Upgrade CPU func tests to 2.o (#21357)

* [CPU Plugin][Func Test] Upgrade AddConvertToReorderTest to API 2.0

Signed-off-by: Zhai, Xuejun <xuejun.zhai@intel.com>

* [CPU Plugin][Func Test] Upgrade AlignMatMulInputRanksTest to API 2.0

Signed-off-by: Zhai, Xuejun <xuejun.zhai@intel.com>

* [CPU Plugin][Func Test] Upgrade GatherAddAvgpool to API 2.0

Signed-off-by: Zhai, Xuejun <xuejun.zhai@intel.com>

* [CPU Plugin][Func Test] Upgrade InputNoReorderEltwiseBF16 to API 2.0

Signed-off-by: Zhai, Xuejun <xuejun.zhai@intel.com>

* [CPU Plugin][Func Test] Fix review comments

Signed-off-by: Zhai, Xuejun <xuejun.zhai@intel.com>

---------

Signed-off-by: Zhai, Xuejun <xuejun.zhai@intel.com>
This commit is contained in:
Xuejun Zhai 2023-12-05 14:24:55 +08:00 committed by GitHub
parent 5dda9f333b
commit 9c94873842
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 120 additions and 108 deletions

View File

@ -1267,6 +1267,8 @@ bool fuse_type_to_constant(const std::shared_ptr<ov::Node>& node,
new_const = change_constant_precision<ov::element::Type_t::boolean, ov::element::Type_t::u8>(constant); new_const = change_constant_precision<ov::element::Type_t::boolean, ov::element::Type_t::u8>(constant);
} else if (from == ov::element::boolean && to == ov::element::i32) { } else if (from == ov::element::boolean && to == ov::element::i32) {
new_const = change_constant_precision<ov::element::Type_t::boolean, ov::element::Type_t::i32>(constant); new_const = change_constant_precision<ov::element::Type_t::boolean, ov::element::Type_t::i32>(constant);
} else if (from == ov::element::i8 && to == ov::element::i64) {
new_const = change_constant_precision<ov::element::Type_t::i8, ov::element::Type_t::i64>(constant);
} else if (from == ov::element::i4 || from == ov::element::u4 || from == ov::element::u1) { } else if (from == ov::element::i4 || from == ov::element::u4 || from == ov::element::u1) {
new_const = convert_low_precisions_int(constant, to); new_const = convert_low_precisions_int(constant, to);
} else { } else {

