[GPU] Updated to allocate memory in order of size while deserializing (#16867)

* updated to allocate memory in order of size while deserializing

* fix windows build error

* updated to check dependencies between not connected nodes
This commit is contained in:
Eddy Kim 2023-04-17 14:33:57 +09:00 committed by GitHub
parent 175db3523a
commit 9b9c31d46b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 528 additions and 415 deletions

View File

@ -92,7 +92,7 @@ void data_inst::load(BinaryInputBuffer& ib) {
pos += data_size; pos += data_size;
ib.seekg(pos); ib.seekg(pos);
} else { } else {
_outputs[0] = get_network().get_memory_pool().get_memory(output_layout, _allocation_type, false); _outputs[0] = get_network().get_engine().allocate_memory(output_layout, _allocation_type, false);
if (_allocation_type == allocation_type::usm_host || _allocation_type == allocation_type::usm_shared) { if (_allocation_type == allocation_type::usm_host || _allocation_type == allocation_type::usm_shared) {
ib >> make_data(_outputs[0]->buffer_ptr(), data_size); ib >> make_data(_outputs[0]->buffer_ptr(), data_size);

View File

@ -168,6 +168,14 @@ void oooq_memory_dependencies::run(program& p) {
if (!are_connected(A, B)) { if (!are_connected(A, B)) {
add_memory_dependency(*itr_A, *itr_B); add_memory_dependency(*itr_A, *itr_B);
add_memory_dependency(*itr_B, *itr_A); add_memory_dependency(*itr_B, *itr_A);
} else {
for (auto u : (*itr_A)->get_users()) {
if (u != (*itr_B) && !are_connected(B, user_map[u]) && !are_connected(user_map[u], B)) {
add_memory_dependency(*itr_A, *itr_B);
add_memory_dependency(*itr_B, *itr_A);
break;
}
}
} }
itr_B++; itr_B++;
B++; B++;

View File

@ -392,29 +392,34 @@ network::network(cldnn::BinaryInputBuffer& ib, const ExecutionConfig& config, st
_primitives[_primitive_id] = new_primitive_inst; _primitives[_primitive_id] = new_primitive_inst;
} }
std::vector<std::shared_ptr<primitive_inst>> insts_to_allocate;
size_t exec_order_size; size_t exec_order_size;
ib >> exec_order_size; ib >> exec_order_size;
_exec_order.clear();
std::vector<std::string> _exec_order_types; for (size_t i = 0; i < exec_order_size; ++i) {
_exec_order_types.resize(exec_order_size); std::string type;
for (auto& type : _exec_order_types) {
ib >> type; ib >> type;
std::shared_ptr<cldnn::primitive_inst> new_primitive_inst = prim_map_storage::instance().get_type_id(type)->create_instance(*this); std::shared_ptr<cldnn::primitive_inst> new_primitive_inst = prim_map_storage::instance().get_type_id(type)->create_instance(*this);
_exec_order.emplace_back(new_primitive_inst); insts_to_allocate.emplace_back(new_primitive_inst);
} }
_outputs.clear(); _outputs.clear();
_output_chains.clear(); _output_chains.clear();
for (const auto& p_inst : _exec_order) { for (const auto& p_inst : insts_to_allocate) {
ib >> *p_inst; ib >> *p_inst;
_primitives[p_inst->id()] = p_inst; _primitives[p_inst->id()] = p_inst;
if (p_inst->get_impl() != nullptr) if (p_inst->get_impl() != nullptr)
p_inst->init_by_cached_kernels(kernels_cache); p_inst->init_by_cached_kernels(kernels_cache);
} }
std::vector<primitive_id> exec_order_ids;
ib >> exec_order_ids;
_exec_order.clear();
for (auto& exec_order_id : exec_order_ids) {
_exec_order.emplace_back(_primitives[exec_order_id]);
}
for (auto& item : _primitives) { for (auto& item : _primitives) {
auto& p_inst = item.second; auto& p_inst = item.second;
if (p_inst->is_input()) if (p_inst->is_input())
@ -552,14 +557,35 @@ void network::save(cldnn::BinaryOutputBuffer& ob) {
size_t exec_order_size = _exec_order.size(); size_t exec_order_size = _exec_order.size();
ob << exec_order_size; ob << exec_order_size;
std::unordered_map<primitive_id, size_t> exec_order_num;
size_t i = exec_order_size;
for (const auto& p_inst : _exec_order) { for (const auto& p_inst : _exec_order) {
exec_order_num[p_inst->id()] = --i;
}
std::vector<std::shared_ptr<primitive_inst>> insts_to_allocate(_exec_order.begin(), _exec_order.end());
std::sort(insts_to_allocate.begin(),
insts_to_allocate.end(),
[&exec_order_num, &exec_order_size](std::shared_ptr<primitive_inst> const& lhs, std::shared_ptr<primitive_inst> const& rhs) {
size_t lhs_size = (lhs->mem_allocated()) ? (lhs->get_output_layout().bytes_count() + exec_order_size) : exec_order_num[lhs->id()];
size_t rhs_size = (rhs->mem_allocated()) ? (rhs->get_output_layout().bytes_count() + exec_order_size) : exec_order_num[rhs->id()];
return (lhs_size > rhs_size);
});
for (const auto& p_inst : insts_to_allocate) {
ob << p_inst->get_node().get_primitive()->type_string(); ob << p_inst->get_node().get_primitive()->type_string();
} }
for (const auto& p_inst : _exec_order) { for (const auto& p_inst : insts_to_allocate) {
ob << *p_inst; ob << *p_inst;
} }
std::vector<primitive_id> exec_order_ids;
for (const auto& p_inst : _exec_order) {
exec_order_ids.emplace_back(p_inst->id());
}
ob << exec_order_ids;
std::map<std::string, std::string> reuse_map; std::map<std::string, std::string> reuse_map;
auto& po = _program->get_processing_order(); auto& po = _program->get_processing_order();

View File

@ -54,483 +54,562 @@ TEST(memory_tests, DISABLED_network_creation_loop)
} }
} }
#endif #endif
TEST(memory_pool, basic_non_padded_relu_pipe) { namespace {
// We need a new engine here to get correct get_max_used_device_memory() result class memory_pool: public ::testing::Test {
// If we reuse common engine, then max memory value will be taken from some previously executed tests public:
// as it's tracked within engine instance void test_basic_non_padded_relu_pipe(bool is_caching_test) {
auto engine = create_test_engine(); // We need a new engine here to get correct get_max_used_device_memory() result
auto batch_num = 1; // If we reuse common engine, then max memory value will be taken from some previously executed tests
auto feature_num = 4; // as it's tracked within engine instance
