTM_INPUT_R]
.get_partial_shape()[2]
.get_length();
}
}
explicit LSTMNgInputMap(const Node& node)
{
const auto& ng_inputs = node.get_ng_inputs();
@ -150,7 +96,29 @@ namespace ngraph
1);
// Get dimensions needed for default inputs creation
init_dim_map();
auto shape_of_x = std::make_shared<default_opset::ShapeOf>(
m_input_map[LSTMInput::LSTM_INPUT_X]);
auto axes =
default_opset::Constant::create(element::Type_t::i32, Shape{1}, {0});
auto batch_size_node = std::make_shared<default_opset::Gather>(
shape_of_x,
default_opset::Constant::create(element::Type_t::i32, Shape{1}, {0}),
axes);
auto seq_length_node = std::make_shared<default_opset::Gather>(
shape_of_x,
default_opset::Constant::create(element::Type_t::i32, Shape{1}, {1}),
axes);
auto shape_of_r = std::make_shared<default_opset::ShapeOf>(
m_input_map[LSTMInput::LSTM_INPUT_R]);
auto num_directions_node = std::make_shared<default_opset::Gather>(
shape_of_r,
default_opset::Constant::create(element::Type_t::i32, Shape{1}, {0}),
axes);
auto hidden_size_node = std::make_shared<default_opset::Gather>(
shape_of_r,
default_opset::Constant::create(element::Type_t::i32, Shape{1}, {2}),
axes);
// ------ Optional inputs ------
// `B` - The bias tensor for input gate.
@ -174,23 +142,20 @@ namespace ngraph
}
else
{
NGRAPH_CHECK(m_dim_map.count(LSTMInputDimension::NUM_DIRECTIONS) &&
m_dim_map.count(LSTMInputDimension::HIDDEN_SIZE),
"ONNX LSTM: Can't create default `B` input, "
"because at least one of required dimensions "
"(num_directions, hidden_size) is dynamic. "
"\n`R` input onnx shape {num_directions, "
"gates_count*hidden_size, hidden_size}: ",
ng_inputs.at(2).get_partial_shape());
m_input_map[LSTMInput::LSTM_INPUT_B] = default_opset::Constant::create(
m_input_map[LSTMInput::LSTM_INPUT_X].get_element_type(),
Shape{m_dim_map[LSTMInputDimension::NUM_DIRECTIONS],
gates_count * m_dim_map[LSTMInputDimension::HIDDEN_SIZE]},
std::vector<float>(m_dim_map[LSTMInputDimension::NUM_DIRECTIONS] *
gates_count *
m_dim_map[LSTMInputDimension::HIDDEN_SIZE],
0.f));
auto b_shape = std::make_shared<default_opset::Concat>(
OutputVector{num_directions_node,
std::make_shared<default_opset::Multiply>(
default_opset::Constant::create(
element::Type_t::i64, Shape{1}, {gates_count}),
hidden_size_node)},
0);
m_input_map[LSTMInput::LSTM_INPUT_B] =
std::make_shared<default_opset::Broadcast>(
default_opset::Constant::create(
m_input_map[LSTMInput::LSTM_INPUT_X].get_element_type(),
Shape{},
{0}),
b_shape);
}
// `sequence_lens`- The lengths of the sequences in a batch.
// Shape: [batch_size]
@ -200,22 +165,9 @@ namespace ngraph
}
else
{
NGRAPH_CHECK(
m_dim_map.count(LSTMInputDimension::BATCH_SIZE) &&
m_dim_map.count(LSTMInputDimension::SEQ_LENGTH),
"ONNX LSTM: Can't create default `sequence_lens` input, ",
"because at least one of required dimensions "
"(batch_size, seq_length) is dynamic. "
"\n`X` input onnx shape {seq_length, batch_size, input_size} is ",
ng_inputs.at(0).get_partial_shape());
m_input_map[LSTMInput::LSTM_INPUT_SEQ_LENGTHS] =
default_opset::Constant::create(
element::i32,
Shape{m_dim_map[LSTMInputDimension::BATCH_SIZE]},
std::vector<std::int32_t>(
m_dim_map[LSTMInputDimension::BATCH_SIZE],
m_dim_map[LSTMInputDimension::SEQ_LENGTH]));
std::make_shared<default_opset::Broadcast>(seq_length_node,
batch_size_node);
}
// `initial_h` - The initial value of the hidden.
