[GNA] 4D concat align pass (#2970)

* [GNA] Fix RemovePermutationsNHWCToNCHWPass in cases that permute input has many outData

* style

* [GNA] linux test fail fix
This commit is contained in:
Kamil Magierski 2020-11-13 16:12:45 +01:00 committed by GitHub
parent 9070cb865d
commit 9f54989824
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 320 additions and 89 deletions

View File

@ -6,7 +6,7 @@
#include <legacy/graph_tools.hpp>
#include "gna_plugin_log.hpp"
#include "frontend/quantized_layer_params.hpp"
#include <utility>
#include <string>
#include <vector>
@ -441,7 +441,45 @@ inline void CNNNetSwapLayers(InferenceEngine::CNNLayerPtr lhs,
lhs->outData.front()->setDims(rhs->outData.front()->getDims());
}
/**
* @brief changes the Tensor Desctiption if data by created a new one with correct description and replacing original one
*/
inline DataPtr CNNReplaceDataWithChangedTensorDescription(DataPtr old_data, TensorDesc& new_td) {
auto new_dataPtr = std::make_shared<Data>(old_data->getName() + "_reshaped", new_td);
getInputTo(new_dataPtr) = getInputTo(old_data);
auto creatorLayer = getCreatorLayer(old_data).lock();
getCreatorLayer(new_dataPtr) = creatorLayer;
size_t idx = -1;
for (size_t i=0; i < creatorLayer->outData.size(); i++) {
if (areEqualDatas(old_data, creatorLayer->outData[i])) {
idx = i;
break;
}
}
if (idx == -1) THROW_GNA_EXCEPTION << "No idx for data was found";
creatorLayer->outData[idx] = new_dataPtr;
auto input_to = getInputTo(new_dataPtr);
for (auto& input : input_to) {
for (auto& input_idx : CNNLayerFindInsDataIdxes(old_data, input.second)) {
input.second->insData[input_idx] = new_dataPtr;
}
}
return new_dataPtr;
}
/**
* @brief Creates a Reshape with given name and tensor description
*/
inline CNNLayerPtr CNNNetworkCreateReshape(TensorDesc td, std::string name, bool quantized) {
auto reshape = std::make_shared<ReshapeLayer>(LayerParams({name, "reshape", Precision::FP32}));
auto reshapeLayerWithQuant = quantized ? InferenceEngine::injectData<GNAPluginNS::QuantizedLayerParams>(reshape) : reshape;
auto dataPtr = std::make_shared<Data>(name + "_data", td);
getCreatorLayer(dataPtr) = reshapeLayerWithQuant;
reshapeLayerWithQuant->outData.push_back(dataPtr);
return reshapeLayerWithQuant;
}
/**
* @@brief insertLayer between given layers
@ -594,6 +632,7 @@ std::vector<std::pair<CNNLayerPtr, int> > CNNNetGetPrevLayersSkip(CNNLayerPtr or
* @brief remove given layer from topology, currently only layers with one input data and one output data supported
*/
inline void CNNNetworkRemoveLayer(CNNLayerPtr layer, bool checkDims = true) {
gnalog() << "Removing " << layer->name << "layer";
if (!layer) {
THROW_IE_EXCEPTION << "Cannot remove layer pointed to NULL";
}

View File

@ -408,6 +408,7 @@ void GNAPlugin::LoadNetwork(ICNNNetwork & _network) {
passes->registerPass<EltwiseSplitOverChannelsPass>();
passes->registerPass<InsertSplitAligningFilterPass>();
passes->registerPass<Concat4Dto2DPass>();
passes->registerPass<InsertConcatAligningFilterPass>();
passes->registerPass<ReorderConcatInputsPass>();
if (policy.PermutePolicy != Policy::Permute::DISABLED) {

View File

@ -34,6 +34,11 @@ class Policy {
AUTO_PERMUTE
} PermutePolicy = Permute::DISABLED;
enum class Concat4Dto2DConversion {
DISABLED,
ENABLED
} ConcatConversionPolicy = Concat4Dto2DConversion::ENABLED;
enum class ConcatAlignment {
DISABLED,
DISABLED_FOR_FP32,