auto x_size = 1; auto engine = create_test_engine();
auto y_size = 1; auto batch_num = 1;
auto feature_num = 4;
auto x_size = 1;
auto y_size = 1;
auto input = engine->allocate_memory({ data_types::f32, format::bfyx, { tensor(spatial(x_size, y_size), feature(feature_num), batch(batch_num)) } }); auto input = engine->allocate_memory({ data_types::f32, format::bfyx, { tensor(spatial(x_size, y_size), feature(feature_num), batch(batch_num)) } });
topology topology; topology topology;
topology.add(input_layout("input", input->get_layout())); topology.add(input_layout("input", input->get_layout()));
topology.add(activation("relu", input_info("input"), activation_func::relu)); topology.add(activation("relu", input_info("input"), activation_func::relu));
topology.add(activation("relu1", input_info("relu"), activation_func::relu)); topology.add(activation("relu1", input_info("relu"), activation_func::relu));
topology.add(activation("relu2", input_info("relu1"), activation_func::relu)); topology.add(activation("relu2", input_info("relu1"), activation_func::relu));
topology.add(activation("relu3", input_info("relu2"), activation_func::relu)); topology.add(activation("relu3", input_info("relu2"), activation_func::relu));
topology.add(activation("relu4", input_info("relu3"), activation_func::relu)); topology.add(activation("relu4", input_info("relu3"), activation_func::relu));
topology.add(activation("relu5", input_info("relu4"), activation_func::relu)); topology.add(activation("relu5", input_info("relu4"), activation_func::relu));
std::vector<float> input_vec = { -1.f, 2.f, -3.f, 4.f }; std::vector<float> input_vec = { -1.f, 2.f, -3.f, 4.f };
set_values(input, input_vec); set_values(input, input_vec);
ExecutionConfig config = get_test_default_config(*engine); ExecutionConfig config = get_test_default_config(*engine);
config.set_property(ov::intel_gpu::optimize_data(true)); config.set_property(ov::intel_gpu::optimize_data(true));
network network(*engine, topology, config); network::ptr network = get_network(*engine, topology, config, get_test_stream_ptr(), is_caching_test);
network.set_input_data("input", input); network->set_input_data("input", input);
auto outputs = network.execute(); auto outputs = network->execute();
ASSERT_EQ(engine->get_max_used_device_memory(), (uint64_t)64); ASSERT_EQ(engine->get_max_used_device_memory(), (uint64_t)64);
} }
TEST(memory_pool, basic_non_padded_relu_and_pooling_pipe) { void test_basic_non_padded_relu_and_pooling_pipe(bool is_caching_test) {
// We need a new engine here to get correct get_max_used_device_memory() result // We need a new engine here to get correct get_max_used_device_memory() result
// If we reuse common engine, then max memory value will be taken from some previously executed tests // If we reuse common engine, then max memory value will be taken from some previously executed tests
// as it's tracked within engine instance // as it's tracked within engine instance
auto engine = create_test_engine(); auto engine = create_test_engine();
auto batch_num = 1; auto batch_num = 1;
auto feature_num = 4; auto feature_num = 4;
auto x_size = 4; auto x_size = 4;
auto y_size = 4; auto y_size = 4;
auto input = engine->allocate_memory({ data_types::f32, format::bfyx, { tensor(spatial(x_size, y_size), feature(feature_num), batch(batch_num)) } }); auto input = engine->allocate_memory({ data_types::f32, format::bfyx, { tensor(spatial(x_size, y_size), feature(feature_num), batch(batch_num)) } });
topology topology; topology topology;
topology.add(input_layout("input", input->get_layout())); topology.add(input_layout("input", input->get_layout()));
topology.add(activation("relu", input_info("input"), activation_func::relu)); topology.add(activation("relu", input_info("input"), activation_func::relu));
topology.add(activation("relu1", input_info("relu"), activation_func::relu)); topology.add(activation("relu1", input_info("relu"), activation_func::relu));
topology.add(pooling("pool1", input_info("relu1"), pooling_mode::max, { 3, 3 }, { 2, 2 })); topology.add(pooling("pool1", input_info("relu1"), pooling_mode::max, { 3, 3 }, { 2, 2 }));
topology.add(activation("relu2", input_info("pool1"), activation_func::relu)); topology.add(activation("relu2", input_info("pool1"), activation_func::relu));
topology.add(activation("relu3", input_info("relu2"), activation_func::relu)); topology.add(activation("relu3", input_info("relu2"), activation_func::relu));
topology.add(activation("relu4", input_info("relu3"), activation_func::relu)); topology.add(activation("relu4", input_info("relu3"), activation_func::relu));
topology.add(activation("relu5", input_info("relu4"), activation_func::relu)); topology.add(activation("relu5", input_info("relu4"), activation_func::relu));
ExecutionConfig config = get_test_default_config(*engine); ExecutionConfig config = get_test_default_config(*engine);
config.set_property(ov::intel_gpu::optimize_data(true)); config.set_property(ov::intel_gpu::optimize_data(true));
network network(*engine, topology, config); network::ptr network = get_network(*engine, topology, config, get_test_stream_ptr(), is_caching_test);
network.set_input_data("input", input); network->set_input_data("input", input);
auto outputs = network.execute(); auto outputs = network->execute();
ASSERT_EQ(engine->get_max_used_device_memory(), (uint64_t)896); ASSERT_EQ(engine->get_max_used_device_memory(), (uint64_t)896);
} }
TEST(memory_pool, multi_outputs_network) { void test_multi_outputs_network(bool is_caching_test) {
// -- relu -- relu1 -- relu4 // -- relu -- relu1 -- relu4
// input< // input<
// -- relu2 -- relu3 -- relu5--relu6--relu7 // -- relu2 -- relu3 -- relu5--relu6--relu7
// neither of relu5, relu6 nor relu7 can share resource with relu4. // neither of relu5, relu6 nor relu7 can share resource with relu4.