// ONNX Shape: [num_directions, batch_size, hidden_size]
@ -227,30 +179,17 @@ namespace ngraph
}
else
{
NGRAPH_CHECK(
m_dim_map.count(LSTMInputDimension::BATCH_SIZE) &&
m_dim_map.count(LSTMInputDimension::NUM_DIRECTIONS) &&
m_dim_map.count(LSTMInputDimension::HIDDEN_SIZE),
"ONNX LSTM: Can't create default `initial_h` input, "
"because at least one of required dimensions "
"(batch_size, num_directions, hidden_size) is dynamic. "
"\n`X` input onnx shape {seq_length, batch_size, input_size} is ",
ng_inputs.at(0).get_partial_shape(),
"\n`R` input onnx shape {num_directions, 4*hidden_size, "
"hidden_size} is ",
ng_inputs.at(2).get_partial_shape());
auto init_h_shape = std::make_shared<default_opset::Concat>(
OutputVector{
batch_size_node, num_directions_node, hidden_size_node},
0);
m_input_map[LSTMInput::LSTM_INPUT_INIT_H] =
default_opset::Constant::create(
m_input_map[LSTMInput::LSTM_INPUT_X].get_element_type(),
Shape{m_dim_map[LSTMInputDimension::BATCH_SIZE],
m_dim_map[LSTMInputDimension::NUM_DIRECTIONS],
m_dim_map[LSTMInputDimension::HIDDEN_SIZE]},
std::vector<float>(
m_dim_map[LSTMInputDimension::BATCH_SIZE] *
m_dim_map[LSTMInputDimension::NUM_DIRECTIONS] *
m_dim_map[LSTMInputDimension::HIDDEN_SIZE],
0.f));
std::make_shared<default_opset::Broadcast>(
default_opset::Constant::create(
m_input_map[LSTMInput::LSTM_INPUT_X].get_element_type(),
Shape{},
{0}),
init_h_shape);
}
// `initial_c` - The initial value of the cell.
// ONNX Shape: [num_directions, batch_size, hidden_size]
@ -262,30 +201,17 @@ namespace ngraph
}
else
{
NGRAPH_CHECK(
m_dim_map.count(LSTMInputDimension::BATCH_SIZE) &&
m_dim_map.count(LSTMInputDimension::NUM_DIRECTIONS) &&
m_dim_map.count(LSTMInputDimension::HIDDEN_SIZE),
"ONNX LSTM: Can't create default `initial_c` input, "
"because at least one of required dimensions "
"(batch_size, num_directions, hidden_size) is dynamic. "
"\n`X` input onnx shape {seq_length, batch_size, input_size} is ",
ng_inputs.at(0).get_partial_shape(),
"\n`R` input onnx shape {num_directions, 4*hidden_size, "
"hidden_size} is ",
ng_inputs.at(2).get_partial_shape());
auto init_c_shape = std::make_shared<default_opset::Concat>(
OutputVector{
batch_size_node, num_directions_node, hidden_size_node},
0);
m_input_map[LSTMInput::LSTM_INPUT_INIT_C] =
default_opset::Constant::create(
m_input_map[LSTMInput::LSTM_INPUT_X].get_element_type(),
Shape{m_dim_map[LSTMInputDimension::BATCH_SIZE],
m_dim_map[LSTMInputDimension::NUM_DIRECTIONS],
m_dim_map[LSTMInputDimension::HIDDEN_SIZE]},
std::vector<float>(
m_dim_map[LSTMInputDimension::BATCH_SIZE] *
m_dim_map[LSTMInputDimension::NUM_DIRECTIONS] *
m_dim_map[LSTMInputDimension::HIDDEN_SIZE],
0.f));
std::make_shared<default_opset::Broadcast>(
default_opset::Constant::create(
m_input_map[LSTMInput::LSTM_INPUT_X].get_element_type(),
Shape{},
{0}),
init_c_shape);
}
// `P` - The weight tensor for peepholes.
