Preprocessing(GAPI): Universal intrinsics (AVX2) implementation of U8C1 linear Resize. (#942)

* Preprocessing(GAPI): Universal intrinsics (AVX2) implementation of U8C1 linear Resize

* Refactoring
This commit is contained in:
Anna Khakimova 2020-07-07 11:38:59 +03:00 committed by GitHub
parent 0602a61a30
commit 987cc5ee52
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 472 additions and 215 deletions

View File

@ -131,6 +131,314 @@ void calcRowArea_32F(float dst[], const float *src[], const Size& inSz,
calcRowArea_impl(dst, src, inSz, outSz, yalpha, ymap, xmaxdf, xindex, xalpha, vbuf);
}
static inline void main_computation_horizontalPass_lpi4(const v_uint8& val_0,
const v_uint8& val_1,
const v_uint8& val_2,
const v_uint8& val_3,
const v_int16& a10,
const v_int16& a32,
const v_int16& a54,
const v_int16& a76,
v_uint8& shuf_mask1,
v_uint8& shuf_mask2,
v_uint8& res1, v_uint8& res2) {
v_int16 val0_0 = v_reinterpret_as_s16(v_expand_low(val_0));
v_int16 val0_1 = v_reinterpret_as_s16(v_expand_low(val_1));
v_int16 val0_2 = v_reinterpret_as_s16(v_expand_low(val_2));
v_int16 val0_3 = v_reinterpret_as_s16(v_expand_low(val_3));
v_int16 val1_0 = v_reinterpret_as_s16(v_expand_high(val_0));
v_int16 val1_1 = v_reinterpret_as_s16(v_expand_high(val_1));
v_int16 val1_2 = v_reinterpret_as_s16(v_expand_high(val_2));
v_int16 val1_3 = v_reinterpret_as_s16(v_expand_high(val_3));
v_int16 t0 = v_mulhrs(v_sub_wrap(val0_0, val1_0), a10);
v_int16 t1 = v_mulhrs(v_sub_wrap(val0_1, val1_1), a32);
v_int16 t2 = v_mulhrs(v_sub_wrap(val0_2, val1_2), a54);
v_int16 t3 = v_mulhrs(v_sub_wrap(val0_3, val1_3), a76);
v_int16 r0 = v_add_wrap(val1_0, t0);
v_int16 r1 = v_add_wrap(val1_1, t1);
v_int16 r2 = v_add_wrap(val1_2, t2);
v_int16 r3 = v_add_wrap(val1_3, t3);
v_uint8 q0 = v_packus(r0, r1);
v_uint8 q1 = v_packus(r2, r3);
v_uint8 q2 = v_shuffle_s8(q0, shuf_mask1);
v_uint8 q3 = v_shuffle_s8(q1, shuf_mask1);
v_uint8 q4 = v_blend_shiftleft<0xCC /*0b11001100*/, 4>(q2, q3);
v_uint8 q5 = v_blend_shiftright<0xCC /*0b11001100*/, 4>(q2, q3);
v_uint8 q6 = v256_permute4x64<0xD8>(q4);
v_uint8 q7 = v256_permute4x64<0xD8>(q5);
res1 = v_shuffle_s8(q6, shuf_mask2);
res2 = v_shuffle_s8(q7, shuf_mask2);
}
static inline void verticalPass_lpi4_8U(const uint8_t* src0[], const uint8_t* src1[],
uint8_t tmp[], const short beta[],
const int& length, const int& half_nlanes) {
v_int16 b0 = vx_setall_s16(beta[0]);
v_int16 b1 = vx_setall_s16(beta[1]);
v_int16 b2 = vx_setall_s16(beta[2]);
v_int16 b3 = vx_setall_s16(beta[3]);
v_uint8 shuf_mask = v_setr_s8(0, 8, 4, 12, 1, 9, 5, 13,
2, 10, 6, 14, 3, 11, 7, 15,
0, 8, 4, 12, 1, 9, 5, 13,
2, 10, 6, 14, 3, 11, 7, 15);
for (int w = 0; w < length; ) {
for (; w <= length - half_nlanes; w += half_nlanes) {
v_int16 val0_0 = v_load_ccache_expand(&src0[0][w]);
v_int16 val0_1 = v_load_ccache_expand(&src0[1][w]);
v_int16 val0_2 = v_load_ccache_expand(&src0[2][w]);
v_int16 val0_3 = v_load_ccache_expand(&src0[3][w]);
v_int16 val1_0 = v_load_ccache_expand(&src1[0][w]);
v_int16 val1_1 = v_load_ccache_expand(&src1[1][w]);
v_int16 val1_2 = v_load_ccache_expand(&src1[2][w]);
v_int16 val1_3 = v_load_ccache_expand(&src1[3][w]);
v_int16 t0 = v_mulhrs(v_sub_wrap(val0_0, val1_0), b0);
v_int16 t1 = v_mulhrs(v_sub_wrap(val0_1, val1_1), b1);
v_int16 t2 = v_mulhrs(v_sub_wrap(val0_2, val1_2), b2);
v_int16 t3 = v_mulhrs(v_sub_wrap(val0_3, val1_3), b3);
v_int16 r0 = v_add_wrap(val1_0, t0);
v_int16 r1 = v_add_wrap(val1_1, t1);
v_int16 r2 = v_add_wrap(val1_2, t2);
v_int16 r3 = v_add_wrap(val1_3, t3);
v_uint8 q0 = v_packus(r0, r1);
v_uint8 q1 = v_packus(r2, r3);
v_uint8 q2 = v_blend_shiftleft<0xCC /*0b11001100*/, 4>(q0, q1);
v_uint8 q3 = v_blend_shiftright<0xCC /*0b11001100*/, 4>(q0, q1);
v_uint8 q4 = v_shuffle_s8(q2, shuf_mask);
v_uint8 q5 = v_shuffle_s8(q3, shuf_mask);