auto engine = create_test_engine(); auto engine = create_test_engine();
auto batch_num = 1; auto batch_num = 1;
auto feature_num = 4; auto feature_num = 4;
auto x_size = 4; auto x_size = 4;
auto y_size = 4; auto y_size = 4;
auto input = engine->allocate_memory({ data_types::f32, format::bfyx, { tensor(spatial(x_size, y_size), feature(feature_num), batch(batch_num)) } }); auto input = engine->allocate_memory({ data_types::f32, format::bfyx, { tensor(spatial(x_size, y_size), feature(feature_num), batch(batch_num)) } });
topology topology; topology topology;
topology.add(input_layout("input", input->get_layout())); topology.add(input_layout("input", input->get_layout()));
topology.add(activation("relu", input_info("input"), activation_func::relu)); topology.add(activation("relu", input_info("input"), activation_func::relu));
topology.add(activation("relu1", input_info("relu"), activation_func::relu)); topology.add(activation("relu1", input_info("relu"), activation_func::relu));
topology.add(activation("relu2", input_info("input"), activation_func::relu)); topology.add(activation("relu2", input_info("input"), activation_func::relu));
topology.add(activation("relu3", input_info("relu2"), activation_func::relu)); topology.add(activation("relu3", input_info("relu2"), activation_func::relu));
topology.add(activation("relu4", input_info("relu1"), activation_func::relu)); topology.add(activation("relu4", input_info("relu1"), activation_func::relu));
topology.add(activation("relu5", input_info("relu3"), activation_func::relu)); topology.add(activation("relu5", input_info("relu3"), activation_func::relu));
topology.add(activation("relu6", input_info("relu5"), activation_func::relu)); topology.add(activation("relu6", input_info("relu5"), activation_func::relu));
topology.add(activation("relu7", input_info("relu6"), activation_func::relu)); topology.add(activation("relu7", input_info("relu6"), activation_func::relu));
ExecutionConfig config = get_test_default_config(*engine); ExecutionConfig config = get_test_default_config(*engine);
config.set_property(ov::intel_gpu::optimize_data(true)); config.set_property(ov::intel_gpu::optimize_data(true));
network network(*engine, topology, config); network::ptr network = get_network(*engine, topology, config, get_test_stream_ptr(), is_caching_test);
network.set_input_data("input", input); network->set_input_data("input", input);
auto outputs = network.execute(); auto outputs = network->execute();
ASSERT_EQ(engine->get_max_used_device_memory(), (uint64_t) 1536); ASSERT_EQ(engine->get_max_used_device_memory(), (uint64_t) 1536);
} }
TEST(memory_pool, oooq) { void test_oooq(bool is_caching_test) {
/* -- relu1 - concat1- relu4 -- /* -- relu1 - concat1- relu4 --
input< -- relu2 / >-- concat2 -- relu6 input< -- relu2 / >-- concat2 -- relu6
-- relu3 -- relu5 --------- -- relu3 -- relu5 ---------
neither of relu5, relu6 nor relu7 can share resource with relu4. */ neither of relu5, relu6 nor relu7 can share resource with relu4. */
// We need a new engine here to get correct get_max_used_device_memory() result // We need a new engine here to get correct get_max_used_device_memory() result
// If we reuse common engine, then max memory value will be taken from some previously executed tests // If we reuse common engine, then max memory value will be taken from some previously executed tests
// as it's tracked within engine instance // as it's tracked within engine instance
auto engine = create_test_engine(); auto engine = create_test_engine();
auto batch_num = 1; auto batch_num = 1;
auto feature_num = 4; auto feature_num = 4;
auto x_size = 4; auto x_size = 4;
auto y_size = 4; auto y_size = 4;
auto input = engine->allocate_memory({ data_types::f32, format::bfyx, { tensor(spatial(x_size, y_size), feature(feature_num), batch(batch_num)) } }); auto input = engine->allocate_memory({ data_types::f32, format::bfyx, { tensor(spatial(x_size, y_size), feature(feature_num), batch(batch_num)) } });
topology topology; topology topology;
topology.add(input_layout("input", input->get_layout())); topology.add(input_layout("input", input->get_layout()));
topology.add(activation("relu1", input_info("input"), activation_func::relu)); topology.add(activation("relu1", input_info("input"), activation_func::relu));
topology.add(activation("relu2", input_info("input"), activation_func::relu)); topology.add(activation("relu2", input_info("input"), activation_func::relu));
topology.add(activation("relu3", input_info("input"), activation_func::relu)); topology.add(activation("relu3", input_info("input"), activation_func::relu));
topology.add(concatenation("concat1", { input_info("relu1"), input_info("relu2") }, 1)); topology.add(concatenation("concat1", { input_info("relu1"), input_info("relu2") }, 1));
topology.add(activation("relu4", input_info("concat1"), activation_func::relu)); topology.add(activation("relu4", input_info("concat1"), activation_func::relu));
topology.add(activation("relu5", input_info("relu3"), activation_func::relu)); topology.add(activation("relu5", input_info("relu3"), activation_func::relu));
topology.add(concatenation("concat2", { input_info("relu4"), input_info("relu5") }, 1)); topology.add(concatenation("concat2", { input_info("relu4"), input_info("relu5") }, 1));
topology.add(activation("relu6", input_info("concat2"), activation_func::relu)); topology.add(activation("relu6", input_info("concat2"), activation_func::relu));
ExecutionConfig config = get_test_default_config(*engine); ExecutionConfig config = get_test_default_config(*engine);
config.set_property(ov::intel_gpu::optimize_data(true)); config.set_property(ov::intel_gpu::optimize_data(true));
network network(*engine, topology, config); network::ptr network = get_network(*engine, topology, config, get_test_stream_ptr(), is_caching_test);
network.set_input_data("input", input); network->set_input_data("input", input);
auto outputs = network.execute(); auto outputs = network->execute();
ASSERT_EQ(engine->get_max_used_device_memory(), (uint64_t) 2560); ASSERT_EQ(engine->get_max_used_device_memory(), (uint64_t) 2560);
} }
