Reference ROIAlign-3 implementation (#2128)

This commit is contained in:
Bartosz Lesniewski 2020-09-21 14:04:39 +02:00 committed by GitHub
parent 3f52e64c25
commit 9af49a7f95
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 669 additions and 5 deletions

View File

@ -76,6 +76,9 @@ namespace ngraph
int get_sampling_ratio() const { return m_sampling_ratio; }
float get_spatial_scale() const { return m_spatial_scale; }
PoolingMode get_mode() const { return m_mode; }
bool evaluate(const HostTensorVector& outputs,
const HostTensorVector& inputs) const override;
private:
PoolingMode mode_from_string(const std::string& mode) const;
@ -86,9 +89,9 @@ namespace ngraph
float m_spatial_scale;
PoolingMode m_mode;
};
}
} // namespace v3
using v3::ROIAlign;
}
} // namespace op
std::ostream& operator<<(std::ostream& s, const op::v3::ROIAlign::PoolingMode& mode);
@ -106,4 +109,4 @@ namespace ngraph
"AttributeAdapter<op::v3::ROIAlign::PoolingMode>", 3};
const DiscreteTypeInfo& get_type_info() const override { return type_info; }
};
}
} // namespace ngraph

View File

@ -0,0 +1,244 @@
//*****************************************************************************
// Copyright 2017-2020 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <algorithm>
#include "ngraph/coordinate_transform.hpp"
#include "ngraph/op/roi_align.hpp" // for ROIAlign:PoolingMode
#include "ngraph/shape.hpp"
namespace ngraph
{
namespace runtime
{
namespace reference
{
using ROIPoolingMode = op::v3::ROIAlign::PoolingMode;
template <typename T>
void roi_align(const T* feature_maps,
const T* rois,
const int64_t* batch_indices,
T* out,
const Shape& feature_maps_shape,
const Shape& rois_shape,
const Shape& batch_indices_shape,
const Shape& out_shape,
const int pooled_height,
const int pooled_width,
const int sampling_ratio,
const float spatial_scale,
const ROIPoolingMode& pooling_mode)
{
auto C = feature_maps_shape[1];
auto feature_map_height = feature_maps_shape[2];
auto feature_map_width = feature_maps_shape[3];
auto num_rois = rois_shape[0];
CoordinateTransform feature_maps_transform(feature_maps_shape);
CoordinateTransform rois_transform(rois_shape);
CoordinateTransform out_transform(out_shape);
for (unsigned int roi_index = 0; roi_index < num_rois; roi_index++)
{
// Get ROI`s corners
T x1 = rois[rois_transform.index({roi_index, 0})] * spatial_scale;
T y1 = rois[rois_transform.index({roi_index, 1})] * spatial_scale;
T x2 = rois[rois_transform.index({roi_index, 2})] * spatial_scale;
T y2 = rois[rois_transform.index({roi_index, 3})] * spatial_scale;
T roi_width = std::max(x2 - x1, static_cast<T>(1.0));
T roi_height = std::max(y2 - y1, static_cast<T>(1.0));
T bin_width = roi_width / pooled_width;
T bin_height = roi_height / pooled_height;
auto sampling_ratio_x =
sampling_ratio == 0 ? static_cast<int>(ceil(bin_width)) : sampling_ratio;
auto sampling_ratio_y =
sampling_ratio == 0 ? static_cast<int>(ceil(bin_height)) : sampling_ratio;
uint64_t num_samples_in_bin = sampling_ratio_x * sampling_ratio_y;
T sample_distance_x = bin_width / static_cast<T>(sampling_ratio_x);
T sample_distance_y = bin_height / static_cast<T>(sampling_ratio_y);
std::vector<std::pair<unsigned int, unsigned int>> pooling_points;
std::vector<T> pooling_weights;
pooling_points.reserve(4 * num_samples_in_bin * pooled_height * pooled_width);
pooling_weights.reserve(4 * num_samples_in_bin * pooled_height * pooled_width);
// Save the sample coords and weights as they will be identical across all
// channels
for (unsigned int y_bin_ind = 0; y_bin_ind < pooled_height; y_bin_ind++)
{
for (unsigned int x_bin_ind = 0; x_bin_ind < pooled_width; x_bin_ind++)
{
for (unsigned int y_sample_ind = 0; y_sample_ind < sampling_ratio_y;
y_sample_ind++)
{
T sample_y = y1 + static_cast<T>(y_bin_ind) * bin_height +
sample_distance_y * (static_cast<T>(y_sample_ind) +
static_cast<T>(0.5f));
for (int64_t x_sample_ind = 0; x_sample_ind < sampling_ratio_x;
x_sample_ind++)
{
T sample_x = x1 + static_cast<T>(x_bin_ind) * bin_width +
sample_distance_x * (static_cast<T>(x_sample_ind) +
static_cast<T>(0.5f));
if (sample_x < -1.0 || sample_x > feature_map_width ||