v_uint8 q6 = v256_permute2x128<0x20>(q4, q5);
v_uint8 q7 = v256_permute2x128<0x31>(q4, q5);
vx_store(&tmp[4 * w + 0], q6);
vx_store(&tmp[4 * w + 2 * half_nlanes], q7);
}
if (w < length) {
w = length - half_nlanes;
}
}
}
static inline void insert64(v_uint8& val, const short mapsx[],
uint8_t tmp[], const int& x, const int& shift) {
val = v_insert64<0>(val, *reinterpret_cast<int64_t*>(&tmp[4 * mapsx[x + shift + 0]]));
val = v_insert64<1>(val, *reinterpret_cast<int64_t*>(&tmp[4 * mapsx[x + shift + 1]]));
val = v_insert64<2>(val, *reinterpret_cast<int64_t*>(&tmp[4 * mapsx[x + shift + 2]]));
val = v_insert64<3>(val, *reinterpret_cast<int64_t*>(&tmp[4 * mapsx[x + shift + 3]]));
}
static inline v_uint8 setHorizontalShufMask1() {
return v_setr_s8(0, 4, 8, 12, 2, 6, 10, 14,
1, 5, 9, 13, 3, 7, 11, 15,
0, 4, 8, 12, 2, 6, 10, 14,
1, 5, 9, 13, 3, 7, 11, 15);
}
static inline v_uint8 setHorizontalShufMask2() {
return v_setr_s8(0, 1, 8, 9, 2, 3, 10, 11,
4, 5, 12, 13, 6, 7, 14, 15,
0, 1, 8, 9, 2, 3, 10, 11,
4, 5, 12, 13, 6, 7, 14, 15);
}
static inline void horizontalPass_lpi4_8UC1(const short clone[], const short mapsx[],
uint8_t tmp[], uint8_t* dst[], const int& length,
const int& half_nlanes) {
v_uint8 val_0, val_1, val_2, val_3, res1, res2;
constexpr int shift = 4;
v_uint8 shuf_mask1 = setHorizontalShufMask1();
v_uint8 shuf_mask2 = setHorizontalShufMask2();;
v_uint32 idxs = v_setr_s32(0, 2, 4, 6, 1, 3, 5, 7);
for (int x = 0; x < length; ) {
for (; x <= length - half_nlanes; x += half_nlanes) {
v_int16 a10 = vx_load(&clone[4 * x]);
v_int16 a32 = vx_load(&clone[4 * (x + 4)]);
v_int16 a54 = vx_load(&clone[4 * (x + 8)]);
v_int16 a76 = vx_load(&clone[4 * (x + 12)]);
insert64(val_0, mapsx, tmp, x, 0);
insert64(val_1, mapsx, tmp, x, shift);
insert64(val_2, mapsx, tmp, x, shift*2);
insert64(val_3, mapsx, tmp, x, shift*3);
val_0 = v_permutevar8x32(val_0, idxs);
val_1 = v_permutevar8x32(val_1, idxs);
val_2 = v_permutevar8x32(val_2, idxs);
val_3 = v_permutevar8x32(val_3, idxs);
main_computation_horizontalPass_lpi4(val_0, val_1, val_2, val_3,
a10, a32, a54, a76,
shuf_mask1, shuf_mask2,
res1, res2);
v_store_low(&dst[0][x], res1);
v_store_high(&dst[1][x], res1);
v_store_low(&dst[2][x], res2);
v_store_high(&dst[3][x], res2);
}
if (x < length) {
x = length - half_nlanes;
}
}
}
static inline void verticalPass_anylpi_8U(const uint8_t* src0[], const uint8_t* src1[],
uint8_t tmp[], const int& beta0, const int& half_nlanes,
const int& l, const int& length1, const int& length2) {
for (int w = 0; w < length2; ) {
for (; w <= length1 - half_nlanes; w += half_nlanes) {
v_int16 s0 = v_reinterpret_as_s16(vx_load_expand(&src0[l][w]));
v_int16 s1 = v_reinterpret_as_s16(vx_load_expand(&src1[l][w]));
v_int16 t = v_mulhrs(s0 - s1, beta0) + s1;
v_pack_u_store(tmp + w, t);
}
if (w < length1) {
w = length1 - half_nlanes;
}
}
}
static inline void horizontalPass_anylpi_8U(const short alpha[], const short mapsx[],
uint8_t* dst[], const uchar tmp[], const int& l,
const int& half_nlanes, const int& length) {
for (int x = 0; x < length; ) {
for (; x <= length - half_nlanes; x += half_nlanes) {
v_int16 a0 = vx_load(&alpha[x]); // as signed Q1.1.14
v_int16 sx = vx_load(&mapsx[x]); // as integer (int16)
v_uint8 t = v_gather_pairs(tmp, sx); // 8 pairs of src0 pixels
v_int16 t0, t1;
v_deinterleave_expand(t, t0, t1); // tmp pixels as int16
v_int16 d = v_mulhrs(t0 - t1, a0) + t1;
v_pack_u_store(&dst[l][x], d);
}
if (x < length) {
x = length - half_nlanes;
}
}
}
// 8UC1 Resize (bi-linear)
void calcRowLinear_8UC1(uint8_t* dst[],
const uint8_t* src0[],
const uint8_t* src1[],
const short alpha[],
const short clone[], // 4 clones of alpha
const short mapsx[],
const short beta[],
uint8_t tmp[],
const Size& inSz,
const Size& outSz,
int lpi) {
bool xRatioEq = inSz.width == outSz.width;
bool yRatioEq = inSz.height == outSz.height;