TEST(memory_pool, DISABLED_shared_mem_pool_same_topology_twice) { void test_shared_mem_pool_same_topology_twice() {
/* -- relu1 - concat1- relu4 -- /* -- relu1 - concat1- relu4 --
input< -- relu2 | >-- concat2 -- relu6 input< -- relu2 | >-- concat2 -- relu6
-- relu3 -- relu5 --------- -- relu3 -- relu5 ---------
neither of relu5, relu6 nor relu7 can share resource with relu4. */ neither of relu5, relu6 nor relu7 can share resource with relu4. */
// We need a new engine here to get correct get_max_used_device_memory() result // We need a new engine here to get correct get_max_used_device_memory() result
// If we reuse common engine, then max memory value will be taken from some previously executed tests // If we reuse common engine, then max memory value will be taken from some previously executed tests
// as it's tracked within engine instance // as it's tracked within engine instance
auto engine = create_test_engine(); auto engine = create_test_engine();
auto batch_num = 1; auto batch_num = 1;
auto feature_num = 4; auto feature_num = 4;
auto inp_x_size = 4; auto inp_x_size = 4;
auto inp_y_size = 4; auto inp_y_size = 4;
auto input = engine->allocate_memory({ data_types::f32, format::bfyx, { tensor(spatial(inp_x_size, inp_y_size), feature(feature_num), batch(batch_num)) } }); auto input = engine->allocate_memory({ data_types::f32, format::bfyx, { tensor(spatial(inp_x_size, inp_y_size), feature(feature_num), batch(batch_num)) } });
set_values(input, set_values(input,
{ 1.0f, 2.5f, 3.0f, 4.0f, 5.0f, 2.0f, 2.0f, 3.0f, 6.1f, 4.7f, 1.0f, 1.0f, 8.2f, 1.0f, 2.0f, 1.0f, { 1.0f, 2.5f, 3.0f, 4.0f, 5.0f, 2.0f, 2.0f, 3.0f, 6.1f, 4.7f, 1.0f, 1.0f, 8.2f, 1.0f, 2.0f, 1.0f,
5.0f, 2.0f, 2.0f, 3.0f, 5.0f, 2.0f, 2.0f, 3.0f, 1.1f, 2.4f, 1.0f, 1.0f, 4.0f, 6.0f, 3.0f, 3.6f, 5.0f, 2.0f, 2.0f, 3.0f, 5.0f, 2.0f, 2.0f, 3.0f, 1.1f, 2.4f, 1.0f, 1.0f, 4.0f, 6.0f, 3.0f, 3.6f,
4.0f, 6.0f, 3.0f, 3.0f, 1.0f, 1.0f, 1.5f, 1.0f, 4.0f, 6.5f, 3.0f, 3.0f, 4.0f, 6.0f, 1.8f, 3.5f, 4.0f, 6.0f, 3.0f, 3.0f, 1.0f, 1.0f, 1.5f, 1.0f, 4.0f, 6.5f, 3.0f, 3.0f, 4.0f, 6.0f, 1.8f, 3.5f,
3.0f, 5.0f, 1.0f, 1.0f, 1.3f, 1.0f, 0.4f, 1.3f, 4.0f, 7.0f, 3.0f, 3.0f, 1.0f, 2.0f, 3.9f, 4.0f 3.0f, 5.0f, 1.0f, 1.0f, 1.3f, 1.0f, 0.4f, 1.3f, 4.0f, 7.0f, 3.0f, 3.0f, 1.0f, 2.0f, 3.9f, 4.0f
}); });
topology topology; topology topology;
topology.add(input_layout("input", input->get_layout())); topology.add(input_layout("input", input->get_layout()));
topology.add(activation("relu1", input_info("input"), activation_func::relu)); topology.add(activation("relu1", input_info("input"), activation_func::relu));
topology.add(activation("relu2", input_info("input"), activation_func::sqrt)); topology.add(activation("relu2", input_info("input"), activation_func::sqrt));
topology.add(activation("relu3", input_info("input"), activation_func::square)); topology.add(activation("relu3", input_info("input"), activation_func::square));
topology.add(concatenation("concat1", { input_info("relu1"), input_info("relu2") }, 1)); topology.add(concatenation("concat1", { input_info("relu1"), input_info("relu2") }, 1));
topology.add(activation("relu4", input_info("concat1"), activation_func::relu)); topology.add(activation("relu4", input_info("concat1"), activation_func::relu));
topology.add(activation("relu5", input_info("relu3"), activation_func::relu)); topology.add(activation("relu5", input_info("relu3"), activation_func::relu));
topology.add(concatenation("concat2", { input_info("relu4"), input_info("relu5") }, 1)); topology.add(concatenation("concat2", { input_info("relu4"), input_info("relu5") }, 1));
topology.add(activation("relu6", input_info("concat2"), activation_func::linear, { 1.0f, 0.5f })); topology.add(activation("relu6", input_info("concat2"), activation_func::linear, { 1.0f, 0.5f }));
ExecutionConfig config = get_test_default_config(*engine); ExecutionConfig config = get_test_default_config(*engine);
config.set_property(ov::intel_gpu::optimize_data(true)); config.set_property(ov::intel_gpu::optimize_data(true));
network network_first(*engine, topology, config); network network_first(*engine, topology, config);
network_first.set_input_data("input", input); network_first.set_input_data("input", input);
auto outputs = network_first.execute(); auto outputs = network_first.execute();
auto output_memory_first = outputs.at("relu6").get_memory(); auto output_memory_first = outputs.at("relu6").get_memory();
auto output_layout_first = output_memory_first->get_layout(); auto output_layout_first = output_memory_first->get_layout();
cldnn::mem_lock<float> output_ptr_first(output_memory_first, get_test_stream()); cldnn::mem_lock<float> output_ptr_first(output_memory_first, get_test_stream());
ASSERT_EQ(engine->get_max_used_device_memory(), (uint64_t) 2560); ASSERT_EQ(engine->get_max_used_device_memory(), (uint64_t) 2560);
network network_second(*engine, topology, config); network network_second(*engine, topology, config);
network_second.set_input_data("input", input); network_second.set_input_data("input", input);
auto outputs_second = network_second.execute(); auto outputs_second = network_second.execute();
auto output_memory_second = outputs_second.at("relu6").get_memory(); auto output_memory_second = outputs_second.at("relu6").get_memory();
auto output_layout_second = output_memory_second->get_layout(); auto output_layout_second = output_memory_second->get_layout();
cldnn::mem_lock<float> output_ptr_second(output_memory_second, get_test_stream()); cldnn::mem_lock<float> output_ptr_second(output_memory_second, get_test_stream());
ASSERT_EQ(engine->get_max_used_device_memory(), (uint64_t) 3328); ASSERT_EQ(engine->get_max_used_device_memory(), (uint64_t) 3328);
ASSERT_EQ(output_layout_first, output_layout_second); ASSERT_EQ(output_layout_first, output_layout_second);
int y_size = output_layout_first.spatial(1); int y_size = output_layout_first.spatial(1);
int x_size = output_layout_first.spatial(0); int x_size = output_layout_first.spatial(0);
int f_size = output_layout_first.feature(); int f_size = output_layout_first.feature();
int b_size = output_layout_first.batch(); int b_size = output_layout_first.batch();
int f_offset = y_size*x_size; int f_offset = y_size*x_size;
