[GNA] Fix Activation output size not matching convolution if padded. (#1980)
* Fix Activation output size not matching convolution if padded. * Fix input padding handling in Convolution * fix static bug * Use correct value for feature rotation. * [GNA] Fix regression * Added tests * Added tests
This commit is contained in:
parent
b27ce4b04d
commit
9df59284bc
@ -324,17 +324,23 @@ void GNAGraphCompiler::ConvolutionPrimitive(InferenceEngine::CNNLayerPtr layer)
|
||||
uint32_t num_filters = convolution._out_depth;
|
||||
uint32_t num_filter_coefficients = single_conv_kernel_size + num_conv_kernel_padding;
|
||||
uint32_t num_filter_rows = num_filter_coefficients / num_feature_map_columns;
|
||||
uint32_t num_columns_in = num_inputs + num_input_padding;
|
||||
uint32_t num_columns_in = num_inputs;
|
||||
|
||||
uint32_t num_columns_out = (((num_inputs + num_input_padding - num_filter_coefficients) / num_feature_map_columns) + 1) * convolution._out_depth;
|
||||
uint32_t num_columns_out = (((num_inputs - num_filter_coefficients) / num_feature_map_columns) + 1) * convolution._out_depth;
|
||||
uint32_t num_columns_out_unpadded = (((num_inputs - single_conv_kernel_size) / num_feature_map_columns) + 1) * convolution._out_depth;
|
||||
|
||||
uint32_t original_num_feature_map_rows = num_feature_map_rows;
|
||||
uint32_t original_input_padding = num_input_padding;
|
||||
uint32_t additional_padding = 0;
|
||||
|
||||
// if kernel padding to multiple of 8 will cause missed outputs, need to pad further
|
||||
while (num_columns_out < out_batch * out_channels * out_height * out_width) {
|
||||
num_input_padding += 8;
|
||||
num_input_padding = original_input_padding + additional_padding;
|
||||
num_feature_map_rows = original_num_feature_map_rows + (num_input_padding) / num_feature_map_columns;
|
||||
num_columns_in = num_inputs + num_input_padding;
|
||||
num_columns_out = (((num_inputs + num_input_padding - num_filter_coefficients) / num_feature_map_columns) + 1) * convolution._out_depth;
|
||||
dnn->new_num_conv_columns = num_columns_out / convolution._out_depth;
|
||||
dnn->new_num_conv_columns = num_columns_out;
|
||||
additional_padding += 8;
|
||||
}
|
||||
|
||||
if (num_input_padding == 0) {
|
||||
@ -406,7 +412,7 @@ void GNAGraphCompiler::ConvolutionPrimitive(InferenceEngine::CNNLayerPtr layer)
|
||||
// Kaldi features are opposite orientation
|
||||
dnn->do_rotate_input = true;
|
||||
dnn->num_rotate_rows = num_feature_map_columns;
|
||||
dnn->num_rotate_columns = num_feature_map_rows;
|
||||
dnn->num_rotate_columns = original_num_feature_map_rows;
|
||||
} else {
|
||||
dnn->do_rotate_input = false;
|
||||
}
|
||||
@ -1509,6 +1515,7 @@ void GNAGraphCompiler::PWLPrimitive(InferenceEngine::CNNLayerPtr layer) {
|
||||
|
||||
if (dnn->new_num_conv_columns) {
|
||||
num_rows = dnn->new_num_conv_columns;
|
||||
if (inputs->getDims().size() == 4) num_rows /= FROM_IR_DIM(inputs, 3);
|
||||
dnn->new_num_conv_columns = 0;
|
||||
}
|
||||
|
||||
|
@ -688,7 +688,7 @@ void GNAPlugin::LoadNetwork(ICNNNetwork & _network) {
|
||||
}
|
||||
|
||||
// calculating input orientation without memory layers, since their orientation not changed during infer right now
|
||||
std::unordered_map<string, string> skippedLayers;
|
||||
std::unordered_map<string, std::vector<string>> skippedLayers;
|
||||
|
||||
bool withConv = false;
|
||||
for (auto &layer : sortedNet) {
|
||||
@ -715,23 +715,32 @@ void GNAPlugin::LoadNetwork(ICNNNetwork & _network) {
|
||||
|
||||
auto dnnLayer = graphCompiler.dnnComponents.findComponent(layer);
|
||||
string inputName = prevLayer->name;
|
||||
std::vector<string> inputs;
|
||||
if (skippedLayers.count(prevLayer->name)) {
|
||||
inputName = skippedLayers[prevLayer->name];
|
||||
inputs = skippedLayers[prevLayer->name];
|
||||
} else {
|
||||
inputs.push_back(inputName);
|
||||