constexpr int nlanes = v_uint8::nlanes;
constexpr int half_nlanes = (nlanes / 2);
if (!xRatioEq && !yRatioEq) {
if (4 == lpi) {
// vertical pass
GAPI_DbgAssert(inSz.width >= half_nlanes);
verticalPass_lpi4_8U(src0, src1, tmp, beta, inSz.width, half_nlanes);
// horizontal pass
GAPI_DbgAssert(outSz.width >= half_nlanes);
horizontalPass_lpi4_8UC1(clone, mapsx, tmp, dst, outSz.width, half_nlanes);
} else { // if any lpi
int inLength = inSz.width;
int outLength = outSz.width;
for (int l = 0; l < lpi; ++l) {
short beta0 = beta[l];
// vertical pass
GAPI_DbgAssert(inSz.width >= half_nlanes);
verticalPass_anylpi_8U(src0, src1, tmp, beta0, half_nlanes, l, inLength, inLength);
// horizontal pass
GAPI_DbgAssert(outSz.width >= half_nlanes);
horizontalPass_anylpi_8U(alpha, mapsx, dst, tmp, l, half_nlanes, outLength);
}
} // if lpi == 4
} else if (!xRatioEq) {
GAPI_DbgAssert(yRatioEq);
if (4 == lpi) {
// vertical pass
GAPI_DbgAssert(inSz.width >= nlanes);
for (int w = 0; w < inSz.width; ) {
for (; w <= inSz.width - nlanes; w += nlanes) {
v_uint8 s0, s1, s2, s3;
s0 = vx_load(&src0[0][w]);
s1 = vx_load(&src0[1][w]);
s2 = vx_load(&src0[2][w]);
s3 = vx_load(&src0[3][w]);
v_store_interleave(&tmp[4 * w], s0, s1, s2, s3);
}
if (w < inSz.width) {
w = inSz.width - nlanes;
}
}
// horizontal pass
GAPI_DbgAssert(outSz.width >= half_nlanes);
horizontalPass_lpi4_8UC1(clone, mapsx, tmp, dst, outSz.width, half_nlanes);
} else { // any LPI
for (int l = 0; l < lpi; ++l) {
const uchar *src = src0[l];
// horizontal pass
GAPI_DbgAssert(outSz.width >= half_nlanes);
horizontalPass_anylpi_8U(alpha, mapsx, dst, src, l, half_nlanes, outSz.width);
}
}
} else if (!yRatioEq) {
GAPI_DbgAssert(xRatioEq);
int inLength = inSz.width;
int outLength = outSz.width;
for (int l = 0; l < lpi; ++l) {
short beta0 = beta[l];
// vertical pass
GAPI_DbgAssert(inSz.width >= half_nlanes);
verticalPass_anylpi_8U(src0, src1, dst[l], beta0, half_nlanes, l,
inLength, outLength);
}
} else {
GAPI_DbgAssert(xRatioEq && yRatioEq);
int length = inSz.width;
for (int l = 0; l < lpi; ++l) {
memcpy(dst[l], src0[l], length);
}
}
}
template<int chanNum>
void calcRowLinear_8UC_Impl(std::array<std::array<uint8_t*, 4>, chanNum> &dst,
const uint8_t *src0[],
@ -147,75 +455,18 @@ void calcRowLinear_8UC_Impl(std::array<std::array<uint8_t*, 4>, chanNum> &dst,
const int shift = (half_nlanes / 4);
if (4 == lpi) {
GAPI_DbgAssert(inSz.width >= half_nlanes);
v_uint8 shuf_mask1 = v_setr_s8(0, 8, 4, 12, 1, 9, 5, 13,
2, 10, 6, 14, 3, 11, 7, 15,
0, 8, 4, 12, 1, 9, 5, 13,
2, 10, 6, 14, 3, 11, 7, 15);
v_uint8 shuf_mask2 = v_setr_s8(0, 4, 8, 12, 2, 6, 10, 14,
1, 5, 9, 13, 3, 7, 11, 15,
0, 4, 8, 12, 2, 6, 10, 14,
1, 5, 9, 13, 3, 7, 11, 15);
v_uint8 shuf_mask3 = v_setr_s8(0, 1, 8, 9, 2, 3, 10, 11,
4, 5, 12, 13, 6, 7, 14, 15,
0, 1, 8, 9, 2, 3, 10, 11,
4, 5, 12, 13, 6, 7, 14, 15);
// vertical pass
v_int16 b0 = vx_setall_s16(beta[0]);
v_int16 b1 = vx_setall_s16(beta[1]);
v_int16 b2 = vx_setall_s16(beta[2]);
v_int16 b3 = vx_setall_s16(beta[3]);
for (int w = 0; w < inSz.width*chanNum; ) {
for (; w <= inSz.width*chanNum - half_nlanes && w >= 0; w += half_nlanes) {
v_int16 val0_0 = v_load_ccache_expand(&src0[0][w]);
v_int16 val0_1 = v_load_ccache_expand(&src0[1][w]);
v_int16 val0_2 = v_load_ccache_expand(&src0[2][w]);
v_int16 val0_3 = v_load_ccache_expand(&src0[3][w]);
v_int16 val1_0 = v_load_ccache_expand(&src1[0][w]);
v_int16 val1_1 = v_load_ccache_expand(&src1[1][w]);
v_int16 val1_2 = v_load_ccache_expand(&src1[2][w]);
v_int16 val1_3 = v_load_ccache_expand(&src1[3][w]);
v_int16 t0 = v_mulhrs(v_sub_wrap(val0_0, val1_0), b0);
v_int16 t1 = v_mulhrs(v_sub_wrap(val0_1, val1_1), b1);
v_int16 t2 = v_mulhrs(v_sub_wrap(val0_2, val1_2), b2);
v_int16 t3 = v_mulhrs(v_sub_wrap(val0_3, val1_3), b3);
v_int16 r0 = v_add_wrap(val1_0, t0);