int b_offset = f_size * f_offset; int b_offset = f_size * f_offset;
for (int b = 0; b < b_size; ++b) for (int b = 0; b < b_size; ++b)
{
for (int f = 0; f < f_size; ++f)
{ {
for (int y = 0; y < y_size; ++y) for (int f = 0; f < f_size; ++f)
{ {
for (int x = 0; x < x_size; ++x) for (int y = 0; y < y_size; ++y)
{ {
int idx = b * b_offset + f * f_offset + y * x_size + x; for (int x = 0; x < x_size; ++x)
ASSERT_EQ(output_ptr_first[idx], output_ptr_second[idx]); {
int idx = b * b_offset + f * f_offset + y * x_size + x;
ASSERT_EQ(output_ptr_first[idx], output_ptr_second[idx]);
}
} }
} }
} }
} }
}
TEST(memory_pool, DISABLED_shared_mem_pool_same_topology_twice_weights) { void test_shared_mem_pool_same_topology_twice_weights() {
// We need a new engine here to get correct get_max_used_device_memory() result // We need a new engine here to get correct get_max_used_device_memory() result
// If we reuse common engine, then max memory value will be taken from some previously executed tests // If we reuse common engine, then max memory value will be taken from some previously executed tests
// as it's tracked within engine instance // as it's tracked within engine instance
auto engine = create_test_engine(); auto engine = create_test_engine();
auto batch_num = 1; auto batch_num = 1;
auto feature_num = 3; auto feature_num = 3;
auto inp_x_size = 4; auto inp_x_size = 4;
auto inp_y_size = 4; auto inp_y_size = 4;
auto input= engine->allocate_memory({ data_types::f32, format::bfyx, { tensor(spatial(inp_x_size, inp_y_size), feature(feature_num), batch(batch_num)) } }); auto input= engine->allocate_memory({ data_types::f32, format::bfyx, { tensor(spatial(inp_x_size, inp_y_size), feature(feature_num), batch(batch_num)) } });
auto weights = engine->allocate_memory({ data_types::f32, format::bfyx, { 1, 1, 3, 2 } }); auto weights = engine->allocate_memory({ data_types::f32, format::bfyx, { 1, 1, 3, 2 } });
std::vector<float> dummy_input_data_1 = { std::vector<float> dummy_input_data_1 = {
/*f0 xy*/ 0.8f, 0.65f, 0.1f, 1.0f, 1.0f, 0.5f, 0.11f, 0.33f, 0.66f, 0.11f, 0.22f, 0.33f, 0.99f, 0.8f, 0.7f, 0.5f, /*f0 xy*/ 0.8f, 0.65f, 0.1f, 1.0f, 1.0f, 0.5f, 0.11f, 0.33f, 0.66f, 0.11f, 0.22f, 0.33f, 0.99f, 0.8f, 0.7f, 0.5f,
/*f1 xy*/ 0.48f, 0.05f, 0.35f, 1.0f, 1.0f, 0.51f, 0.51f, 0.13f, 0.86f, 0.10f, 0.29f, 0.53f, 0.99f, 0.4f, 0.3f, 0.1f, /*f1 xy*/ 0.48f, 0.05f, 0.35f, 1.0f, 1.0f, 0.51f, 0.51f, 0.13f, 0.86f, 0.10f, 0.29f, 0.53f, 0.99f, 0.4f, 0.3f, 0.1f,
/*f2 xy*/ 0.98f, 0.35f, 0.3f, 0.01f, 0.9f, 0.55f, 0.15f, 0.39f, 0.36f, 0.01f, 0.32f, 0.4f, 0.3f, 0.2f, 0.1f, 0.5f, /*f2 xy*/ 0.98f, 0.35f, 0.3f, 0.01f, 0.9f, 0.55f, 0.15f, 0.39f, 0.36f, 0.01f, 0.32f, 0.4f, 0.3f, 0.2f, 0.1f, 0.5f,
}; };
set_values(input, dummy_input_data_1); set_values(input, dummy_input_data_1);
set_values(weights, { 0.10f, 0.2f, 0.1f, 0.2f, 0.1f, 0.2f }); set_values(weights, { 0.10f, 0.2f, 0.1f, 0.2f, 0.1f, 0.2f });
topology topology( topology topology(
input_layout("input", input->get_layout()), input_layout("input", input->get_layout()),
data("weights", weights), data("weights", weights),
convolution("conv", input_info("input"), { "weights" }, { 1, 1, 1, 2 }), convolution("conv", input_info("input"), { "weights" }, { 1, 1, 1, 2 }),
softmax("softmax", input_info("conv"))); softmax("softmax", input_info("conv")));
ExecutionConfig config = get_test_default_config(*engine); ExecutionConfig config = get_test_default_config(*engine);
config.set_property(ov::intel_gpu::optimize_data(true)); config.set_property(ov::intel_gpu::optimize_data(true));
network network_first(*engine, topology, config); network network_first(*engine, topology, config);
network_first.set_input_data("input", input); network_first.set_input_data("input", input);
auto outputs = network_first.execute(); auto outputs = network_first.execute();
uint64_t cl_mem_result = 824; uint64_t cl_mem_result = 824;
uint64_t usm_result = 1208; // USM have a higher peak, since transfering memory to device adds temporay memory bytes allocated. Old memory is deallocated quickly, but max peak is higher. uint64_t usm_result = 1208; // USM have a higher peak, since transfering memory to device adds temporay memory bytes allocated. Old memory is deallocated quickly, but max peak is higher.
auto is_correct = engine->get_max_used_device_memory() == cl_mem_result auto is_correct = engine->get_max_used_device_memory() == cl_mem_result
|| engine->get_max_used_device_memory() == usm_result; || engine->get_max_used_device_memory() == usm_result;
ASSERT_TRUE(is_correct) << "Memory max peak is not correct"; ASSERT_TRUE(is_correct) << "Memory max peak is not correct";
auto output_memory_first = outputs.at("softmax").get_memory(); auto output_memory_first = outputs.at("softmax").get_memory();
auto output_layout_first = output_memory_first->get_layout(); auto output_layout_first = output_memory_first->get_layout();
cldnn::mem_lock<float> output_ptr_first(output_memory_first, get_test_stream()); cldnn::mem_lock<float> output_ptr_first(output_memory_first, get_test_stream());
network network_second(*engine, topology, config); network network_second(*engine, topology, config);
network_second.set_input_data("input", input); network_second.set_input_data("input", input);
auto outputs_second = network_second.execute(); auto outputs_second = network_second.execute();
auto output_memory_second = outputs_second.at("softmax").get_memory(); auto output_memory_second = outputs_second.at("softmax").get_memory();
auto output_layout_second = output_memory_second->get_layout(); auto output_layout_second = output_memory_second->get_layout();
cldnn::mem_lock<float> output_ptr_second(output_memory_second, get_test_stream()); cldnn::mem_lock<float> output_ptr_second(output_memory_second, get_test_stream());
cl_mem_result = 1224; cl_mem_result = 1224;
usm_result = 1992; // USM have a higher peak, since transfering memory to device adds temporay memory bytes allocated. Old memory is deallocated quickly, but max peak is higher. usm_result = 1992; // USM have a higher peak, since transfering memory to device adds temporay memory bytes allocated. Old memory is deallocated quickly, but max peak is higher.