sample_y < -1.0 || sample_y > feature_map_height)
{
// For this sample we save 4x point (0,0) with weight 0
pooling_points.insert(pooling_points.end(), 4, {0, 0});
pooling_weights.insert(pooling_weights.end(), 4, {0});
continue;
}
sample_x = std::max(sample_x, T{0});
sample_y = std::max(sample_y, T{0});
auto sample_y_low = static_cast<unsigned int>(sample_y);
auto sample_x_low = static_cast<unsigned int>(sample_x);
unsigned int sample_y_high;
unsigned int sample_x_high;
if (sample_y_low >= feature_map_height - 1)
{
sample_y_high = sample_y_low = feature_map_height - 1;
sample_y = static_cast<T>(sample_y_low);
}
else
{
sample_y_high = sample_y_low + 1;
}
if (sample_x_low >= feature_map_height - 1)
{
sample_x_high = sample_x_low = feature_map_width - 1;
sample_x = static_cast<T>(sample_x_low);
}
else
{
sample_x_high = sample_x_low + 1;
}
pooling_points.push_back({sample_y_low, sample_x_low});
pooling_points.push_back({sample_y_low, sample_x_high});
pooling_points.push_back({sample_y_high, sample_x_low});
pooling_points.push_back({sample_y_high, sample_x_high});
// weight calculation for bilinear interpolation
auto ly = sample_y - static_cast<T>(sample_y_low);
auto lx = sample_x - static_cast<T>(sample_x_low);
auto hy = static_cast<T>(1.) - ly;
auto hx = static_cast<T>(1.) - lx;
pooling_weights.push_back(hy * hx);
pooling_weights.push_back(hy * lx);
pooling_weights.push_back(ly * hx);
pooling_weights.push_back(ly * lx);
}
}
}
}
std::vector<T> tmp_out;
for (unsigned int channel_index = 0; channel_index < C; channel_index++)
{
tmp_out.reserve(pooled_height * pooled_width);
unsigned int sample_index = 0;
for (unsigned int y_bin_ind = 0; y_bin_ind < pooled_height; y_bin_ind++)
{
for (unsigned int x_bin_ind = 0; x_bin_ind < pooled_width; x_bin_ind++)
{
T pooled_value = 0;
for (unsigned int bin_sample_ind = 0;
bin_sample_ind < num_samples_in_bin;
bin_sample_ind++)
{
// the four parts are values of the four closest surrounding
// neighbours of considered sample, then basing on all sampled
// values in bin we calculate pooled value
auto sample_part_1 = feature_maps[feature_maps_transform.index(
{static_cast<unsigned int>(batch_indices[roi_index]),
channel_index,
pooling_points[sample_index].first,
pooling_points[sample_index].second})];
auto sample_part_2 = feature_maps[feature_maps_transform.index(
{static_cast<unsigned int>(batch_indices[roi_index]),
channel_index,
pooling_points[sample_index + 1].first,
pooling_points[sample_index + 1].second})];
auto sample_part_3 = feature_maps[feature_maps_transform.index(
{static_cast<unsigned int>(batch_indices[roi_index]),
channel_index,
pooling_points[sample_index + 2].first,
pooling_points[sample_index + 2].second})];
auto sample_part_4 = feature_maps[feature_maps_transform.index(
{static_cast<unsigned int>(batch_indices[roi_index]),
channel_index,
pooling_points[sample_index + 3].first,
pooling_points[sample_index + 3].second})];
switch (pooling_mode)
{
case ROIPoolingMode::MAX:
{
T sample_value = std::max(
{pooling_weights[sample_index] * sample_part_1,
pooling_weights[sample_index + 1] * sample_part_2,
pooling_weights[sample_index + 2] * sample_part_3,
pooling_weights[sample_index + 3] * sample_part_4});
pooled_value = sample_value > pooled_value ? sample_value
: pooled_value;
break;
}
case ROIPoolingMode::AVG:
default:
{
T sample_value =
pooling_weights[sample_index] * sample_part_1 +
pooling_weights[sample_index + 1] * sample_part_2 +
pooling_weights[sample_index + 2] * sample_part_3 +
pooling_weights[sample_index + 3] * sample_part_4;
pooled_value += sample_value / (num_samples_in_bin);
}
}
sample_index += 4;
}
tmp_out.push_back(pooled_value);
}
}
// save the calculations for all bins across this channel
auto output_channel_offset =
out_transform.index({static_cast<unsigned int>(roi_index),
static_cast<unsigned int>(channel_index),
static_cast<unsigned int>(0),
static_cast<unsigned int>(0)});
std::copy(tmp_out.begin(), tmp_out.end(), out + output_channel_offset);
tmp_out.clear();
}
}
return;
}
} // namespace reference
} // namespace runtime
} // namespace ngraph