v_int16 r1 = v_add_wrap(val1_1, t1);
v_int16 r2 = v_add_wrap(val1_2, t2);
v_int16 r3 = v_add_wrap(val1_3, t3);
v_uint8 q0 = v_packus(r0, r1);
v_uint8 q1 = v_packus(r2, r3);
v_uint8 q2 = v_blend_shiftleft<0xCC /*0b11001100*/, 4>(q0, q1);
v_uint8 q3 = v_blend_shiftright<0xCC /*0b11001100*/, 4>(q0, q1);
v_uint8 q4 = v_shuffle_s8(q2, shuf_mask1);
v_uint8 q5 = v_shuffle_s8(q3, shuf_mask1);
v_uint8 q6 = v256_permute2x128<0x20>(q4, q5);
v_uint8 q7 = v256_permute2x128<0x31>(q4, q5);
vx_store(&tmp[4 * w + 0], q6);
vx_store(&tmp[4 * w + 2 * half_nlanes], q7);
}
if (w < inSz.width*chanNum) {
w = inSz.width*chanNum - half_nlanes;
}
}
GAPI_DbgAssert(inSz.width*chanNum >= half_nlanes);
verticalPass_lpi4_8U(src0, src1, tmp, beta,
inSz.width*chanNum, half_nlanes);
// horizontal pass
v_uint8 val_0, val_1, val_2, val_3;
GAPI_DbgAssert(outSz.width >= half_nlanes);
//This variables are here to initialize them once. This variant don't affect performance.
v_uint8 val_0, val_1, val_2, val_3, res1, res2;
v_uint8 shuf_mask1 = setHorizontalShufMask1();
v_uint8 shuf_mask2 = setHorizontalShufMask2();
for (int x = 0; x < outSz.width; ) {
for (; x <= outSz.width - half_nlanes && x >= 0; x += half_nlanes) {
v_int16 a10 = vx_load(&clone[4 * x]);
@ -229,45 +480,15 @@ void calcRowLinear_8UC_Impl(std::array<std::array<uint8_t*, 4>, chanNum> &dst,
v_gather_channel(val_2, tmp, mapsx, chanNum, c, x, shift * 2);
v_gather_channel(val_3, tmp, mapsx, chanNum, c, x, shift * 3);
v_int16 val0_0 = v_reinterpret_as_s16(v_expand_low(val_0));
v_int16 val0_1 = v_reinterpret_as_s16(v_expand_low(val_1));
v_int16 val0_2 = v_reinterpret_as_s16(v_expand_low(val_2));
v_int16 val0_3 = v_reinterpret_as_s16(v_expand_low(val_3));
main_computation_horizontalPass_lpi4(val_0, val_1, val_2, val_3,
a10, a32, a54, a76,
shuf_mask1, shuf_mask2,
res1, res2);
v_int16 val1_0 = v_reinterpret_as_s16(v_expand_high(val_0));
v_int16 val1_1 = v_reinterpret_as_s16(v_expand_high(val_1));
v_int16 val1_2 = v_reinterpret_as_s16(v_expand_high(val_2));
v_int16 val1_3 = v_reinterpret_as_s16(v_expand_high(val_3));
v_int16 t0 = v_mulhrs(v_sub_wrap(val0_0, val1_0), a10);
v_int16 t1 = v_mulhrs(v_sub_wrap(val0_1, val1_1), a32);
v_int16 t2 = v_mulhrs(v_sub_wrap(val0_2, val1_2), a54);
v_int16 t3 = v_mulhrs(v_sub_wrap(val0_3, val1_3), a76);
v_int16 r0 = v_add_wrap(val1_0, t0);
v_int16 r1 = v_add_wrap(val1_1, t1);
v_int16 r2 = v_add_wrap(val1_2, t2);
v_int16 r3 = v_add_wrap(val1_3, t3);
v_uint8 q0 = v_packus(r0, r1);
v_uint8 q1 = v_packus(r2, r3);
v_uint8 q2 = v_shuffle_s8(q0, shuf_mask2);
v_uint8 q3 = v_shuffle_s8(q1, shuf_mask2);
v_uint8 q4 = v_blend_shiftleft<0xCC /*0b11001100*/, 4>(q2, q3);
v_uint8 q5 = v_blend_shiftright<0xCC /*0b11001100*/, 4>(q2, q3);
v_uint8 q6 = v256_permute4x64<0xD8>(q4);
v_uint8 q7 = v256_permute4x64<0xD8>(q5);
v_uint8 q8 = v_shuffle_s8(q6, shuf_mask3);
v_uint8 q9 = v_shuffle_s8(q7, shuf_mask3);
v_store_low(&dst[c][0][x], q8);
v_store_high(&dst[c][1][x], q8);
v_store_low(&dst[c][2][x], q9);
v_store_high(&dst[c][3][x], q9);
v_store_low(&dst[c][0][x], res1);
v_store_high(&dst[c][1][x], res1);
v_store_low(&dst[c][2][x], res2);
v_store_high(&dst[c][3][x], res2);
}
}
@ -281,22 +502,11 @@ void calcRowLinear_8UC_Impl(std::array<std::array<uint8_t*, 4>, chanNum> &dst,
// vertical pass
GAPI_DbgAssert(inSz.width*chanNum >= half_nlanes);
for (int w = 0; w < inSz.width*chanNum; ) {
for (; w <= inSz.width*chanNum - half_nlanes; w += half_nlanes) {
v_int16 s0 = v_reinterpret_as_s16(vx_load_expand(&src0[l][w]));
v_int16 s1 = v_reinterpret_as_s16(vx_load_expand(&src1[l][w]));
v_int16 t = v_mulhrs(s0 - s1, beta0) + s1;
v_pack_u_store(tmp + w, t);
}
if (w < inSz.width*chanNum) {
w = inSz.width*chanNum - half_nlanes;
}
}
verticalPass_anylpi_8U(src0, src1, tmp, beta0, half_nlanes, l,
inSz.width*chanNum, inSz.width*chanNum);
// horizontal pass