is_correct = engine->get_max_used_device_memory() == cl_mem_result is_correct = engine->get_max_used_device_memory() == cl_mem_result
|| engine->get_max_used_device_memory() == usm_result; || engine->get_max_used_device_memory() == usm_result;
ASSERT_TRUE(is_correct) << "Memory max peak is not correct"; ASSERT_TRUE(is_correct) << "Memory max peak is not correct";
ASSERT_EQ(output_layout_first, output_layout_second); ASSERT_EQ(output_layout_first, output_layout_second);
int y_size = output_layout_first.spatial(1); int y_size = output_layout_first.spatial(1);
int x_size = output_layout_first.spatial(0); int x_size = output_layout_first.spatial(0);
int f_size = output_layout_first.feature(); int f_size = output_layout_first.feature();
int b_size = output_layout_first.batch(); int b_size = output_layout_first.batch();
int f_offset = y_size * x_size; int f_offset = y_size * x_size;
int b_offset = f_size * f_offset; int b_offset = f_size * f_offset;
for (int b = 0; b < b_size; ++b) for (int b = 0; b < b_size; ++b)
{
for (int f = 0; f < f_size; ++f)
{ {
for (int y = 0; y < y_size; ++y) for (int f = 0; f < f_size; ++f)
{ {
for (int x = 0; x < x_size; ++x) for (int y = 0; y < y_size; ++y)
{ {
int idx = b * b_offset + f * f_offset + y * x_size + x; for (int x = 0; x < x_size; ++x)
ASSERT_EQ(output_ptr_first[idx], output_ptr_second[idx]); {
int idx = b * b_offset + f * f_offset + y * x_size + x;
ASSERT_EQ(output_ptr_first[idx], output_ptr_second[idx]);
}
} }
} }
} }
} }
void test_shared_mem_pool_diff_batches(bool is_caching_test) {
// We need a new engine here to get correct get_max_used_device_memory() result
// If we reuse common engine, then max memory value will be taken from some previously executed tests
// as it's tracked within engine instance
auto engine = create_test_engine();
auto batch_8 = 8;
auto batch_1 = 1;
auto feature_num = 3;
auto inp_x_size = 4;
auto inp_y_size = 4;
auto dt = data_types::f32;
auto fmt = format::bfyx;
layout lay_batch_1 = { dt, fmt, { tensor(spatial(inp_x_size, inp_y_size), feature(feature_num), batch(batch_1)) }};
layout lay_batch_8 = { dt, fmt, { tensor(spatial(inp_x_size, inp_y_size), feature(feature_num), batch(batch_8)) }};
auto input_1 = engine->allocate_memory(lay_batch_1);
auto input_8 = engine->allocate_memory(lay_batch_8);
auto weights = engine->allocate_memory({ dt, fmt, { 1, 3, 3, 2 } });
std::vector<float> dummy_input_data_1 = generate_random_1d<float>(batch_1 * feature_num * inp_x_size * inp_y_size, 0, 1);
std::vector<float> dummy_input_data_8 = generate_random_1d<float>(batch_8 * feature_num * inp_x_size * inp_y_size, 0, 1);
set_values(input_1, dummy_input_data_1);
set_values(input_8, dummy_input_data_8);
set_values(weights, { 0.10f, 0.2f, 0.1f, 0.2f, 0.1f, 0.2f,
0.10f, 0.2f, 0.1f, 0.2f, 0.1f, 0.2f,
0.10f, 0.2f, 0.1f, 0.2f, 0.1f, 0.2f });
topology topo(
input_layout("input", input_8->get_layout()),
data("weights", weights),
convolution("conv", input_info("input"), { "weights" }, { 2, 1 }),
softmax("softmax", input_info("conv")));
ExecutionConfig config = get_test_default_config(*engine);
config.set_property(ov::intel_gpu::optimize_data(true));
network::ptr network_first = get_network(*engine, topo, config, get_test_stream_ptr(), is_caching_test);
network_first->set_input_data("input", input_8);
auto outputs = network_first->execute();
auto dev_info = engine->get_device_info();
ASSERT_EQ(engine->get_max_used_device_memory(), (uint64_t)4744);
topo.change_input_layout("input", input_1->get_layout());//change input layout to batch=1
network::ptr network_second = get_network(*engine, topo, config, get_test_stream_ptr(), is_caching_test);
network_second->set_input_data("input", input_1);
auto outputs_second = network_second->execute();
ASSERT_EQ(engine->get_max_used_device_memory(), (uint64_t)5912);
}
void test_shared_dep_two_output(bool is_caching_test) {
// We need a new engine here to get correct get_max_used_device_memory() result
// If we reuse common engine, then max memory value will be taken from some previously executed tests
// as it's tracked within engine instance
auto engine = create_test_engine();
auto input_1 = engine->allocate_memory({ {1, 1, 4, 4}, data_types::f32, format::bfyx });
set_random_values<float>(input_1);
//build and execute network
topology topo;
topo.add(cldnn::data("constant_0_0", input_1));
topo.add(cldnn::concatenation("result_1_0", { input_info("constant_0_0") }, 0));
topo.add(cldnn::concatenation("result_2_0", { input_info("constant_0_0") }, 0));
ExecutionConfig config = get_test_default_config(*engine);
config.set_property(ov::intel_gpu::optimize_data(true));
network::ptr network = get_network(*engine, topo, config, get_test_stream_ptr(), is_caching_test);
auto outputs = network->execute();
ASSERT_EQ(engine->get_max_used_device_memory(), (uint64_t)192);
}
void test_non_opt_intermidate_opt_after(bool is_caching_test) {
auto& engine = get_test_engine();
auto input_layout1 = layout(cldnn::data_types::f32, cldnn::format::bfyx, { 1, 1, 2, 2 });
auto input_layout2 = layout(cldnn::data_types::f32, cldnn::format::bfyx, { 1, 1, 2, 2 });
auto input_memory1 = engine.allocate_memory(input_layout1);
auto input_memory2 = engine.allocate_memory(input_layout2);
auto scale_memory = engine.allocate_memory(layout(cldnn::data_types::f32, cldnn::format::bfyx, { 1, 1, 1, 1 }));
auto data_memory = cldnn::data("scale_mem", scale_memory);
set_values(input_memory1, { 1.0f, 2.0f, 3.0f, 4.0f });
set_values(input_memory2, { 5.0f, 6.0f, 7.0f, 8.0f });
set_values(scale_memory, { 1.0f });
auto reshape_tensor = cldnn::tensor(8, 1, 1, 1);
auto input = cldnn::input_layout("input1", input_layout1);
auto input2 = cldnn::input_layout("input2", input_layout2);
auto concat = cldnn::concatenation("concat", { input_info("input1"), input_info("input2") }, 0);
auto reshape = cldnn::reshape("reshape", input_info("concat"), reshape_tensor);
auto crop1 = cldnn::crop("crop1", input_info("reshape"), { 1, 1, 1, 1 }, { 0, 0, 0, 0 });
auto crop2 = cldnn::crop("crop2", input_info("reshape"), { 1, 1, 1, 1 }, { 1, 0, 0, 0 });
auto eltwise1 = cldnn::eltwise("elt1", { input_info("crop1"), input_info("scale_mem") }, eltwise_mode::prod);