}
|
||||
|
||||
// non functional layer - skipped by gna
|
||||
if (nullptr == dnnLayer) {
|
||||
// storing input name for skipped layer
|
||||
skippedLayers[layer->name] = inputName;
|
||||
if (skippedLayers[inputName].size() == 0) {
|
||||
skippedLayers[layer->name].push_back(inputName);
|
||||
} else {
|
||||
skippedLayers[layer->name] = skippedLayers[inputName];
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
// input orientation might be already initialized, thus verify that it matches
|
||||
if (!inputsDesc->orientation_in.count(inputName)) {
|
||||
inputsDesc->orientation_in[inputName] = dnnLayer->orientation_in;
|
||||
} else {
|
||||
if (inputsDesc->orientation_in[inputName] != dnnLayer->orientation_in) {
|
||||
THROW_GNA_EXCEPTION << "orientation for input layer: " << inputName << "cannot be calculated";
|
||||
for (auto input : inputs) {
|
||||
if (!inputsDesc->orientation_in.count(input)) {
|
||||
inputsDesc->orientation_in[input] = dnnLayer->orientation_in;
|
||||
} else {
|
||||
if (inputsDesc->orientation_in[input] != dnnLayer->orientation_in) {
|
||||
THROW_GNA_EXCEPTION << "orientation for input layer: " << input << "cannot be calculated";
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -0,0 +1,44 @@
|
||||
// Copyright (C) 2020 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
#include <vector>
|
||||
#include "subgraph_tests/reshape_permute_conv_permute_reshape_act.hpp"
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
std::vector<std::array<size_t, 4>> input_shapes {
|
||||
{1, 1, 166, 2},
|
||||
{1, 1, 144, 2},
|
||||
{1, 1, 288, 2},
|
||||
{1, 1, 144, 4},
|
||||
};
|
||||
|
||||
std::vector<std::array<size_t, 2>> kernel_shapes {
|
||||
{1, 7},
|
||||
{1, 15},
|
||||
};
|
||||
|
||||
std::vector<size_t> output_channels {
|
||||
16,
|
||||
8,
|
||||
4,
|
||||
};
|
||||
|
||||
std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16,
|
||||
};
|
||||
|
||||
std::map<std::string, std::string> additional_config = { };
|
||||
|
||||
namespace LayerTestsDefinitions {
|
||||
INSTANTIATE_TEST_CASE_P(basic, ConvReshapeAct,
|
||||
::testing::Combine(
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU),
|
||||
::testing::ValuesIn(input_shapes),
|
||||
::testing::ValuesIn(kernel_shapes),
|
||||
::testing::ValuesIn(output_channels),
|
||||
::testing::Values(additional_config)),
|
||||
ConvReshapeAct::getTestCaseName);
|
||||
} // namespace LayerTestsDefinitions
|
||||
|
||||
|
@ -0,0 +1,47 @@
|
||||
// Copyright (C) 2020 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
#include <vector>
|
||||
#include "subgraph_tests/reshape_permute_conv_permute_reshape_act.hpp"
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
std::vector<std::array<size_t, 4>> input_shapes {
|
||||
{1, 1, 166, 2},
|
||||
{1, 1, 144, 2},
|
||||
{1, 1, 288, 2},
|
||||
{1, 1, 144, 4},
|
||||
};
|
||||
|
||||
std::vector<std::array<size_t, 2>> kernel_shapes {
|
||||
{1, 7},
|
||||
{1, 15},
|
||||
};
|
||||
|
||||
std::vector<size_t> output_channels {
|
||||
16,
|
||||
8,
|
||||
4,
|
||||
};
|
||||
|
||||
std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16,
|
||||
};
|
||||
|
||||
std::map<std::string, std::string> additional_config = {
|
||||
{"GNA_DEVICE_MODE", "GNA_SW_EXACT"},
|
||||
{"GNA_SCALE_FACTOR_0", "2340"}
|
||||
};
|
||||
|
||||
namespace LayerTestsDefinitions {
|
||||
INSTANTIATE_TEST_CASE_P(basic, ConvReshapeAct,
|
||||
::testing::Combine(
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(CommonTestUtils::DEVICE_GNA),
|
||||
::testing::ValuesIn(input_shapes),
|
||||
::testing::ValuesIn(kernel_shapes),
|
||||
::testing::ValuesIn(output_channels),
|
||||
::testing::Values(additional_config)),
|
||||
ConvReshapeAct::getTestCaseName);
|
||||
} // namespace LayerTestsDefinitions
|
||||
|
||||
|
@ -0,0 +1,44 @@
|
||||