View File

@ -2,53 +2,51 @@
// SPDX-License-Identifier: Apache-2.0 // SPDX-License-Identifier: Apache-2.0
// //
#include "test_utils/cpu_test_utils.hpp"
#include "shared_test_classes/base/layer_test_utils.hpp"
#include "ov_models/utils/ov_helpers.hpp"
#include "ov_models/builders.hpp" #include "ov_models/builders.hpp"
#include "shared_test_classes/base/ov_subgraph.hpp"
#include "test_utils/cpu_test_utils.hpp"
using namespace InferenceEngine;
using namespace CPUTestUtils; using namespace CPUTestUtils;
namespace LayerTestsDefinitions { namespace ov {
namespace test {
class AddConvertToReorderTest : virtual public LayerTestsUtils::LayerTestsCommon { class AddConvertToReorderTest : virtual public SubgraphBaseStaticTest {
public: public:
void BuildGraph(const ngraph::element::Type& secondInpType) { void BuildGraph(const ov::element::Type& secondInpType) {
secondConstantType = secondInpType; secondConstantType = secondInpType;
int axis = 2; int axis = 2;
std::vector<int> indices = {0, 3, 2, 1}; std::vector<int> indices = {0, 3, 2, 1};
std::vector<size_t> indicesShape = {2, 2}; std::vector<size_t> indicesShape = {2, 2};
std::vector<size_t> inputShape = {10, 20, 30, 40}; std::vector<size_t> inputShape = {10, 20, 30, 40};
InferenceEngine::Precision netPrecision = inPrc = outPrc = Precision::FP32; ov::element::Type netPrecision = inType = outType = ov::element::f32;
targetDevice = ov::test::utils::DEVICE_CPU; targetDevice = ov::test::utils::DEVICE_CPU;
ASSERT_EQ(ngraph::shape_size(indicesShape), indices.size()) ASSERT_EQ(ov::shape_size(indicesShape), indices.size())
<< "Indices vector size and provided indices shape doesn't fit each other"; << "Indices vector size and provided indices shape doesn't fit each other";
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision); ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(netPrecision, ov::Shape(inputShape))};
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape(inputShape))}; auto indicesNode = ov::op::v0::Constant::create(secondConstantType, ov::Shape(indicesShape), indices);
auto indicesNode = ngraph::opset3::Constant::create(secondConstantType, ngraph::Shape(indicesShape), indices); auto axisNode = ov::op::v0::Constant::create(ov::element::i64, ov::Shape({}), {axis});
auto axisNode = ngraph::opset3::Constant::create(ngraph::element::i64, ngraph::Shape({}), {axis}); auto gather = std::make_shared<ov::op::v1::Gather>(params[0], indicesNode, axisNode);
auto gather = std::make_shared<ngraph::opset3::Gather>(params[0], indicesNode, axisNode); ov::ResultVector results{std::make_shared<ov::op::v0::Result>(gather)};
ngraph::ResultVector results{std::make_shared<ngraph::opset3::Result>(gather)}; function = std::make_shared<ov::Model>(results, params, "gather");
function = std::make_shared<ngraph::Function>(results, params, "gather");
} }
std::vector<std::pair<ngraph::element::Type, std::vector<std::uint8_t>>> CalculateRefs() override { std::vector<ov::Tensor> calculate_refs() override {
// Convert the second input constant precision to i64 to run the reference function // Convert the second input constant precision to i64 to run the reference function
if (ngraph::element::Type_t::i8 == secondConstantType) { if (ov::element::i8 == secondConstantType) {
ngraph::pass::ConvertPrecision<ngraph::element::Type_t::i8, ngraph::element::Type_t::i64>().run_on_model(functionRefs); convert_precisions.insert({ov::element::i8, ov::element::i64});
} else if (ngraph::element::Type_t::bf16 == secondConstantType) { } else if (ov::element::bf16 == secondConstantType) {
ngraph::pass::ConvertPrecision<ngraph::element::Type_t::bf16, ngraph::element::Type_t::i64>().run_on_model(functionRefs); convert_precisions.insert({ov::element::bf16, ov::element::i64});
} }
return LayerTestsUtils::LayerTestsCommon::CalculateRefs(); return SubgraphBaseTest::calculate_refs();
} }
private: private:
ngraph::element::Type secondConstantType; ov::element::Type secondConstantType;
}; };
namespace { namespace {
/* Test insertion of the Reorder layer if there is one. /* Test insertion of the Reorder layer if there is one.
@ -63,10 +61,11 @@ namespace {
Output[FP32] Output[FP32]
*/ */
TEST_F(AddConvertToReorderTest, smoke_TestAddReorder_CPU) { TEST_F(AddConvertToReorderTest, smoke_TestAddReorder_CPU) {
BuildGraph(ngraph::element::i8); BuildGraph(ov::element::i8);
Run(); run();
CheckNumberOfNodesWithType(executableNetwork, "Convert", 0); CheckNumberOfNodesWithType(compiledModel, "Convert", 0);
CheckNumberOfNodesWithType(executableNetwork, "Reorder", 1); CheckNumberOfNodesWithType(compiledModel, "Reorder", 1);
} }
} // namespace } // namespace
} // namespace LayerTestsDefinitions } // namespace test
} // namespace ov