View File

@ -634,6 +634,10 @@ void RemovePermutationsNHWCToNCHWPass::run() {
continue;
}
if (l->outData.size() != 1) {
continue;
}
if (getInputTo(l->outData.front()).empty()) {
continue;
}
@ -661,7 +665,18 @@ void RemovePermutationsNHWCToNCHWPass::run() {
next->input()->setDims(toRemove->input()->getDims());
next->input()->setLayout(Layout::NHWC);
auto layerBeforePermute = CNNNetPrevLayer(toRemove);
layerBeforePermute->outData[0]->setLayout(Layout::NHWC);
DataPtr output = nullptr;
for (auto before_output : layerBeforePermute->outData) {
if (areEqualDatas(toRemove->input(), before_output)) {
output = before_output;
output->setLayout(Layout::NHWC);
break;
}
}
if (output == nullptr) {
THROW_GNA_EXCEPTION << "Could not find correct data link between " << toRemove->name << " and " << layerBeforePermute->name;
}
auto* convolution = dynamic_cast<ConvolutionLayer*>(next.get());
if (!convolution) {
@ -808,6 +823,85 @@ void InsertCopyLayerPass::run() {
}
}
void Concat4Dto2DPass::run() {
// Find 4D concat layers that will have to use ConcatAlignFilters and can be substituted by 2D concat
// for example if 4D concat have unaligned inputs then ConcatAlignFilters need to be used if sizes before
// axis are all ones then concat can be changed to 2D for example, lets say all unputs have same shape equal to:
// 1, 1, 5, 3 then for axis 0, 1, 2 the change will be made and inputs will be reshaped to 1, 15,
// but for shape 2, 1, 5, 3 only axis 0 is valid and inputs will reshape to 1, 30
auto quantized = InferenceEngine::getInjectedData<QuantizedLayerParams>(pLayers->front());
if (getPassManager()->getPolicy().ConcatConversionPolicy == Policy::Concat4Dto2DConversion::DISABLED) return;
if (getPassManager()->getPolicy().ConcatAlignmentPolicy == Policy::ConcatAlignment::DISABLED) return;
if (getPassManager()->getPolicy().ConcatAlignmentPolicy == Policy::ConcatAlignment::DISABLED_FOR_FP32 && !quantized) return;
for (auto & l : *pLayers) {
LayerInfo info(l);
auto concatLayer = info.as<ConcatLayer*>();
if (!concatLayer) continue;
if (concatLayer->insData.size() < 1) continue;
auto dims_size = concatLayer->insData[0].lock()->getDims().size();
if (dims_size > 2) {
auto axis = concatLayer->_axis;
bool skip_layer = false;
for (int i = 0; i < axis; i++) {
if (concatLayer->insData[0].lock()->getDims()[i] != 1) skip_layer = true;
}
if (skip_layer) continue;
skip_layer = true;
std::vector<size_t> total_sizes;
for (auto& input : concatLayer->insData) {
auto input_dims = input.lock()->getDims();
total_sizes.push_back(std::accumulate(input_dims.begin(), input_dims.end(), size_t(1), std::multiplies<size_t>()));
if (total_sizes.back() % 64 != 0) skip_layer = false;
}
if (skip_layer) continue;
for (size_t input_idx = 0; input_idx != concatLayer->insData.size(); input_idx++) {
auto getLayerByIndex = [&concatLayer](int idx) {
auto input = concatLayer->insData[idx];
auto lockedInput = input.lock();
if (!lockedInput) {
THROW_GNA_EXCEPTION << "cannot get insdata : "<< idx << " for layer: " << concatLayer->name;
}
return lockedInput;
};
auto concatInput = getLayerByIndex(input_idx);
auto tensor = InferenceEngine::TensorDesc(concatInput->getTensorDesc());
tensor.reshape(SizeVector({1, total_sizes[input_idx]}), Layout::NC);
auto reshapeName = l->name + "_input_"+ std::to_string(input_idx) +"_reshape";
auto reshape = CNNNetworkCreateReshape(tensor, reshapeName, quantized);
CNNNetworkInsertLayer(getCreatorLayer(concatInput).lock(), l, reshape);
gnalog() << "\tInserted " << reshapeName << " between " << getCreatorLayer(concatInput).lock()->name << " and " << l->name << std::endl;
}
for (auto output_idx = 0; output_idx != concatLayer->outData.size(); output_idx++) {
auto output = concatLayer->outData[output_idx];
auto output_tensor_copy = TensorDesc(output->getTensorDesc());
auto dims = output_tensor_copy.getDims();
auto total_size = std::accumulate(dims.begin(), dims.end(), size_t(1), std::multiplies<size_t>());
auto new_tensor = output->getTensorDesc();
new_tensor.reshape(SizeVector({1, total_size}), Layout::NC);
auto new_output = CNNReplaceDataWithChangedTensorDescription(output, new_tensor);
gnalog() << "\tChanged " << output->getName() << " dims to 2D" << std::endl;
auto reshapeName = l->name + "_output_"+ std::to_string(output_idx) +"_reshape";
auto reshape = CNNNetworkCreateReshape(output_tensor_copy, reshapeName, quantized);
CNNNetworkInsertLayer(l, nullptr, reshape, output_idx);
gnalog() << "\tInserted " << reshapeName << " after " << l->name << std::endl;
}
}
}
}
void InsertConcatAligningFilterPass::run() {
auto quantized = InferenceEngine::getInjectedData<QuantizedLayerParams>(pLayers->front());