// Copyright (C) 2020 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
#include <vector>
|
||||
#include "subgraph_tests/reshape_permute_conv_permute_reshape_act.hpp"
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
|
||||
std::vector<std::array<size_t, 4>> input_shapes {
|
||||
{1, 1, 166, 2},
|
||||
{1, 1, 144, 2},
|
||||
{1, 1, 288, 2},
|
||||
{1, 1, 144, 4},
|
||||
};
|
||||
|
||||
std::vector<std::array<size_t, 2>> kernel_shapes {
|
||||
{1, 7},
|
||||
{1, 15},
|
||||
};
|
||||
|
||||
std::vector<size_t> output_channels {
|
||||
16,
|
||||
8,
|
||||
4,
|
||||
};
|
||||
|
||||
std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16,
|
||||
};
|
||||
|
||||
std::map<std::string, std::string> additional_config = {};
|
||||
|
||||
namespace LayerTestsDefinitions {
|
||||
INSTANTIATE_TEST_CASE_P(basic, ConvReshapeAct,
|
||||
::testing::Combine(
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(CommonTestUtils::DEVICE_GPU),
|
||||
::testing::ValuesIn(input_shapes),
|
||||
::testing::ValuesIn(kernel_shapes),
|
||||
::testing::ValuesIn(output_channels),
|
||||
::testing::Values(additional_config)),
|
||||
ConvReshapeAct::getTestCaseName);
|
||||
} // namespace LayerTestsDefinitions
|
||||
|
||||
|
@ -0,0 +1,37 @@
|
||||
// Copyright (C) 2020 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
#include <array>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
|
||||
#include "functional_test_utils/layer_test_utils.hpp"
|
||||
#include "ngraph_functions/utils/ngraph_helpers.hpp"
|
||||
#include "ngraph_functions/builders.hpp"
|
||||
|
||||
namespace LayerTestsDefinitions {
|
||||
typedef std::tuple<
|
||||
InferenceEngine::Precision, // Network Precision
|
||||
std::string, // Target Device
|
||||
std::array<size_t, 4>, // Input shape
|
||||
std::array<size_t, 2>, // Kernel shape
|
||||
size_t, // Output channels
|
||||
std::map<std::string, std::string> // Configuration
|
||||
> ConvReshapeActParams;
|
||||
|
||||
class ConvReshapeAct : public testing::WithParamInterface<ConvReshapeActParams>,
|
||||
virtual public LayerTestsUtils::LayerTestsCommon {
|
||||
public:
|
||||
static std::string getTestCaseName(testing::TestParamInfo<ConvReshapeActParams> obj);
|
||||
|
||||
protected:
|
||||
void SetUp() override;
|
||||
void Run() override;
|
||||
};
|
||||
|
||||
} // namespace LayerTestsDefinitions
|
@ -0,0 +1,120 @@
|
||||
// Copyright (C) 2020 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
#include <tuple>
|
||||
#include <string>
|
||||
#include <numeric>
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <debug.h>
|
||||
#include "common_test_utils/common_utils.hpp"
|
||||
#include "functional_test_utils/precision_utils.hpp"
|
||||
#include "functional_test_utils/skip_tests_config.hpp"
|
||||
#include "subgraph_tests/reshape_permute_conv_permute_reshape_act.hpp"
|
||||
|
||||
namespace LayerTestsDefinitions {
|
||||
std::string ConvReshapeAct::getTestCaseName(testing::TestParamInfo<ConvReshapeActParams> obj) {
|
||||
InferenceEngine::Precision netPrecision;
|
||||
std::string targetName;
|
||||
std::array<size_t, 4> input_shape;
|
||||
std::array<size_t, 2> kernel_shape;
|
||||
size_t output_channels;
|
||||
std::map<std::string, std::string> configuration;
|
||||
|
||||
|
||||
std::tie(netPrecision, targetName, input_shape, kernel_shape, output_channels, configuration) = obj.param;
|
||||
std::ostringstream results;
|
||||
|
||||
results << "IS=" << CommonTestUtils::vec2str(std::vector<size_t>(input_shape.begin(), input_shape.end())) << "_";
|
||||
results << "KS=" << CommonTestUtils::vec2str(std::vector<size_t>(kernel_shape.begin(), kernel_shape.end())) << "_";
|
||||
results << "OC=" << output_channels << "_";
|
||||
results << "netPRC=" << netPrecision.name() << "_";
|
||||
results << "targetDevice=" << targetName;
|
||||
return results.str();
|
||||
}
|
||||
|
||||
void ConvReshapeAct::SetUp() {