// Peepholes input is not supported by OpenVino
@ -299,7 +225,6 @@ namespace ngraph
Output<ngraph::Node>& at(const LSTMInput& key) { return m_input_map.at(key); }
std::map<LSTMInput, Output<ngraph::Node>> m_input_map;
std::map<LSTMInputDimension, size_t> m_dim_map;
};
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ATTRIBUTES PARSING ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

View File

@ -0,0 +1,185 @@
ir_version: 7
producer_name: "onnx-importer-test"
graph {
node {
output: "W"
op_type: "Constant"
attribute {
name: "value"
t {
dims: 1
dims: 12
dims: 1
data_type: 1
float_data: 0.31403765082359314
float_data: -0.16793324053287506
float_data: 1.3882579803466797
float_data: -0.690295398235321
float_data: -0.39940449595451355
float_data: -0.7833511233329773
float_data: -0.30992957949638367
float_data: 0.35575729608535767
float_data: -0.46826308965682983
float_data: 1.1741459369659424
float_data: -2.4147889614105225
float_data: -0.42783254384994507
name: "const_tensor_W"
}
type: TENSOR
}
}
node {
output: "R"
op_type: "Constant"
attribute {
name: "value"
t {
dims: 1
dims: 12
dims: 3
data_type: 1
float_data: 0.8490582704544067
float_data: 0.45121243596076965
float_data: -1.179901361465454
float_data: 0.13536448776721954
float_data: 0.813286542892456
float_data: 0.6017516255378723
float_data: 0.4847572445869446
float_data: -1.2136037349700928
float_data: 0.16383321583271027
float_data: 1.5106260776519775
float_data: 1.1177502870559692
float_data: 0.2358246147632599
float_data: 0.8490582704544067
float_data: 0.45121243596076965
float_data: -1.179901361465454
float_data: 0.13536448776721954
float_data: 0.813286542892456
float_data: 0.6017516255378723
float_data: 0.4847572445869446
float_data: -1.2136037349700928
float_data: 0.16383321583271027
float_data: 1.5106260776519775
float_data: 1.1177502870559692
float_data: 0.2358246147632599
float_data: 0.8490582704544067
float_data: 0.45121243596076965
float_data: -1.179901361465454
float_data: 0.13536448776721954
float_data: 0.813286542892456
float_data: 0.6017516255378723
float_data: 0.4847572445869446
float_data: -1.2136037349700928
float_data: 0.16383321583271027
float_data: 1.5106260776519775
float_data: 1.1177502870559692
float_data: 0.2358246147632599
name: "const_tensor"
}
type: TENSOR
}
}
node {
input: "X"
input: "W"
input: "R"
output: "Y"
output: "Y_h"
output: "Y_c"
op_type: "LSTM"
attribute {
name: "direction"
s: "forward"
type: STRING
}
attribute {
name: "hidden_size"
i: 3
type: INT
}
}
name: "test-model-lstm"
input {
name: "X"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: -1
}
dim {
dim_value: -1
}
dim {
dim_value: 1
}
}
}
}
}
output {
name: "Y"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: -1
}
dim {
dim_value: 1
}
dim {
dim_value: -1
}
dim {
dim_value: 3
}
}
}
}
}
output {
name: "Y_h"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 1
}
dim {
dim_value: -1
}
dim {
dim_value: 3
}
}
}
}
}
output {
name: "Y_c"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 1
}
dim {
dim_value: -1
}
dim {
dim_value: 3
}
}
}
}
}
}
opset_import {
domain: ""
version: 12
}

View File

@ -0,0 +1,269 @@
ir_version: 7
producer_name: "onnx-importer-test"
graph {
node {
input: "A"
output: "shape"
op_type: "Shape"
}
node {
output: "zero"
op_type: "Constant"
attribute {
name: "value"
t {
dims: 1
data_type: 7
int64_data: 0
}
type: TENSOR
}
}
node {
output: "one"
op_type: "Constant"
attribute {
name: "value"
t {
dims: 1
data_type: 7
int64_data: 1
}
type: TENSOR
}
}
node {
input: "shape"
input: "one"
output: "mul"
op_type: "Mul"
}
node {
input: "mul"
output: "constantofshape"
op_type: "ConstantOfShape"
attribute {
name: "value"
t {
dims: 1
data_type: 1
float_data: 1
}
type: TENSOR
}
}
node {
input: "constantofshape"
input: "A"
output: "conv"
op_type: "Conv"
}
node {
input: "conv"
output: "transposed"