View File

@ -16,6 +16,10 @@
#include "roi_align.hpp"
#include "ngraph/runtime/host_tensor.hpp"
#include "ngraph/runtime/reference/roi_align.hpp"
#include "util.hpp" // for host_tensor_2_vector
using namespace std;
using namespace ngraph;
@ -67,6 +71,14 @@ void op::v3::ROIAlign::validate_and_infer_types()
" and: ",
get_input_element_type(1));
NODE_VALIDATION_CHECK(
this,
get_input_element_type(0) == get_input_element_type(1),
"Type of feature maps (inputs) and rois is expected to be the same. Got: ",
get_input_element_type(0),
" and: ",
get_input_element_type(1));
NODE_VALIDATION_CHECK(this,
get_input_element_type(2).is_integral_number(),
"The data type for batch indices is expected to be an integer. Got: ",
@ -190,4 +202,87 @@ namespace ngraph
{
return s << as_string(type);
}
} // namespace ngraph
namespace
{
bool evaluate_roi_align(const HostTensorVector& args,
const HostTensorPtr& out,
const int pooled_height,
const int pooled_width,
const int sampling_ratio,
const float spatial_scale,
const op::v3::ROIAlign::PoolingMode& pooling_mode)
{
auto feature_maps = args[0];
auto rois = args[1];
auto batch_indices = args[2];
std::vector<int64_t> batch_indices_vec_scaled_up =
host_tensor_2_vector<int64_t>(batch_indices);
switch (feature_maps->get_element_type())
{
case element::Type_t::bf16:
{
runtime::reference::roi_align<bfloat16>(feature_maps->get_data_ptr<bfloat16>(),
rois->get_data_ptr<bfloat16>(),
batch_indices_vec_scaled_up.data(),
out->get_data_ptr<bfloat16>(),
feature_maps->get_shape(),
rois->get_shape(),
batch_indices->get_shape(),
out->get_shape(),
pooled_height,
pooled_width,
sampling_ratio,
spatial_scale,
pooling_mode);
break;
}
case element::Type_t::f16:
{
runtime::reference::roi_align<float16>(feature_maps->get_data_ptr<float16>(),
rois->get_data_ptr<float16>(),
batch_indices_vec_scaled_up.data(),
out->get_data_ptr<float16>(),
feature_maps->get_shape(),
rois->get_shape(),
batch_indices->get_shape(),
out->get_shape(),
pooled_height,
pooled_width,
sampling_ratio,
spatial_scale,
pooling_mode);
break;
}
case element::Type_t::f32:
{
runtime::reference::roi_align<float>(feature_maps->get_data_ptr<float>(),
rois->get_data_ptr<float>(),
batch_indices_vec_scaled_up.data(),
out->get_data_ptr<float>(),
feature_maps->get_shape(),
rois->get_shape(),
batch_indices->get_shape(),
out->get_shape(),
pooled_height,
pooled_width,
sampling_ratio,
spatial_scale,
pooling_mode);
break;
}
default: NGRAPH_UNREACHABLE("unsupported input type for roi_align");
}
return true;
}
} // namespace
bool op::v3::ROIAlign::evaluate(const HostTensorVector& outputs,
const HostTensorVector& inputs) const
{
return evaluate_roi_align(
inputs, outputs[0], m_pooled_h, m_pooled_w, m_sampling_ratio, m_spatial_scale, m_mode);
}