GAPI_DbgAssert(outSz.width >= half_nlanes);
for (int x = 0; x < outSz.width; ) {
for (; x <= outSz.width - half_nlanes && x >= 0; x += half_nlanes) {
for (int c = 0; c < chanNum; ++c) {

View File

@ -42,44 +42,44 @@ void calcRowArea_CVKL_U8_SSE42(const uchar * src[],
//-----------------------------------------------------------------------------
// Resize (bi-linear, 8U)
void calcRowLinear_8U(uint8_t *dst[],
const uint8_t *src0[],
const uint8_t *src1[],
const short alpha[],
const short clone[],
const short mapsx[],
const short beta[],
uint8_t tmp[],
const Size & inSz,
const Size & outSz,
int lpi);
// Resize (bi-linear, 8UC1)
void calcRowLinear_8UC1(uint8_t* dst[],
const uint8_t* src0[],
const uint8_t* src1[],
const short alpha[],
const short clone[],
const short mapsx[],
const short beta[],
uint8_t tmp[],
const Size& inSz,
const Size& outSz,
int lpi);
// Resize (bi-linear, 8UC3)
void calcRowLinear_8U(C3, std::array<std::array<uint8_t*, 4>, 3> &dst,
const uint8_t *src0[],
const uint8_t *src1[],
const uint8_t* src0[],
const uint8_t* src1[],
const short alpha[],
const short clone[],
const short mapsx[],
const short beta[],
uint8_t tmp[],
const Size &inSz,
const Size &outSz,
int lpi);
uint8_t tmp[],
const Size& inSz,
const Size& outSz,
int lpi);
// Resize (bi-linear, 8UC4)
void calcRowLinear_8U(C4, std::array<std::array<uint8_t*, 4>, 4> &dst,
const uint8_t *src0[],
const uint8_t *src1[],
const uint8_t* src0[],
const uint8_t* src1[],
const short alpha[],
const short clone[],
const short mapsx[],
const short beta[],
uint8_t tmp[],
const Size &inSz,
const Size &outSz,
int lpi);
uint8_t tmp[],
const Size& inSz,
const Size& outSz,
int lpi);
template<int numChan>
void calcRowLinear_8UC(std::array<std::array<uint8_t*, 4>, numChan> &dst,

View File

@ -50,18 +50,18 @@ namespace InferenceEngine {
namespace gapi {
namespace kernels {
// Resize (bi-linear, 8U)
void calcRowLinear_8U(uint8_t *dst[],
const uint8_t *src0[],
const uint8_t *src1[],
const short alpha[],
const short clone[], // 4 clones of alpha
const short mapsx[],
const short beta[],
uint8_t tmp[],
const Size & inSz,
const Size & outSz,
int lpi) {
// 8UC1 Resize (bi-linear)
void calcRowLinear_8UC1( uint8_t *dst[],
const uint8_t *src0[],
const uint8_t *src1[],
const short alpha[],
const short clone[], // 4 clones of alpha
const short mapsx[],
const short beta[],
uint8_t tmp[],
const Size& inSz,
const Size& outSz,
int lpi) {
bool xRatioEq1 = inSz.width == outSz.width;
bool yRatioEq1 = inSz.height == outSz.height;
@ -650,9 +650,9 @@ void calcRowLinear_8UC_Impl_(std::array<std::array<uint8_t*, 4>, chanNum> &dst,
GAPI_DbgAssert(inSz.width*chanNum >= half_nlanes);
for (int w = 0; w < inSz.width*chanNum; ) {
for (; w <= inSz.width*chanNum - half_nlanes; w += half_nlanes) {
v_int16x8 s0 = v_reinterpret_as_s16(v_load_expand(&src0[l][w]));
v_int16x8 s1 = v_reinterpret_as_s16(v_load_expand(&src1[l][w]));
v_int16x8 t = v_mulhrs(s0 - s1, beta0) + s1;
v_int16 s0 = v_reinterpret_as_s16(vx_load_expand(&src0[l][w]));
v_int16 s1 = v_reinterpret_as_s16(vx_load_expand(&src1[l][w]));
v_int16 t = v_mulhrs(s0 - s1, beta0) + s1;
v_pack_u_store(tmp + w, t);
}
@ -666,11 +666,11 @@ void calcRowLinear_8UC_Impl_(std::array<std::array<uint8_t*, 4>, chanNum> &dst,
for (int x = 0; x < outSz.width; ) {
for (; x <= outSz.width - half_nlanes && x >= 0; x += half_nlanes) {
for (int c = 0; c < chanNum; c++) {
v_int16x8 a0 = v_load(&alpha[x]); // as signed Q1.1.14
v_int16x8 sx = v_load(&mapsx[x]); // as integer (int16)
v_int16x8 t0 = v_gather_chan<chanNum>(tmp, sx, c, 0);
v_int16x8 t1 = v_gather_chan<chanNum>(tmp, sx, c, 1);
v_int16x8 d = v_mulhrs(t0 - t1, a0) + t1;
v_int16 a0 = vx_load(&alpha[x]); // as signed Q1.1.14
v_int16 sx = vx_load(&mapsx[x]); // as integer (int16)
v_int16 t0 = v_gather_chan<chanNum>(tmp, sx, c, 0);