View File

@ -141,6 +141,11 @@ DECL_PASS(InsertCopyLayer);
*/
DECL_PASS(InsertSplitAligningFilter);
/**
* @brief Pass that changes 4D concat to 2D concat in cases that would have to use ConcatAlignFilter
*/
DECL_PASS(Concat4Dto2D);
/**
* @brief concat-aligning filter layer insertion required in cases when concat inputs size are not 64-aligned
*/

View File

@ -0,0 +1,34 @@
// Copyright (C) 2019 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include <vector>
#include "single_layer_tests/concat_4D.hpp"
#include "common_test_utils/test_constants.hpp"
using namespace LayerTestsDefinitions;
namespace {
std::vector<std::vector<size_t>> inShapes = {
{1, 1, 33, 16},
{1, 1, 65, 16},
};
std::vector<InferenceEngine::Precision> netPrecisions = {InferenceEngine::Precision::FP32,
InferenceEngine::Precision::FP16};
std::map<std::string, std::string> additional_config = {
{"GNA_COMPACT_MODE", "NO"},
{"GNA_DEVICE_MODE", "GNA_SW_EXACT"},
{"GNA_SCALE_FACTOR_0", "2000.0"},
};
INSTANTIATE_TEST_CASE_P(smoke_Concat4D_Basic, Concat4DLayerTest,
::testing::Combine(
::testing::ValuesIn(inShapes),
::testing::ValuesIn(netPrecisions),
::testing::Values(CommonTestUtils::DEVICE_GNA),
::testing::Values(additional_config)),
Concat4DLayerTest::getTestCaseName);
} // namespace

View File

@ -0,0 +1,32 @@
// Copyright (C) 2019 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#pragma once
#include <tuple>
#include <string>
#include <vector>
#include <memory>
#include "functional_test_utils/layer_test_utils.hpp"
#include "ngraph_functions/builders.hpp"
#include "ngraph_functions/utils/ngraph_helpers.hpp"
namespace LayerTestsDefinitions {
using concat4DParamsTuple = typename std::tuple<
std::vector<size_t>, // Inputs shape
InferenceEngine::Precision, // Network precision
std::string, // Device name
std::map<std::string, std::string> // Configuration
>;
class Concat4DLayerTest : public testing::WithParamInterface<concat4DParamsTuple>,
virtual public LayerTestsUtils::LayerTestsCommon {
public:
static std::string getTestCaseName(const testing::TestParamInfo<concat4DParamsTuple> &obj);
protected:
void SetUp() override;
};
} // namespace LayerTestsDefinitions