|
||||
InferenceEngine::Precision netPrecision;
|
||||
std::array<size_t, 4> input_shape;
|
||||
std::array<size_t, 2> kernel_shape;
|
||||
size_t output_channels;
|
||||
std::map<std::string, std::string> additional_config;
|
||||
|
||||
std::tie(netPrecision, targetDevice, input_shape, kernel_shape, output_channels, additional_config) = this->GetParam();
|
||||
|
||||
configuration.insert(additional_config.begin(), additional_config.end());
|
||||
|
||||
const std::size_t input_dim = std::accumulate(input_shape.begin(), input_shape.end(), 1, std::multiplies<size_t>());
|
||||
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
|
||||
|
||||
std::vector<size_t> input_dims { 1, input_dim };
|
||||
std::vector<size_t> reshape_in_dims = std::vector<size_t>(input_shape.begin(), input_shape.end());
|
||||
std::vector<size_t> permute_in_order = { 0, 3, 1, 2 };
|
||||
std::vector<size_t> permute_out_order = { 0, 2, 3, 1 };
|
||||
std::vector<size_t> reshape_out_dims = { 1, input_shape[0] * input_shape[1] * (input_shape[2] - kernel_shape[1] + 1) * output_channels };
|
||||
|
||||
auto input_parameter = ngraph::builder::makeParams(ngPrc, {input_dims});
|
||||
|
||||
auto reshape_in_pattern = std::make_shared<ngraph::op::Constant>(ngraph::element::i64,
|
||||
ngraph::Shape{4},
|
||||
reshape_in_dims);
|
||||
auto reshape_in = std::make_shared<ngraph::op::v1::Reshape>(input_parameter[0], reshape_in_pattern, false);
|
||||
|
||||
auto permute_in_params = std::make_shared<ngraph::opset1::Constant>(ngraph::element::i64,
|
||||
ngraph::Shape{4},
|
||||
ngraph::Shape{permute_in_order});
|
||||
auto permute_in = std::make_shared<ngraph::opset1::Transpose>(reshape_in, permute_in_params);
|
||||
|
||||
auto conv = ngraph::builder::makeConvolution(permute_in, ngPrc, {kernel_shape[0], kernel_shape[1]}, {1, 1}, {0, 0}, {0, 0}, {1, 1},
|
||||
ngraph::op::PadType::VALID, output_channels);
|
||||
|
||||
auto permute_out_params = std::make_shared<ngraph::opset1::Constant>(ngraph::element::i64,
|
||||
ngraph::Shape{4},
|
||||
permute_out_order);
|
||||
auto permute_out = std::make_shared<ngraph::opset1::Transpose>(conv, permute_out_params);
|
||||
|
||||
auto reshape_out_pattern = std::make_shared<ngraph::op::Constant>(ngraph::element::i64,
|
||||
ngraph::Shape{2},
|
||||
std::vector<size_t>{reshape_out_dims});
|
||||
|
||||
auto reshape_out = std::make_shared<ngraph::op::v1::Reshape>(permute_out, reshape_out_pattern, false);
|
||||
|
||||
auto tanh = std::make_shared<ngraph::op::Tanh>(reshape_out);
|
||||
|
||||
function = std::make_shared<ngraph::Function>(tanh, input_parameter, "conv_reshape_act");
|
||||
}
|
||||
|
||||
void ConvReshapeAct::Run() {
|
||||
SKIP_IF_CURRENT_TEST_IS_DISABLED()
|
||||
|
||||
ConfigurePlugin();
|
||||
LoadNetwork();
|
||||
|
||||
inferRequest = executableNetwork.CreateInferRequest();
|
||||
inputs.clear();
|
||||
|
||||
for (const auto &input : cnnNetwork.getInputsInfo()) {
|
||||
const auto &info = input.second;
|
||||
auto tensorDesc = info->getTensorDesc();
|
||||
|
||||
auto blob = FuncTestUtils::createAndFillBlobFloat(tensorDesc, 2, -1, 100, 111);
|
||||
|
||||
FuncTestUtils::fillInputsBySinValues(blob);
|
||||
inferRequest.SetBlob(info->name(), blob);
|
||||
inputs.push_back(blob);
|
||||
}
|
||||
if (configuration.count(InferenceEngine::PluginConfigParams::KEY_DYN_BATCH_ENABLED) &&
|
||||
configuration.count(InferenceEngine::PluginConfigParams::YES)) {
|
||||
auto batchSize = cnnNetwork.getInputsInfo().begin()->second->getTensorDesc().getDims()[0] / 2;
|
||||
inferRequest.SetBatch(batchSize);
|
||||
}
|
||||
inferRequest.Infer();
|
||||
|
||||
threshold = 0.1;
|
||||
Validate();
|
||||
}
|
||||
|
||||
TEST_P(ConvReshapeAct, CompareWithRefs) {
|
||||
Run();
|
||||
}
|
||||
} // namespace LayerTestsDefinitions
|
Loading…
Reference in New Issue
Block a user