v_int16 t1 = v_gather_chan<chanNum>(tmp, sx, c, 1);
v_int16 d = v_mulhrs(t0 - t1, a0) + t1;
v_pack_u_store(&dst[c][l][x], d);
}
}

View File

@ -42,17 +42,17 @@ void calcRowArea_CVKL_U8_SSE42(const uchar * src[],
//----------------------------------------------------------------------
// Resize (bi-linear, 8U)
void calcRowLinear_8U(uint8_t *dst[],
const uint8_t *src0[],
const uint8_t *src1[],
const short alpha[],
const short clone[],
const short mapsx[],
const short beta[],
uint8_t tmp[],
const Size & inSz,
const Size & outSz,
int lpi);
void calcRowLinear_8UC1(uint8_t *dst[],
const uint8_t *src0[],
const uint8_t *src1[],
const short alpha[],
const short clone[],
const short mapsx[],
const short beta[],
uint8_t tmp[],
const Size& inSz,
const Size& outSz,
int lpi);
// Resize (bi-linear, 8UC3)
void calcRowLinear_8U(C3, std::array<std::array<uint8_t*, 4>, 3> &dst,

View File

@ -805,12 +805,32 @@ static void calcRowLinear(const cv::gapi::fluid::View & in,
src1[l] = in.InLine<const T>(index1);
dst[l] = out.OutLine<T>(l);
}
#if 1
#ifdef HAVE_AVX2
if (with_cpu_x86_avx2()) {
if (std::is_same<T, uint8_t>::value) {
if (inSz.width >= 32 && outSz.width >= 16) {
avx::calcRowLinear_8UC1(reinterpret_cast<uint8_t**>(dst),
reinterpret_cast<const uint8_t**>(src0),
reinterpret_cast<const uint8_t**>(src1),
reinterpret_cast<const short*>(alpha),
reinterpret_cast<const short*>(clone),
reinterpret_cast<const short*>(mapsx),
reinterpret_cast<const short*>(beta),
reinterpret_cast<uint8_t*>(tmp),
inSz, outSz, lpi);
return;
}
}
}
#endif
#endif
#ifdef HAVE_SSE
if (with_cpu_x86_sse42()) {
if (std::is_same<T, uint8_t>::value) {
if (inSz.width >= 16 && outSz.width >= 8) {
calcRowLinear_8U(reinterpret_cast<uint8_t**>(dst),
calcRowLinear_8UC1(reinterpret_cast<uint8_t**>(dst),
reinterpret_cast<const uint8_t**>(src0),
reinterpret_cast<const uint8_t**>(src1),
reinterpret_cast<const short*>(alpha),

View File

@ -36,7 +36,7 @@ inline __m256d _v256_shuffle_odd_64(const __m256d& v)
{ return _mm256_permute4x64_pd(v, _MM_SHUFFLE(3, 1, 2, 0)); }
template<int imm>
inline __m256i _v256_permute2x128(const __m256i& a, const __m256i& b)
static inline __m256i _v256_permute2x128(const __m256i& a, const __m256i& b)
{ return _mm256_permute2x128_si256(a, b, imm); }
template<int imm>
@ -52,7 +52,7 @@ static inline _Tpvec v256_permute2x128(const _Tpvec& a, const _Tpvec& b)
{ return _Tpvec(_v256_permute2x128<imm>(a.val, b.val)); }
template<int imm>
inline __m256i _v256_permute4x64(const __m256i& a)
static inline __m256i _v256_permute4x64(const __m256i& a)
{ return _mm256_permute4x64_epi64(a, imm); }
template<int imm>
@ -1956,9 +1956,14 @@ static inline v_uint8x32 v_setr_s8(char b0, char b1, char b2, char b3, char b4,
char b30, char b31)
{
return v_uint8x32(_mm256_setr_epi8(b0, b1, b2, b3, b4, b5, b6, b7,
b8, b9, b10, b11, b12, b13, b14, b15,
b16, b17, b18, b19, b20, b21, b22, b23,
b24, b25, b26, b27, b28, b29, b30, b31));
b8, b9, b10, b11, b12, b13, b14, b15,
b16, b17, b18, b19, b20, b21, b22, b23,
b24, b25, b26, b27, b28, b29, b30, b31));
}
static inline v_uint32x8 v_setr_s32(int b0, int b1, int b2, int b3, int b4, int b5, int b6, int b7)
{
return v_uint32x8(_mm256_setr_epi32(b0, b1, b2, b3, b4, b5, b6, b7));
}
inline void v_pack_store(schar* ptr, const v_int16x16& a)
@ -3001,36 +3006,30 @@ static inline void v_deinterleave(const v_float32x8& low, const v_float32x8& hig
odd .val = _mm256_unpackhi_ps(tmp0, tmp1);
}
static inline void v_deinterleave(const v_uint8x32& i0, const v_uint8x32& i1,
const v_uint8x32& i2, const v_uint8x32& i3,
v_uint8x32& o0, v_uint8x32& o1,
v_uint8x32& o2, v_uint8x32& o3)
static inline void v_deinterleave(const v_uint8x32& v0, const v_uint8x32& v1,
const v_uint8x32& v2, const v_uint8x32& v3,
v_uint8x32& a, v_uint8x32& b,
v_uint8x32& c, v_uint8x32& d,
v_uint8x32& shuf_mask)