View File

@ -77,6 +77,7 @@ set(SRC
op_eval/non_zero.cpp
op_eval/reduce_l1.cpp
op_eval/reduce_l2.cpp
op_eval/roi_align.cpp
op_eval/softplus.cpp
op_eval/split.cpp
op_eval/swish.cpp

View File

@ -0,0 +1,110 @@
ir_version: 3
producer_name: "onnx-importer-test"
graph {
node{
input: "feature_maps"
input: "rois"
input: "batch_indices"
output: "Y"
op_type: "RoiAlign"
attribute{
name: "output_height"
i: 3
type: INT
}
attribute{
name: "output_width"
i: 4
type: INT
}
attribute{
name: "sampling_ratio"
i: 2
type: INT
}
attribute{
name: "spatial_scale"
f: 0.0625
type: FLOAT
}
attribute{
name: "mode"
s: "avg"
type: STRING
}
}
name: "test-model"
input{
name: "feature_maps"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 1
}
dim {
dim_value: 3
}
dim {
dim_value: 5
}
dim {
dim_value: 5
}
}
}
}
}
input{
name: "rois"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 5
}
dim {
dim_value: 4
}
}
}
}
}
input{
name:"batch_indices"
type{
tensor_type{
elem_type: 6
shape {
dim {
dim_value: 5
}
}
}
}
}
output{
name: "Y"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 5
}
dim {
dim_value: 3
}
dim {
dim_value: 3
}
dim {
dim_value: 4
}
}
}
}
}
}

View File

@ -748,7 +748,7 @@ namespace
-1.21722605, 0.82919357, 0.55765697, 0.12657686, 0.63432172, 0.75425957, -2.43721014,
-1.24478184, 2.65316853, 1.19509542, -0.95523998, 0.5149006, -0.01151649, 0.68327026,
-0.4589638, -0.46554745, 0.21055324, 0.39266729, 2.05098086, 1.83207919};
}
} // namespace
NGRAPH_TEST(${BACKEND_NAME}, onnx_model_softmax_axis_0)
{
@ -2468,6 +2468,48 @@ NGRAPH_TEST(${BACKEND_NAME}, onnx_empty_initializers_handling)
test_case.run_with_tolerance_as_fp(2.0e-5f);
}
NGRAPH_TEST(${BACKEND_NAME}, onnx_roi_align_f32)
{
const auto function = onnx_import::import_onnx_model(
file_util::path_join(SERIALIZED_ZOO, "onnx/roi_align_f32.prototxt"));
auto test_case = test::TestCase<TestEngine>(function);
test_case.add_input<float>({0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.,
13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25.,
26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38.,
39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51.,
52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64.,
65., 66., 67., 68., 69., 70., 71., 72., 73., 74.});
test_case.add_input<float>({7., 5., 7., 5., -15., -15., -15., -15., -10., 21.,
-10., 21., 13., 8., 13., 8., -14., 19., -14., 19.});
test_case.add_input<int32_t>({0, 0, 0, 0, 0});
test_case.add_expected_output<float>(
Shape{5, 3, 3, 4},
{2.95833f, 3.20833f, 3.45833f, 3.70833f, 4.625f, 4.875f, 5.125f, 5.375f, 6.29167f,
6.54167f, 6.79167f, 7.04167f, 27.9583f, 28.2083f, 28.4583f, 28.7083f, 29.625f, 29.875f,
30.125f, 30.375f, 31.2917f, 31.5417f, 31.7917f, 32.0417f, 52.9583f, 53.2083f, 53.4583f,
53.7083f, 54.625f, 54.875f, 55.125f, 55.375f, 56.2917f, 56.5417f, 56.7917f, 57.0417f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 25.f, 25.f, 25.f, 25.f, 25.f, 25.f,
25.f, 25.f, 25.f, 25.f, 25.f, 25.f, 50.f, 50.f, 50.f,
50.f, 50.f, 50.f, 50.f, 50.f, 50.f, 50.f, 50.f, 50.f,
7.39583f, 7.39583f, 7.42708f, 7.64583f, 9.0625f, 9.0625f, 9.09375f, 9.3125f, 10.7292f,
10.7292f, 10.7604f, 10.9792f, 32.3958f, 32.3958f, 32.4271f, 32.6458f, 34.0625f, 34.0625f,
34.0938f, 34.3125f, 35.7292f, 35.7292f, 35.7604f, 35.9792f, 57.3958f, 57.3958f, 57.4271f,
57.6458f, 59.0625f, 59.0625f, 59.0938f, 59.3125f, 60.7292f, 60.7292f, 60.7604f, 60.9792f,
4.27083f, 4.52083f, 4.77083f, 5.02083f, 5.9375f, 6.1875f, 6.4375f, 6.6875f, 7.60417f,
7.85417f, 8.10417f, 8.35417f, 29.2708f, 29.5208f, 29.7708f, 30.0208f, 30.9375f, 31.1875f,
31.4375f, 31.6875f, 32.6042f, 32.8542f, 33.1042f, 33.3542f, 54.2708f, 54.5208f, 54.7708f,
55.0208f, 55.9375f, 56.1875f, 56.4375f, 56.6875f, 57.6042f, 57.8542f, 58.1042f, 58.3542f,
6.77083f, 6.77083f, 6.77083f, 6.80208f, 8.4375f, 8.4375f, 8.4375f, 8.46875f, 10.1042f,
10.1042f, 10.1042f, 10.1354f, 31.7708f, 31.7708f, 31.7708f, 31.8021f, 33.4375f, 33.4375f,
33.4375f, 33.4688f, 35.1042f, 35.1042f, 35.1042f, 35.1354f, 56.7708f, 56.7708f, 56.7708f,
56.8021f, 58.4375f, 58.4375f, 58.4375f, 58.4688f, 60.1042f, 60.1042f, 60.1042f, 60.1354f});
test_case.run_with_tolerance_as_fp(1.0e-4f);
}
NGRAPH_TEST(${BACKEND_NAME}, quant_dequant_pattern)
{
const auto function = onnx_import::import_onnx_model(