View File

@ -0,0 +1,70 @@
// Copyright (C) 2019 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include <tuple>
#include <string>
#include <vector>
#include <memory>
#include <functional>
#include "ie_core.hpp"
#include "common_test_utils/common_utils.hpp"
#include "functional_test_utils/blob_utils.hpp"
#include "common_test_utils/data_utils.hpp"
#include "functional_test_utils/precision_utils.hpp"
#include "functional_test_utils/plugin_cache.hpp"
#include "functional_test_utils/skip_tests_config.hpp"
#include "single_layer_tests/concat_4D.hpp"
namespace LayerTestsDefinitions {
std::string Concat4DLayerTest::getTestCaseName(const testing::TestParamInfo<concat4DParamsTuple> &obj) {
int axis;
std::vector<size_t> inputShapes;
InferenceEngine::Precision netPrecision;
InferenceEngine::Precision inPrc, outPrc;
InferenceEngine::Layout inLayout, outLayout;
std::string targetName;
std::map<std::string, std::string> config;
std::tie(inputShapes, netPrecision, targetName, config) = obj.param;
std::ostringstream result;
result << "IS=" << CommonTestUtils::vec2str(inputShapes) << "_";
result << "netPRC=" << netPrecision.name() << "_";
result << "trgDev=" << targetName << "_";
return result.str();
}
void Concat4DLayerTest::SetUp() {
int axis = 1;
InferenceEngine::SizeVector inputShape;
InferenceEngine::Precision netPrecision;
std::map<std::string, std::string> additional_config;
std::tie(inputShape, netPrecision, targetDevice, additional_config) = this->GetParam();
configuration.insert(additional_config.begin(), additional_config.end());
auto total_size = std::accumulate(inputShape.begin(), inputShape.end(), static_cast<size_t>(1), std::multiplies<size_t>());
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
auto params = ngraph::builder::makeParams(ngPrc, {inputShape});
auto input = params[0];
auto constant_values = CommonTestUtils::generate_float_numbers(total_size, 11.0f, 12.0f);
auto constant = ngraph::builder::makeConstant(ngPrc, std::vector<size_t>({1, total_size}), constant_values);
auto first_reshape_pattern = std::make_shared<ngraph::op::Constant>(ngraph::element::i64,
ngraph::Shape{4}, std::vector<size_t>(inputShape));
auto first_reshape = std::make_shared<ngraph::op::v1::Reshape>(constant, first_reshape_pattern, false);
auto constant_2 = ngraph::builder::makeConstant(ngPrc, inputShape, constant_values);
auto concat = std::make_shared<ngraph::opset1::Concat>(ngraph::OutputVector({first_reshape, input, constant_2}), axis);
auto act = ngraph::builder::makeActivation(concat, ngPrc, ngraph::helpers::ActivationTypes::Relu);
ngraph::ResultVector results{std::make_shared<ngraph::opset1::Result>(act)};
function = std::make_shared<ngraph::Function>(results, params, "concat");
}
TEST_P(Concat4DLayerTest, CompareWithRefs) {
Run();
};
} // namespace LayerTestsDefinitions