op_type: "Transpose"
attribute {
name: "perm"
ints: 2
ints: 0
ints: 1
type: INTS
}
}
node {
input: "shape"
input: "zero"
output: "batch_size"
op_type: "Gather"
attribute {
name: "axis"
i: 0
type: INT
}
}
node {
output: "hidden_size"
op_type: "Constant"
attribute {
name: "value"
t {
dims: 1
data_type: 7
int64_data: 2
}
type: TENSOR
}
}
node {
input: "one"
input: "batch_size"
input: "hidden_size"
output: "concat"
op_type: "Concat"
attribute {
name: "axis"
i: 0
type: INT
}
}
node {
input: "concat"
output: "initial_hc"
op_type: "ConstantOfShape"
attribute {
name: "value"
t {
dims: 1
data_type: 1
float_data: 0
}
type: TENSOR
}
}
node {
output: "W"
op_type: "Constant"
attribute {
name: "value"
t {
dims: 1
dims: 8
dims: 3
data_type: 1
float_data: 4.0
}
type: TENSOR
}
}
node {
output: "R"
op_type: "Constant"
attribute {
name: "value"
t {
dims: 1
dims: 8
dims: 2
data_type: 1
float_data: 2.0
}
type: TENSOR
}
}
node {
output: "B"
op_type: "Constant"
attribute {
name: "value"
t {
dims: 1
dims: 16
data_type: 1
float_data: 3.0
}
type: TENSOR
}
}
node {
input: "transposed"
input: "W"
input: "R"
input: "B"
input: ""
input: "initial_hc"
input: "initial_hc"
output: "Y"
output: "Y_h"
output: "Y_c"
op_type: "LSTM"
attribute {
name: "hidden_size"
i: 2
type: INT
}
}
name: "test-model-lstm"
input {
name: "A"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 3
}
dim {
dim_value: 2
}
dim {
dim_value: 1
}
}
}
}
}
output {
name: "Y"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 1
}
dim {
dim_value: 1
}
dim {
dim_value: 3
}
dim {
dim_value: 2
}
}
}
}
}
output {
name: "Y_h"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 1
}
dim {
dim_value: 3
}
dim {
dim_value: 2
}
}
}
}
}
output {
name: "Y_c"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 1
}
dim {
dim_value: 3
}
dim {
dim_value: 2
}
}
}
}
}
}
opset_import {
domain: ""
version: 12
}

View File

@ -566,6 +566,44 @@ NGRAPH_TEST(${BACKEND_NAME}, onnx_model_import_only_lstm_dynamic_batch_seq_all_i
EXPECT_EQ(count_ops_of_type<op::v5::LSTMSequence>(function), 1);
}
NGRAPH_TEST(${BACKEND_NAME}, onnx_model_import_only_lstm_dynamic_batch_seq_3_inputs)
{
auto function = onnx_import::import_onnx_model(file_util::path_join(
SERIALIZED_ZOO, "onnx/dynamic_shapes/lstm_dyn_batch_seq_3_inputs.prototxt"));
auto batch_size = Dimension::dynamic();
auto seq_length = Dimension::dynamic();
int64_t hidden_size = 3;
int64_t num_directions = 1;
auto Y_expected_output = PartialShape{batch_size, num_directions, seq_length, hidden_size};
auto Y_h_expected_output = PartialShape{num_directions, batch_size, hidden_size};
auto Y_c_expected_output = PartialShape{num_directions, batch_size, hidden_size};
EXPECT_EQ(function->get_output_size(), 3);
EXPECT_EQ(function->get_output_partial_shape(0), Y_expected_output);
EXPECT_EQ(function->get_output_partial_shape(1), Y_h_expected_output);
EXPECT_EQ(function->get_output_partial_shape(2), Y_c_expected_output);
EXPECT_EQ(count_ops_of_type<op::v5::LSTMSequence>(function), 1);
}
NGRAPH_TEST(${BACKEND_NAME}, onnx_model_lstm_dynamic_batch_size_and_seq_len)
{
auto function = onnx_import::import_onnx_model(
file_util::path_join(SERIALIZED_ZOO, "onnx/lstm_dynamic_batch_size_and_seq_len.prototxt"));
auto test_case = test::TestCase<TestEngine, test::TestCaseType::DYNAMIC>(function);
test_case.add_input<float>({1, 2, 3, 4, 5, 6});
test_case.add_expected_output<float>(
Shape{1, 1, 3, 2}, {0.761594, 0.761594, 0.761594, 0.761594, 0.761594, 0.761594}); // Y
test_case.add_expected_output<float>(
Shape{1, 3, 2}, {0.761594, 0.761594, 0.761594, 0.761594, 0.761594, 0.761594}); // Y_c
test_case.add_expected_output<float>(Shape{1, 3, 2}, {1, 1, 1, 1, 1, 1}); // Y_h
test_case.run(DEFAULT_FLOAT_TOLERANCE_BITS + 1);
}
// RNNLikeSequenceOp test fixture for test setup reuse
class GRUSequenceOp : public testing::Test
{