View File

@ -0,0 +1,166 @@
//*****************************************************************************
// Copyright 2017-2020 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <numeric>
#include <vector>
#include "gtest/gtest.h"
#include "ngraph/op/roi_align.hpp"
#include "ngraph/runtime/host_tensor.hpp"
#include "ngraph/validation_util.hpp"
#include "runtime/backend.hpp"
#include "util/all_close_f.hpp"
#include "util/test_tools.hpp"
#include "util/type_prop.hpp"
using namespace std;
using namespace ngraph;
TEST(op_eval, roi_align_avg_pool)
{
const int N = 1;
const int C = 3;
const int H = 5;
const int W = 5;
const int num_rois = 5;
const int pooled_height = 3;
const int pooled_width = 4;
const auto data_shape = Shape{N, C, H, W};
const auto rois_shape = Shape{num_rois, 4};
const auto data = make_shared<op::Parameter>(element::f32, data_shape);
const auto rois = make_shared<op::Parameter>(element::f32, rois_shape);
const auto batch_indices = make_shared<op::Parameter>(element::i32, Shape{num_rois});
auto roi_align = make_shared<op::v3::ROIAlign>(
data, rois, batch_indices, pooled_height, pooled_width, 2, 1.0f / 16.0f, "avg");
auto f = make_shared<Function>(roi_align, ParameterVector{data, rois, batch_indices});
std::vector<float> data_vec{0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.,
13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25.,
26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38.,
39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51.,
52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64.,
65., 66., 67., 68., 69., 70., 71., 72., 73., 74.};
std::vector<float> rois_vec{7., 5., 7., 5., -15., -15., -15., -15., -10., 21.,
-10., 21., 13., 8., 13., 8., -14., 19., -14., 19.};
std::vector<int64_t> batch_indices_vec{0, 0, 0, 0, 0};
auto result = make_shared<HostTensor>();
ASSERT_TRUE(f->evaluate({result},
{make_host_tensor<element::Type_t::f32>(data_shape, data_vec),
make_host_tensor<element::Type_t::f32>(rois_shape, rois_vec),
make_host_tensor<element::Type_t::i64>(Shape{num_rois})}));
std::vector<float> expected_vec{
2.95833f, 3.20833f, 3.45833f, 3.70833f, 4.625f, 4.875f, 5.125f, 5.375f, 6.29167f,
6.54167f, 6.79167f, 7.04167f, 27.9583f, 28.2083f, 28.4583f, 28.7083f, 29.625f, 29.875f,
30.125f, 30.375f, 31.2917f, 31.5417f, 31.7917f, 32.0417f, 52.9583f, 53.2083f, 53.4583f,
53.7083f, 54.625f, 54.875f, 55.125f, 55.375f, 56.2917f, 56.5417f, 56.7917f, 57.0417f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 25.f, 25.f, 25.f, 25.f, 25.f, 25.f,
25.f, 25.f, 25.f, 25.f, 25.f, 25.f, 50.f, 50.f, 50.f,
50.f, 50.f, 50.f, 50.f, 50.f, 50.f, 50.f, 50.f, 50.f,