auto eltwise2 = cldnn::eltwise("elt2", { input_info("crop2"), input_info("scale_mem") }, eltwise_mode::prod);
auto topology = cldnn::topology(
input, input2,
concat,
reshape,
crop1, crop2,
eltwise1, eltwise2,
data_memory
);
ExecutionConfig config = get_test_default_config(engine);
config.set_property(ov::intel_gpu::optimize_data(false));
network::ptr network = get_network(engine, topology, config, get_test_stream_ptr(), is_caching_test);
network->set_input_data("input1", input_memory1);
network->set_input_data("input2", input_memory2);
auto outputs = network->execute();
ASSERT_EQ(outputs.size(), static_cast<size_t>(2));
auto out1 = outputs.at("elt1");
auto out2 = outputs.at("elt2");
cldnn::mem_lock<float> out1_ptr(out1.get_memory(), get_test_stream());
cldnn::mem_lock<float> out2_ptr(out2.get_memory(), get_test_stream());
ASSERT_EQ(out1_ptr[0], 1.0f);
ASSERT_EQ(out2_ptr[0], 2.0f);
}
void test_add_mem_dep(bool is_caching_test) {
auto& engine = get_test_engine();
auto input_layout1 = layout(cldnn::data_types::f32, cldnn::format::bfyx, { 1, 2, 2, 2 });
auto input_memory1 = engine.allocate_memory(input_layout1);
auto scale_memory = engine.allocate_memory(layout(cldnn::data_types::f32, cldnn::format::bfyx, { 1, 1, 1, 1 }));
auto data_memory = cldnn::data("scale_mem", scale_memory);
set_values(input_memory1, { 1.0f, 2.0f, 3.0f, 4.0f,
5.0f, 6.0f, 7.0f, 8.0f});
set_values(scale_memory, { 1.0f });
auto input = cldnn::input_layout("input1", input_layout1);
auto actv1 = cldnn::activation("input_activ1", input_info("input1"), activation_func::abs);
auto actv2 = cldnn::activation("input_activ2", input_info("input1"), activation_func::abs);
auto crop1 = cldnn::crop("crop1", input_info("input_activ1"), { 1, 1, 2, 2 }, { 0, 0, 0, 0 });
auto crop2 = cldnn::crop("crop2", input_info("input_activ2"), { 1, 1, 2, 2 }, { 0, 1, 0, 0 });
auto eltwise1 = cldnn::eltwise("elt1", { input_info("crop1"), input_info("scale_mem") }, eltwise_mode::prod);
auto eltwise2 = cldnn::eltwise("elt2", { input_info("crop2"), input_info("scale_mem") }, eltwise_mode::prod);
auto actv3 = cldnn::activation("out3", input_info("elt1"), activation_func::abs);
auto actv4 = cldnn::activation("out4", input_info("elt2"), activation_func::abs);
auto topology = cldnn::topology(
input,
crop1, crop2,
actv1, actv2,
eltwise1, eltwise2,
data_memory,
actv3, actv4
);
ExecutionConfig config = get_test_default_config(engine);
config.set_property(ov::intel_gpu::optimize_data(true));
network::ptr network = get_network(engine, topology, config, get_test_stream_ptr(), is_caching_test);
network->set_input_data("input1", input_memory1);
auto outputs = network->execute();
ASSERT_EQ(outputs.size(), static_cast<size_t>(2));
auto out1 = outputs.at("out3");
auto out2 = outputs.at("out4");
cldnn::mem_lock<float> out1_ptr(out1.get_memory(), get_test_stream());
cldnn::mem_lock<float> out2_ptr(out2.get_memory(), get_test_stream());
ASSERT_EQ(out1_ptr[0], 1.0f);
ASSERT_EQ(out1_ptr[1], 2.0f);
ASSERT_EQ(out1_ptr[2], 3.0f);
ASSERT_EQ(out1_ptr[3], 4.0f);
ASSERT_EQ(out2_ptr[0], 5.0f);
ASSERT_EQ(out2_ptr[1], 6.0f);
ASSERT_EQ(out2_ptr[2], 7.0f);
ASSERT_EQ(out2_ptr[3], 8.0f);
}
};
TEST_F(memory_pool, basic_non_padded_relu_pipe) {
this->test_basic_non_padded_relu_pipe(false);
} }
TEST(memory_pool, shared_mem_pool_diff_batches) { TEST_F(memory_pool, basic_non_padded_relu_and_pooling_pipe) {
// We need a new engine here to get correct get_max_used_device_memory() result this->test_basic_non_padded_relu_and_pooling_pipe(false);
// If we reuse common engine, then max memory value will be taken from some previously executed tests
// as it's tracked within engine instance
auto engine = create_test_engine();
auto batch_8 = 8;
auto batch_1 = 1;
auto feature_num = 3;
auto inp_x_size = 4;
auto inp_y_size = 4;
auto dt = data_types::f32;
auto fmt = format::bfyx;
layout lay_batch_1 = { dt, fmt, { tensor(spatial(inp_x_size, inp_y_size), feature(feature_num), batch(batch_1)) }};
layout lay_batch_8 = { dt, fmt, { tensor(spatial(inp_x_size, inp_y_size), feature(feature_num), batch(batch_8)) }};
auto input_1 = engine->allocate_memory(lay_batch_1);
auto input_8 = engine->allocate_memory(lay_batch_8);
auto weights = engine->allocate_memory({ dt, fmt, { 1, 3, 3, 2 } });
std::vector<float> dummy_input_data_1 = generate_random_1d<float>(batch_1 * feature_num * inp_x_size * inp_y_size, 0, 1);
std::vector<float> dummy_input_data_8 = generate_random_1d<float>(batch_8 * feature_num * inp_x_size * inp_y_size, 0, 1);
set_values(input_1, dummy_input_data_1);
set_values(input_8, dummy_input_data_8);
set_values(weights, { 0.10f, 0.2f, 0.1f, 0.2f, 0.1f, 0.2f,
0.10f, 0.2f, 0.1f, 0.2f, 0.1f, 0.2f,
0.10f, 0.2f, 0.1f, 0.2f, 0.1f, 0.2f });
topology topo(
input_layout("input", input_8->get_layout()),
data("weights", weights),
convolution("conv", input_info("input"), { "weights" }, { 2, 1 }),
softmax("softmax", input_info("conv")));
ExecutionConfig config = get_test_default_config(*engine);
config.set_property(ov::intel_gpu::optimize_data(true));
network network_first(*engine, topo, config);
network_first.set_input_data("input", input_8);
auto outputs = network_first.execute();
auto dev_info = engine->get_device_info();
ASSERT_EQ(engine->get_max_used_device_memory(), (uint64_t)4744);
topo.change_input_layout("input", input_1->get_layout());//change input layout to batch=1
network network_second(*engine, topo, config);
network_second.set_input_data("input", input_1);
auto outputs_second = network_second.execute();
ASSERT_EQ(engine->get_max_used_device_memory(), (uint64_t)5912);
} }
TEST(memory_pool, shared_dep_two_output) { TEST_F(memory_pool, multi_outputs_network) {
// We need a new engine here to get correct get_max_used_device_memory() result this->test_multi_outputs_network(false);
// If we reuse common engine, then max memory value will be taken from some previously executed tests
// as it's tracked within engine instance
auto engine = create_test_engine();
auto input_1 = engine->allocate_memory({ {1, 1, 4, 4}, data_types::f32, format::bfyx });
set_random_values<float>(input_1);
//build and execute network
topology topo;
topo.add(cldnn::data("constant_0_0", input_1));
topo.add(cldnn::concatenation("result_1_0", { input_info("constant_0_0") }, 0));