View File

@ -2,35 +2,37 @@
// SPDX-License-Identifier: Apache-2.0 // SPDX-License-Identifier: Apache-2.0
// //
#include "test_utils/cpu_test_utils.hpp"
#include "test_utils/fusing_test_utils.hpp"
#include "ov_models/builders.hpp"
#include "common_test_utils/common_utils.hpp"
#include <algorithm> #include <algorithm>
#include <cassert> #include <cassert>
using namespace ngraph; #include "common_test_utils/common_utils.hpp"
using namespace InferenceEngine; #include "ov_models/builders.hpp"
#include "shared_test_classes/base/ov_subgraph.hpp"
#include "test_utils/cpu_test_utils.hpp"
#include "test_utils/fusing_test_utils.hpp"
using namespace CPUTestUtils; using namespace CPUTestUtils;
namespace SubgraphTestsDefinitions { namespace ov {
namespace test {
using AlignMatMulInputRanksTestParams = std::tuple<std::pair<SizeVector, SizeVector>, // IS fully connected using AlignMatMulInputRanksTestParams = std::tuple<std::pair<ov::Shape, ov::Shape>, // IS fully connected
fusingSpecificParams>; fusingSpecificParams>;
class AlignMatMulInputRanksTest : public testing::WithParamInterface<AlignMatMulInputRanksTestParams>, public CpuTestWithFusing, class AlignMatMulInputRanksTest : public testing::WithParamInterface<AlignMatMulInputRanksTestParams>,
virtual public LayerTestsUtils::LayerTestsCommon { public CpuTestWithFusing,
virtual public SubgraphBaseStaticTest {
public: public:
static std::string getTestCaseName(testing::TestParamInfo<AlignMatMulInputRanksTestParams> obj) { static std::string getTestCaseName(testing::TestParamInfo<AlignMatMulInputRanksTestParams> obj) {
std::pair<SizeVector, SizeVector> supportedInputShapes; std::pair<ov::Shape, ov::Shape> supportedInputShapes;
fusingSpecificParams fusingParams; fusingSpecificParams fusingParams;
std::tie(supportedInputShapes, fusingParams) = obj.param; std::tie(supportedInputShapes, fusingParams) = obj.param;
SizeVector inputShapeA = supportedInputShapes.first; SizeVector inputShapeB = supportedInputShapes.second; ov::Shape inputShapeA = supportedInputShapes.first;
ov::Shape inputShapeB = supportedInputShapes.second;
std::ostringstream result; std::ostringstream result;
result << "IS_A=" << ov::test::utils::vec2str(inputShapeA) << "_"; result << "IS_A=" << inputShapeA << "_";
result << "IS_B=" << ov::test::utils::vec2str(inputShapeB) << "_"; result << "IS_B=" << inputShapeB << "_";
result << CpuTestWithFusing::getTestCaseName(fusingParams); result << CpuTestWithFusing::getTestCaseName(fusingParams);
return result.str(); return result.str();
@ -39,7 +41,7 @@ public:
protected: protected:
void SetUp() override { void SetUp() override {
targetDevice = ov::test::utils::DEVICE_CPU; targetDevice = ov::test::utils::DEVICE_CPU;
std::pair<SizeVector, SizeVector> inShapes; std::pair<ov::Shape, ov::Shape> inShapes;
fusingSpecificParams fusingParams; fusingSpecificParams fusingParams;
std::tie(inShapes, fusingParams) = this->GetParam(); std::tie(inShapes, fusingParams) = this->GetParam();
@ -48,14 +50,14 @@ protected:
if (inShapes.first.size() == 1 || inShapes.second.size() == 1) if (inShapes.first.size() == 1 || inShapes.second.size() == 1)
expectedNumOfReshapes++; // output will be squeezed expectedNumOfReshapes++; // output will be squeezed
if (inShapes.first.size() == 1 && inShapes.second.size() == 1) if (inShapes.first.size() == 1 && inShapes.second.size() == 1)