7.39583f, 7.39583f, 7.42708f, 7.64583f, 9.0625f, 9.0625f, 9.09375f, 9.3125f, 10.7292f,
10.7292f, 10.7604f, 10.9792f, 32.3958f, 32.3958f, 32.4271f, 32.6458f, 34.0625f, 34.0625f,
34.0938f, 34.3125f, 35.7292f, 35.7292f, 35.7604f, 35.9792f, 57.3958f, 57.3958f, 57.4271f,
57.6458f, 59.0625f, 59.0625f, 59.0938f, 59.3125f, 60.7292f, 60.7292f, 60.7604f, 60.9792f,
4.27083f, 4.52083f, 4.77083f, 5.02083f, 5.9375f, 6.1875f, 6.4375f, 6.6875f, 7.60417f,
7.85417f, 8.10417f, 8.35417f, 29.2708f, 29.5208f, 29.7708f, 30.0208f, 30.9375f, 31.1875f,
31.4375f, 31.6875f, 32.6042f, 32.8542f, 33.1042f, 33.3542f, 54.2708f, 54.5208f, 54.7708f,
55.0208f, 55.9375f, 56.1875f, 56.4375f, 56.6875f, 57.6042f, 57.8542f, 58.1042f, 58.3542f,
6.77083f, 6.77083f, 6.77083f, 6.80208f, 8.4375f, 8.4375f, 8.4375f, 8.46875f, 10.1042f,
10.1042f, 10.1042f, 10.1354f, 31.7708f, 31.7708f, 31.7708f, 31.8021f, 33.4375f, 33.4375f,
33.4375f, 33.4688f, 35.1042f, 35.1042f, 35.1042f, 35.1354f, 56.7708f, 56.7708f, 56.7708f,
56.8021f, 58.4375f, 58.4375f, 58.4375f, 58.4688f, 60.1042f, 60.1042f, 60.1042f, 60.1354f};
const auto expected_shape = Shape{num_rois, C, pooled_height, pooled_width};
EXPECT_EQ(result->get_element_type(), element::f32);
EXPECT_EQ(result->get_shape(), expected_shape);
ASSERT_TRUE(test::all_close_f(read_vector<float>(result), expected_vec, 6, 0.001));
}
TEST(op_eval, roi_align_max_pool)
{
const int N = 1;
const int C = 3;
const int H = 5;
const int W = 5;
const int num_rois = 5;
const int pooled_height = 3;
const int pooled_width = 4;
const auto data_shape = Shape{N, C, H, W};
const auto rois_shape = Shape{num_rois, 4};
const auto data = make_shared<op::Parameter>(element::f32, data_shape);
const auto rois = make_shared<op::Parameter>(element::f32, rois_shape);
const auto batch_indices = make_shared<op::Parameter>(element::i32, Shape{num_rois});
auto roi_align = make_shared<op::v3::ROIAlign>(
data, rois, batch_indices, pooled_height, pooled_width, 2, 1.0f / 16.0f, "max");
auto f = make_shared<Function>(roi_align, ParameterVector{data, rois, batch_indices});
std::vector<float> data_vec{0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.,
13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25.,
26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38.,
39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51.,
52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64.,
65., 66., 67., 68., 69., 70., 71., 72., 73., 74.};
std::vector<float> rois_vec{7., 5., 7., 5., -15., -15., -15., -15., -10., 21.,
-10., 21., 13., 8., 13., 8., -14., 19., -14., 19.};
std::vector<int64_t> batch_indices_vec{0, 0, 0, 0, 0};