{
__m256i u0 = i0.val; // a0 b0 c0 d0 a1 b1 c1 d1 ...
__m256i u1 = i1.val; // a4 b4 c4 d4 ...
__m256i u2 = i2.val; // a8 b8 c8 d8 ...
__m256i u3 = i3.val; // a12 b12 c12 d12 ...
/* a0a1a2a3 b0b1b2b3 c0c1c2c3 d0d1d2d3 a16a17a18a19 b16b17b18b19 c16c17c18c19 d16d17d18d19 */
__m256i u0 = _mm256_shuffle_epi8(v0.val, shuf_mask.val);
/* a4a5a6a7 b4b5b6b7 c4c5c6c7 d4d5d6d7 a20a21a22a23 b20b21b22b23 c20c21c22c23 d20d21d22d23 */
__m256i u1 = _mm256_shuffle_epi8(v1.val, shuf_mask.val);
/* a8a9a10a11 b8b9b10b11 c8c9c10c11 d8d9d10d11 */
__m256i u2 = _mm256_shuffle_epi8(v2.val, shuf_mask.val);
__m256i u3 = _mm256_shuffle_epi8(v3.val, shuf_mask.val);
__m256i v0 = _mm256_unpacklo_epi8(u0, u2); // a0 a8 b0 b8 ...
__m256i v1 = _mm256_unpackhi_epi8(u0, u2); // a2 a10 b2 b10 ...
__m256i v2 = _mm256_unpacklo_epi8(u1, u3); // a4 a12 b4 b12 ...
__m256i v3 = _mm256_unpackhi_epi8(u1, u3); // a6 a14 b6 b14 ...
__m256i s0 = _mm256_blend_epi16(u0, _mm256_slli_si256(u1, 4), 0xCC /*0b11001100*/); // a0a1a2a3a4a5a6a7 c0c1c2c3c4c5c6c7 a16a17a18a19a29a21a22a23 ...
__m256i s1 = _mm256_blend_epi16(_mm256_srli_si256(u0, 4), u1, 0xCC /*0b11001100*/);
__m256i s2 = _mm256_blend_epi16(u2, _mm256_slli_si256(u3, 4), 0xCC /*0b11001100*/);
__m256i s3 = _mm256_blend_epi16(_mm256_srli_si256(u2, 4), u3, 0xCC /*0b11001100*/);
u0 = _mm256_unpacklo_epi8(v0, v2); // a0 a4 a8 a12 ...
u1 = _mm256_unpacklo_epi8(v1, v3); // a2 a6 a10 a14 ...
u2 = _mm256_unpackhi_epi8(v0, v2); // a1 a5 a9 a13 ...
u3 = _mm256_unpackhi_epi8(v1, v3); // a3 a7 a11 a15 ...
v0 = _mm256_unpacklo_epi8(u0, u1); // a0 a2 a4 a6 ...
v1 = _mm256_unpacklo_epi8(u2, u3); // a1 a3 a5 a7 ...
v2 = _mm256_unpackhi_epi8(u0, u1); // c0 c2 c4 c6 ...
v3 = _mm256_unpackhi_epi8(u2, u3); // c1 c3 c5 c7 ...
o0.val = _mm256_unpacklo_epi8(v0, v1); // a0 a1 a2 a3 ...
o1.val = _mm256_unpackhi_epi8(v0, v1); // b0 b1 b2 b3 ...
o2.val = _mm256_unpacklo_epi8(v2, v3); // c0 c1 c2 c3 ...
o3.val = _mm256_unpackhi_epi8(v2, v3); // d0 d1 d2 d3 ...