expectedNumOfReshapes+=2; // both inputs unsqueezed and output squeezed expectedNumOfReshapes += 2; // both inputs unsqueezed and output squeezed
if (inShapes.first.size() != 1 && inShapes.second.size() != 1) // no fusing through Reshape after output if (inShapes.first.size() != 1 && inShapes.second.size() != 1) // no fusing through Reshape after output
std::tie(postOpMgrPtr, fusedOps) = fusingParams; std::tie(postOpMgrPtr, fusedOps) = fusingParams;
const auto ngPrec = element::f32; const auto ngPrec = element::f32;
ov::ParameterVector inputParams{std::make_shared<ov::op::v0::Parameter>(ngPrec, ov::Shape(inShapes.first)), ov::ParameterVector inputParams{std::make_shared<ov::op::v0::Parameter>(ngPrec, inShapes.first),
std::make_shared<ov::op::v0::Parameter>(ngPrec, ov::Shape(inShapes.second))}; std::make_shared<ov::op::v0::Parameter>(ngPrec, inShapes.second)};
const auto matMul = std::make_shared<ov::op::v0::MatMul>(inputParams[0], inputParams[1], false, false); const auto matMul = std::make_shared<ov::op::v0::MatMul>(inputParams[0], inputParams[1], false, false);
selectedType = makeSelectedTypeStr(with_cpu_x86_avx512_core() ? "brgemm_avx512" : "jit_gemm", ngPrec); selectedType = makeSelectedTypeStr(with_cpu_x86_avx512_core() ? "brgemm_avx512" : "jit_gemm", ngPrec);
@ -67,18 +69,20 @@ protected:
}; };
TEST_P(AlignMatMulInputRanksTest, CompareWithRefs) { TEST_P(AlignMatMulInputRanksTest, CompareWithRefs) {
Run(); run();
CheckNumberOfNodesWithType(executableNetwork, "Reshape", expectedNumOfReshapes); // Squeeze / Unsqueeze turns into Reshape CheckNumberOfNodesWithType(compiledModel,
CheckPluginRelatedResults(executableNetwork, "MatMul"); "Reshape",
expectedNumOfReshapes); // Squeeze / Unsqueeze turns into Reshape
CheckPluginRelatedResults(compiledModel, "MatMul");
} }
namespace { namespace {
const std::vector<std::pair<SizeVector, SizeVector>> supportedInputShapes = { const std::vector<std::pair<ov::Shape, ov::Shape>> supportedInputShapes = {
{{4, 10, 5}, {1, 5, 10}}, // nothing to be done {{4, 10, 5}, {1, 5, 10}}, // nothing to be done
{{3}, {3}}, // 3x1 * 1x3 -> 1 {{3}, {3}}, // 3x1 * 1x3 -> 1
{{18}, {1, 5, 18, 20}}, // 1x1x1x18 * 1x5x18x20 -> 1x5x20 {{18}, {1, 5, 18, 20}}, // 1x1x1x18 * 1x5x18x20 -> 1x5x20
{{2, 3, 4, 4, 4, 10, 5}, {5}}, // 2x3x4x4x4x10x5 * 1x1x1x1x1x5x1 -> 1x1x1x1x1x5 {{2, 3, 4, 4, 4, 10, 5}, {5}}, // 2x3x4x4x4x10x5 * 1x1x1x1x1x5x1 -> 1x1x1x1x1x5
{{1, 18}, {1, 5, 18, 20}}, {{1, 18}, {1, 5, 18, 20}},
{{1, 70, 18}, {1, 5, 18, 20}}, {{1, 70, 18}, {1, 5, 18, 20}},
{{7, 1, 10, 3, 2, 7}, {1, 7, 5}}, {{7, 1, 10, 3, 2, 7}, {1, 7, 5}},
@ -86,16 +90,18 @@ const std::vector<std::pair<SizeVector, SizeVector>> supportedInputShapes = {
}; };
// verify fusing just in case // verify fusing just in case
std::vector<fusingSpecificParams> fusingParamsSet { std::vector<fusingSpecificParams> fusingParamsSet{
emptyFusingSpec, emptyFusingSpec,
fusingElu, fusingElu,
}; };
INSTANTIATE_TEST_SUITE_P(smoke_Check, AlignMatMulInputRanksTest, INSTANTIATE_TEST_SUITE_P(smoke_Check,
AlignMatMulInputRanksTest,
::testing::Combine(::testing::ValuesIn(supportedInputShapes), ::testing::Combine(::testing::ValuesIn(supportedInputShapes),
::testing::ValuesIn(fusingParamsSet)), ::testing::ValuesIn(fusingParamsSet)),
AlignMatMulInputRanksTest::getTestCaseName); AlignMatMulInputRanksTest::getTestCaseName);
} // namespace } // namespace
} // namespace SubgraphTestsDefinitions } // namespace test
} // namespace ov