auto result = make_shared<HostTensor>();
ASSERT_TRUE(f->evaluate({result},
{make_host_tensor<element::Type_t::f32>(data_shape, data_vec),
make_host_tensor<element::Type_t::f32>(rois_shape, rois_vec),
make_host_tensor<element::Type_t::i64>(Shape{num_rois})}));
std::vector<float> expected_vec{
2.10938f, 2.95313f, 3.375f, 2.53125f, 3.35938f, 4.70313f, 5.375f, 4.03125f, 3.51563f,
4.92188f, 5.625f, 4.21875f, 10.8984f, 15.2578f, 17.4375f, 13.0781f, 17.3568f, 24.2995f,
27.7708f, 20.8281f, 18.1641f, 25.4297f, 29.0625f, 21.7969f, 19.6875f, 27.5625f, 31.5f,
23.625f, 31.3542f, 43.8958f, 50.1667f, 37.625f, 32.8125f, 45.9375f, 52.5f, 39.375f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 25.f, 25.f, 25.f, 25.f, 25.f, 25.f,
25.f, 25.f, 25.f, 25.f, 25.f, 25.f, 50.f, 50.f, 50.f,
50.f, 50.f, 50.f, 50.f, 50.f, 50.f, 50.f, 50.f, 50.f,
5.625f, 5.625f, 5.625f, 4.57031f, 8.95833f, 8.95833f, 8.95833f, 7.27865f, 9.375f,
9.375f, 9.375f, 7.61719f, 19.6875f, 19.6875f, 19.6875f, 15.9961f, 31.3542f, 31.3542f,
31.3542f, 25.4753f, 32.8125f, 32.8125f, 32.8125f, 26.6602f, 33.75f, 33.75f, 33.75f,
27.4219f, 53.75f, 53.75f, 53.75f, 43.6719f, 56.25f, 56.25f, 56.25f, 45.7031f,
4.5f, 3.9375f, 2.8125f, 3.9375f, 5.5f, 4.8125f, 3.4375f, 4.8125f, 4.58333f,
4.01042f, 2.86458f, 3.9375f, 23.25f, 20.3438f, 14.5313f, 18.f, 28.4167f, 24.86458f,
17.76042f, 22.f, 23.25f, 20.3437f, 14.5312f, 18.f, 42.f, 36.75f, 26.25f,
32.0625f, 51.3333f, 44.9167f, 32.08333f, 39.1875f, 42.f, 36.75f, 26.25f, 32.0625f,
4.375f, 4.375f, 4.375f, 4.375f, 7.70833f, 7.70833f, 7.70833f, 7.70833f, 9.375f,
9.375f, 9.375f, 9.375f, 21.875f, 21.875f, 21.875f, 21.875f, 26.9792f, 26.9792f,
26.9792f, 26.9792f, 32.8125f, 32.8125f, 32.8125f, 32.8125f, 40.1042f, 40.1042f, 40.1042f,
40.1042f, 46.25f, 46.25f, 46.25f, 46.25f, 56.25f, 56.25f, 56.25f, 56.25f};
const auto expected_shape = Shape{num_rois, C, pooled_height, pooled_width};
EXPECT_EQ(result->get_element_type(), element::f32);
EXPECT_EQ(result->get_shape(), expected_shape);
ASSERT_TRUE(test::all_close_f(read_vector<float>(result), expected_vec, 6, 0.001));
}

View File

@ -552,6 +552,9 @@ abc_int64
# Unsupported primitive of type: SigmoidBackprop
sigmoid_bprop_n1c1h4
# Unsupported primitive of type: ROIAlign
IE_CPU.onnx_roi_align_f32
# [NOT_IMPLEMENTED] Input image format BOOL is not supported yet...
select
not
@ -1201,7 +1204,7 @@ IE_GPU.onnx_dyn_shapes_avg_pool_dyn_shape
IE_GPU.onnx_dyn_shapes_max_pool_dyn_shape
IE_GPU.onnx_dyn_shapes_global_avg_pool_dyn_shape
IE_GPU.onnx_dyn_shapes_global_max_pool_dyn_shape
IE_GPU.onnx_roi_align_f32
IE_GPU.tanh
IE_GPU.tan
IE_GPU.sum_to_scalar