}
a.val = _mm256_blend_epi16(s0, _mm256_slli_si256(s2, 8), 0xF0 /*0b11110000*/);
c.val = _mm256_blend_epi16(_mm256_srli_si256(s0, 8), s2, 0xF0 /*0b11110000*/);
b.val = _mm256_blend_epi16(s1, _mm256_slli_si256(s3, 8), 0xF0 /*0b11110000*/);
d.val = _mm256_blend_epi16(_mm256_srli_si256(s1, 8), s3, 0xF0 /*0b11110000*/);
}
static inline v_uint8x32 v_interleave_low(const v_uint8x32& a, const v_uint8x32& b)
{
@ -3090,23 +3089,17 @@ static inline void v_deinterleave_expand(const v_uint8x32& src, v_int16x16& even
static inline v_int16x16 v_mulhi(const v_int16x16& a, short b)
{
v_int16x16 r;
r.val = _mm256_mulhi_epi16(a.val, _mm256_set1_epi16(b));
return r;
return v_int16x16(_mm256_mulhi_epi16(a.val, _mm256_set1_epi16(b)));
}
static inline v_uint16x16 v_mulhi(const v_uint16x16& a, v_uint16x16 b)
static inline v_uint16x16 v_mulhi(const v_uint16x16& a, v_uint16x16& b)
{
v_uint16x16 r;
r.val = _mm256_mulhi_epu16(a.val, b.val);
return r;
return v_uint16x16(_mm256_mulhi_epu16(a.val, b.val));
}
static inline v_uint16x16 v_mulhi(const v_uint16x16& a, uint16_t b)
{
v_uint16x16 r;
r.val = _mm256_mulhi_epu16(a.val, _mm256_set1_epi16(b));
return r;
return v_uint16x16(_mm256_mulhi_epu16(a.val, _mm256_set1_epi16(b)));
}
static inline v_int16x16 v_mulhrs(const v_int16x16& a, const v_int16x16& b)
@ -3149,6 +3142,17 @@ static inline v_uint8x32 v_shuffle_s8(const v_uint8x32& a, const v_uint8x32& mas
return v_uint8x32(_mm256_shuffle_epi8(a.val, mask.val));
}
template<int index>
static inline v_uint8x32 v_insert64(v_uint8x32& a, const int64_t& i)
{
return v_uint8x32(_mm256_insert_epi64(a.val, i, index));
}
static inline v_uint8x32 v_permutevar8x32(v_uint8x32& a, v_uint32x8& idxs)
{
return v_uint8x32(_mm256_permutevar8x32_epi32(a.val, idxs.val));
}
static inline void v_gather_channel(v_uint8x32& vec, const uint8_t tmp[], const short mapsx[],
int chanNum, int c, int x, int shift)
{
@ -3163,6 +3167,29 @@ static inline void v_gather_channel(v_uint8x32& vec, const uint8_t tmp[], const
vec.val = _mm256_insert_epi32(vec.val, *reinterpret_cast<const int*>(&tmp[4 * (chanNum * (mapsx[x + shift + 3] + 1) + c)]), 7);
}
// for each j=index[k], load two chars src[j] and src[j+1]
static inline v_uint8x32 v_gather_pairs(const uchar src[], const v_int16x16& index) {
v_uint8x32 r;
r.val = _mm256_insert_epi16(r.val, *reinterpret_cast<const ushort*>(&src[_mm256_extract_epi16(index.val, 0)]), 0);
r.val = _mm256_insert_epi16(r.val, *reinterpret_cast<const ushort*>(&src[_mm256_extract_epi16(index.val, 1)]), 1);
r.val = _mm256_insert_epi16(r.val, *reinterpret_cast<const ushort*>(&src[_mm256_extract_epi16(index.val, 2)]), 2);
r.val = _mm256_insert_epi16(r.val, *reinterpret_cast<const ushort*>(&src[_mm256_extract_epi16(index.val, 3)]), 3);
r.val = _mm256_insert_epi16(r.val, *reinterpret_cast<const ushort*>(&src[_mm256_extract_epi16(index.val, 4)]), 4);
r.val = _mm256_insert_epi16(r.val, *reinterpret_cast<const ushort*>(&src[_mm256_extract_epi16(index.val, 5)]), 5);
r.val = _mm256_insert_epi16(r.val, *reinterpret_cast<const ushort*>(&src[_mm256_extract_epi16(index.val, 6)]), 6);
r.val = _mm256_insert_epi16(r.val, *reinterpret_cast<const ushort*>(&src[_mm256_extract_epi16(index.val, 7)]), 7);
r.val = _mm256_insert_epi16(r.val, *reinterpret_cast<const ushort*>(&src[_mm256_extract_epi16(index.val, 8)]), 8);
r.val = _mm256_insert_epi16(r.val, *reinterpret_cast<const ushort*>(&src[_mm256_extract_epi16(index.val, 9)]), 9);
r.val = _mm256_insert_epi16(r.val, *reinterpret_cast<const ushort*>(&src[_mm256_extract_epi16(index.val, 10)]), 10);
r.val = _mm256_insert_epi16(r.val, *reinterpret_cast<const ushort*>(&src[_mm256_extract_epi16(index.val, 11)]), 11);
r.val = _mm256_insert_epi16(r.val, *reinterpret_cast<const ushort*>(&src[_mm256_extract_epi16(index.val, 12)]), 12);
r.val = _mm256_insert_epi16(r.val, *reinterpret_cast<const ushort*>(&src[_mm256_extract_epi16(index.val, 13)]), 13);
r.val = _mm256_insert_epi16(r.val, *reinterpret_cast<const ushort*>(&src[_mm256_extract_epi16(index.val, 14)]), 14);
r.val = _mm256_insert_epi16(r.val, *reinterpret_cast<const ushort*>(&src[_mm256_extract_epi16(index.val, 15)]), 15);
return r;
}
namespace {
template<int chanNum>
static inline v_int16x16 v_gather_chan(const uchar src[], const v_int16x16& index, int channel, int pos) {