View File

@ -2,12 +2,13 @@
// SPDX-License-Identifier: Apache-2.0 // SPDX-License-Identifier: Apache-2.0
// //
#include "shared_test_classes/base/layer_test_utils.hpp"
#include <ngraph/opsets/opset8.hpp> #include <ngraph/opsets/opset8.hpp>
#include <exec_graph_info.hpp>
#include "openvino/runtime/exec_model_info.hpp"
#include "shared_test_classes/base/ov_subgraph.hpp"
namespace SubgraphTestsDefinitions { namespace ov {
namespace test {
using namespace ngraph; using namespace ngraph;
@ -25,30 +26,33 @@ using namespace ngraph;
input's precision if its child has Subgraph consumers. input's precision if its child has Subgraph consumers.
Same scenario happens when we have Eltwise instead of Subgraph - to be addressed in #78939. Same scenario happens when we have Eltwise instead of Subgraph - to be addressed in #78939.
*/ */
class GatherAddAvgpool : virtual public LayerTestsUtils::LayerTestsCommon { class GatherAddAvgpool : virtual public SubgraphBaseStaticTest {
protected: protected:
void SetUp() override { void SetUp() override {
targetDevice = ov::test::utils::DEVICE_CPU; targetDevice = ov::test::utils::DEVICE_CPU;
inPrc = InferenceEngine::Precision::U8; inType = ov::element::u8;
outPrc = InferenceEngine::Precision::FP32; outType = ov::element::f32;
auto type = element::f32; auto type = ov::element::f32;
auto param = std::make_shared<opset8::Parameter>(type, Shape{1, 3, 64, 64}); auto param = std::make_shared<ov::op::v0::Parameter>(type, Shape{1, 3, 64, 64});
auto gather = std::make_shared<opset8::Gather>(param, auto gather =
op::Constant::create(element::i32, Shape{3}, {2, 1, 0}), std::make_shared<ov::op::v8::Gather>(param,
op::Constant::create(element::i32, Shape{1}, {1})); ov::op::v0::Constant::create(element::i32, Shape{3}, {2, 1, 0}),
auto add = std::make_shared<opset8::Add>(gather, op::Constant::create(type, Shape{1, 3, 1, 1}, {3})); ov::op::v0::Constant::create(element::i32, Shape{1}, {1}));
auto avgpool = std::make_shared<opset8::AvgPool>(add, Strides{1, 1}, Shape{0, 0}, Shape{0, 0}, Shape{2, 2}, false); auto add =
function = std::make_shared<Function>(avgpool, ParameterVector{param}); std::make_shared<ov::op::v1::Add>(gather, ov::op::v0::Constant::create(type, Shape{1, 3, 1, 1}, {3}));
auto avgpool =
std::make_shared<ov::op::v1::AvgPool>(add, Strides{1, 1}, Shape{0, 0}, Shape{0, 0}, Shape{2, 2}, false);
function = std::make_shared<ov::Model>(avgpool, ov::ParameterVector{param});
} }
void TearDown() override { void TearDown() override {
auto exec_model = executableNetwork.GetExecGraphInfo().getFunction(); auto exec_model = compiledModel.get_runtime_model();
int eltwise_nodes_found = 0; int eltwise_nodes_found = 0;
int pool_nodes_found = 0; int pool_nodes_found = 0;
for (const auto& n : exec_model->get_ordered_ops()) { for (const auto& n : exec_model->get_ordered_ops()) {
auto layer_type = n->get_rt_info().at(ExecGraphInfoSerialization::LAYER_TYPE).as<std::string>(); auto layer_type = n->get_rt_info().at(ov::exec_model_info::LAYER_TYPE).as<std::string>();
auto output_layout = n->get_rt_info().at(ExecGraphInfoSerialization::OUTPUT_LAYOUTS).as<std::string>(); auto output_layout = n->get_rt_info().at(ov::exec_model_info::OUTPUT_LAYOUTS).as<std::string>();
if (layer_type == "Subgraph") { if (layer_type == "Subgraph") {
eltwise_nodes_found++; eltwise_nodes_found++;
ASSERT_EQ("abcd", output_layout); ASSERT_EQ("abcd", output_layout);
@ -63,7 +67,8 @@ protected:
}; };
TEST_F(GatherAddAvgpool, smoke_CompareWithRefs) { TEST_F(GatherAddAvgpool, smoke_CompareWithRefs) {
Run(); run();
} }
} // namespace SubgraphTestsDefinitions } // namespace test
} // namespace ov