topo.add(cldnn::concatenation("result_2_0", { input_info("constant_0_0") }, 0));
ExecutionConfig config = get_test_default_config(*engine);
config.set_property(ov::intel_gpu::optimize_data(true));
network network(*engine, topo, config);
auto outputs = network.execute();
ASSERT_EQ(engine->get_max_used_device_memory(), (uint64_t)192);
} }
TEST(memory_pool, non_opt_intermidate_opt_after) { TEST_F(memory_pool, oooq) {
auto& engine = get_test_engine(); this->test_oooq(false);
auto input_layout1 = layout(cldnn::data_types::f32, cldnn::format::bfyx, { 1, 1, 2, 2 });
auto input_layout2 = layout(cldnn::data_types::f32, cldnn::format::bfyx, { 1, 1, 2, 2 });
auto input_memory1 = engine.allocate_memory(input_layout1);
auto input_memory2 = engine.allocate_memory(input_layout2);
auto scale_memory = engine.allocate_memory(layout(cldnn::data_types::f32, cldnn::format::bfyx, { 1, 1, 1, 1 }));
auto data_memory = cldnn::data("scale_mem", scale_memory);
set_values(input_memory1, { 1.0f, 2.0f, 3.0f, 4.0f });
set_values(input_memory2, { 5.0f, 6.0f, 7.0f, 8.0f });
set_values(scale_memory, { 1.0f });
auto reshape_tensor = cldnn::tensor(8, 1, 1, 1);
auto input = cldnn::input_layout("input1", input_layout1);
auto input2 = cldnn::input_layout("input2", input_layout2);
auto concat = cldnn::concatenation("concat", { input_info("input1"), input_info("input2") }, 0);
auto reshape = cldnn::reshape("reshape", input_info("concat"), reshape_tensor);
auto crop1 = cldnn::crop("crop1", input_info("reshape"), { 1, 1, 1, 1 }, { 0, 0, 0, 0 });
auto crop2 = cldnn::crop("crop2", input_info("reshape"), { 1, 1, 1, 1 }, { 1, 0, 0, 0 });
auto eltwise1 = cldnn::eltwise("elt1", { input_info("crop1"), input_info("scale_mem") }, eltwise_mode::prod);
auto eltwise2 = cldnn::eltwise("elt2", { input_info("crop2"), input_info("scale_mem") }, eltwise_mode::prod);
auto topology = cldnn::topology(
input, input2,
concat,
reshape,
crop1, crop2,
eltwise1, eltwise2,
data_memory
);
ExecutionConfig config = get_test_default_config(engine);
config.set_property(ov::intel_gpu::optimize_data(false));
network network(engine, topology, config);
network.set_input_data("input1", input_memory1);
network.set_input_data("input2", input_memory2);
auto outputs = network.execute();
ASSERT_EQ(outputs.size(), static_cast<size_t>(2));
auto out1 = outputs.at("elt1");
auto out2 = outputs.at("elt2");
cldnn::mem_lock<float> out1_ptr(out1.get_memory(), get_test_stream());
cldnn::mem_lock<float> out2_ptr(out2.get_memory(), get_test_stream());
ASSERT_EQ(out1_ptr[0], 1.0f);
ASSERT_EQ(out2_ptr[0], 2.0f);
} }
TEST(memory_pool, add_mem_dep_test) { TEST_F(memory_pool, DISABLED_shared_mem_pool_same_topology_twice) {
auto& engine = get_test_engine(); this->test_shared_mem_pool_same_topology_twice();
}
auto input_layout1 = layout(cldnn::data_types::f32, cldnn::format::bfyx, { 1, 2, 2, 2 });
TEST_F(memory_pool, DISABLED_shared_mem_pool_same_topology_twice_weights) {
auto input_memory1 = engine.allocate_memory(input_layout1); this->test_shared_mem_pool_same_topology_twice_weights();
auto scale_memory = engine.allocate_memory(layout(cldnn::data_types::f32, cldnn::format::bfyx, { 1, 1, 1, 1 })); }
auto data_memory = cldnn::data("scale_mem", scale_memory);
TEST_F(memory_pool, shared_mem_pool_diff_batches) {
set_values(input_memory1, { 1.0f, 2.0f, 3.0f, 4.0f, this->test_shared_mem_pool_diff_batches(false);
5.0f, 6.0f, 7.0f, 8.0f}); }
set_values(scale_memory, { 1.0f });
TEST_F(memory_pool, shared_dep_two_output) {
auto input = cldnn::input_layout("input1", input_layout1); this->test_shared_dep_two_output(false);
auto actv1 = cldnn::activation("input_activ1", input_info("input1"), activation_func::abs); }
auto actv2 = cldnn::activation("input_activ2", input_info("input1"), activation_func::abs);
auto crop1 = cldnn::crop("crop1", input_info("input_activ1"), { 1, 1, 2, 2 }, { 0, 0, 0, 0 }); TEST_F(memory_pool, non_opt_intermidate_opt_after) {
auto crop2 = cldnn::crop("crop2", input_info("input_activ2"), { 1, 1, 2, 2 }, { 0, 1, 0, 0 }); this->test_non_opt_intermidate_opt_after(false);
auto eltwise1 = cldnn::eltwise("elt1", { input_info("crop1"), input_info("scale_mem") }, eltwise_mode::prod); }
auto eltwise2 = cldnn::eltwise("elt2", { input_info("crop2"), input_info("scale_mem") }, eltwise_mode::prod);
auto actv3 = cldnn::activation("out3", input_info("elt1"), activation_func::abs); TEST_F(memory_pool, add_mem_dep_test) {
auto actv4 = cldnn::activation("out4", input_info("elt2"), activation_func::abs); this->test_add_mem_dep(false);
}
auto topology = cldnn::topology(
input, #ifdef RUN_ALL_MODEL_CACHING_TESTS
crop1, crop2, TEST_F(memory_pool, basic_non_padded_relu_pipe_cached) {
actv1, actv2, this->test_basic_non_padded_relu_pipe(true);
eltwise1, eltwise2, }
data_memory,
actv3, actv4 TEST_F(memory_pool, basic_non_padded_relu_and_pooling_pipe_cached) {
); this->test_basic_non_padded_relu_and_pooling_pipe(true);
}
ExecutionConfig config = get_test_default_config(engine);
config.set_property(ov::intel_gpu::optimize_data(true)); TEST_F(memory_pool, multi_outputs_network_cached) {
network network(engine, topology, config); this->test_multi_outputs_network(true);
network.set_input_data("input1", input_memory1); }
auto outputs = network.execute();
ASSERT_EQ(outputs.size(), static_cast<size_t>(2)); TEST_F(memory_pool, oooq_cached) {
this->test_oooq(true);
auto out1 = outputs.at("out3"); }
auto out2 = outputs.at("out4");
TEST_F(memory_pool, shared_mem_pool_diff_batches_cached) {
cldnn::mem_lock<float> out1_ptr(out1.get_memory(), get_test_stream()); this->test_shared_mem_pool_diff_batches(true);
cldnn::mem_lock<float> out2_ptr(out2.get_memory(), get_test_stream()); }
ASSERT_EQ(out1_ptr[0], 1.0f);
ASSERT_EQ(out1_ptr[1], 2.0f); TEST_F(memory_pool, shared_dep_two_output_cached) {
ASSERT_EQ(out1_ptr[2], 3.0f); this->test_shared_dep_two_output(true);
ASSERT_EQ(out1_ptr[3], 4.0f); }
ASSERT_EQ(out2_ptr[0], 5.0f); TEST_F(memory_pool, non_opt_intermidate_opt_after_cached) {
ASSERT_EQ(out2_ptr[1], 6.0f); this->test_non_opt_intermidate_opt_after(true);
ASSERT_EQ(out2_ptr[2], 7.0f); }
ASSERT_EQ(out2_ptr[3], 8.0f); #endif
TEST_F(memory_pool, add_mem_dep_test_cached) {
this->test_add_mem_dep(true);
}
} }