View File

@ -2,39 +2,38 @@
// SPDX-License-Identifier: Apache-2.0 // SPDX-License-Identifier: Apache-2.0
// //
#include <ov_models/builders.hpp> #include "common_test_utils/node_builders/eltwise.hpp"
#include "ie_common.h"
#include "ov_models/utils/ov_helpers.hpp"
#include "test_utils/cpu_test_utils.hpp"
#include "common_test_utils/ov_tensor_utils.hpp" #include "common_test_utils/ov_tensor_utils.hpp"
#include "ov_models/builders.hpp"
#include "ov_models/utils/ov_helpers.hpp"
#include "shared_test_classes/base/ov_subgraph.hpp"
#include "test_utils/cpu_test_utils.hpp"
using namespace InferenceEngine;
using namespace CPUTestUtils; using namespace CPUTestUtils;
namespace CPULayerTestsDefinitions { namespace ov {
namespace test {
class InputNoReorderEltwiseBF16 : virtual public LayerTestsUtils::LayerTestsCommon, class InputNoReorderEltwiseBF16 : virtual public SubgraphBaseStaticTest, public CPUTestsBase {
public CPUTestsBase {
protected: protected:
void SetUp() override { void SetUp() override {
auto netPrecision = inPrc = Precision::FP32; auto netPrecision = inType = ov::element::f32;
outPrc = Precision::BF16; outType = ov::element::bf16;
targetDevice = ov::test::utils::DEVICE_CPU; targetDevice = ov::test::utils::DEVICE_CPU;
std::map<std::string, std::string> additional_config{{PluginConfigParams::KEY_ENFORCE_BF16, PluginConfigParams::NO}}; ov::AnyMap additional_config{ov::hint::inference_precision(ov::element::bf16)};
configuration.insert(additional_config.begin(), additional_config.end()); configuration.insert(additional_config.begin(), additional_config.end());
std::vector<size_t> inputShape {2, 4, 4, 1}; ov::Shape inputShape{2, 4, 4, 1};
auto eltwiseType = ngraph::helpers::EltwiseTypes::ADD; auto eltwiseType = ov::test::utils::EltwiseTypes::ADD;
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision); ov::ParameterVector input{std::make_shared<ov::op::v0::Parameter>(netPrecision, inputShape)};
ov::ParameterVector input {std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape(inputShape))};
auto tensor = ov::test::utils::create_and_fill_tensor(ngPrc, inputShape); auto tensor = ov::test::utils::create_and_fill_tensor(netPrecision, inputShape);
auto secondaryInput = std::make_shared<ov::op::v0::Constant>(tensor); auto secondaryInput = std::make_shared<ov::op::v0::Constant>(tensor);
auto eltwise = ngraph::builder::makeEltwise(input[0], secondaryInput, eltwiseType); auto eltwise = ov::test::utils::makeEltwise(input[0], secondaryInput, eltwiseType);
function = makeNgraphFunction(ngPrc, input, eltwise, "Eltwise"); function = makeNgraphFunction(netPrecision, input, eltwise, "Eltwise");
} }
}; };
@ -53,10 +52,11 @@ protected:
Output[BF16] Output[BF16]
*/ */
TEST_F(InputNoReorderEltwiseBF16, smoke_CompareWithRefs) { TEST_F(InputNoReorderEltwiseBF16, smoke_CompareWithRefs) {
Run(); run();
CheckNumberOfNodesWithType(executableNetwork, "Reorder", 0); CheckNumberOfNodesWithType(compiledModel, "Reorder", 0);
CheckNumberOfNodesWithType(executableNetwork, "Convert", 0); CheckNumberOfNodesWithType(compiledModel, "Convert", 0);
CheckNumberOfNodesWithTypes(executableNetwork, {"Eltwise", "Subgraph"}, 1); CheckNumberOfNodesWithTypes(compiledModel, {"Eltwise", "Subgraph"}, 1);
} }
} // namespace CPULayerTestsDefinitions } // namespace test
} // namespace ov