View File

@ -41,20 +41,7 @@ std::string MatmulSqueezeAddTest::getTestCaseName(testing::TestParamInfo<matmulS
}
void MatmulSqueezeAddTest::SetUp() {
auto generateFloatNumbers = [](float startFrom, float upTo, std::size_t vec_len) {
std::vector<float> res;
std::mt19937 gen(
static_cast<float>(std::chrono::high_resolution_clock::now().time_since_epoch().count()));
std::uniform_real_distribution<float> dist(startFrom, upTo);
for (int i = 0; i < vec_len; i++)
res.emplace_back(static_cast<float>(dist(gen)));
return res;
};
auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
InferenceEngine::Precision netPrecision;
std::map<std::string, std::string> tempConfig;
std::vector<size_t> inputShape;
@ -67,14 +54,14 @@ void MatmulSqueezeAddTest::SetUp() {
auto params = ngraph::builder::makeParams(ngPrc, { inputShape });
auto constant_0 = ngraph::builder::makeConstant<float>(ngPrc, { outputSize, inputShape[1] },
generateFloatNumbers(0, 1, outputSize * inputShape[1]), false);
CommonTestUtils::generate_float_numbers(outputSize * inputShape[1], 0, 1, seed), false);
auto matmul_0 = std::make_shared<ngraph::op::MatMul>(params[0], constant_0, false, true);
auto constant_1 = std::make_shared<ngraph::op::Constant>(ngraph::element::Type_t::i64, ngraph::Shape{ 1 }, std::vector<size_t>{0});
auto unsqueeze_0 = std::make_shared<ngraph::op::Unsqueeze>(matmul_0, constant_1);
auto constant_2 = ngraph::builder::makeConstant<float>(ngPrc, { 1, inputShape[0], outputSize },
generateFloatNumbers(0, 1, inputShape[0] * outputSize), false);
CommonTestUtils::generate_float_numbers(inputShape[0] * outputSize, 0, 1, seed), false);
auto add_0 = std::make_shared<ngraph::op::v1::Add>(unsqueeze_0, constant_2);
auto constant_3 = std::make_shared<ngraph::op::Constant>(ngraph::element::Type_t::i64, ngraph::Shape{ 1 }, std::vector<size_t>{0});

View File

@ -58,26 +58,13 @@ namespace SubgraphTestsDefinitions {
std::vector<size_t> hidden_memory_dims {1, hiddenSize};
std::vector<size_t> cell_memory_dims {1, hiddenSize};
const int seed = 0;
std::mt19937 gen(static_cast<float>(seed));
auto generateFloatNumbers = [gen](std::size_t vec_len, float min, float max) mutable {
std::vector<float> res;
std::uniform_real_distribution<float> dist(min, max);
for (int i = 0; i < vec_len; i++)
res.emplace_back(static_cast<float>(dist(gen)));
return res;
};
input_bias = generateFloatNumbers(inputSize, -0.25f, 0.0f);
input_weights = generateFloatNumbers(inputSize, 0.0f, 0.15f);
hidden_memory_init = generateFloatNumbers(hiddenSize, -0.2f, 0.2f);
cell_memory_init = generateFloatNumbers(hiddenSize, -0.2f, 0.2f);
weights_vals = generateFloatNumbers(4 * hiddenSize * inputSize, -0.1f, 0.1f);
reccurrenceWeights_vals = generateFloatNumbers(4 * hiddenSize * hiddenSize, -0.1f, 0.1f);
bias_vals = generateFloatNumbers(4 * hiddenSize, -0.25f, 0.15f);
input_bias = CommonTestUtils::generate_float_numbers(inputSize, -0.2f, 0.0f);
input_weights = CommonTestUtils::generate_float_numbers(inputSize, 0.0f, 0.1f);
hidden_memory_init = CommonTestUtils::generate_float_numbers(hiddenSize, -0.2f, 0.2f);
cell_memory_init = CommonTestUtils::generate_float_numbers(hiddenSize, -0.2f, 0.2f);
weights_vals = CommonTestUtils::generate_float_numbers(4 * hiddenSize * inputSize, -0.1f, 0.1f);
reccurrenceWeights_vals = CommonTestUtils::generate_float_numbers(4 * hiddenSize * hiddenSize, -0.1f, 0.1f);
bias_vals = CommonTestUtils::generate_float_numbers(4 * hiddenSize, -0.2f, 0.1f);
auto input_parameter = ngraph::builder::makeParams(ngPrc, {input_dims});

View File

@ -55,27 +55,14 @@ void MultipleLSTMCellTest::SetUp() {
std::vector<size_t> hidden_memory_dims {1, hiddenSize};
std::vector<size_t> cell_memory_dims {1, hiddenSize};
const int seed = 0;
std::mt19937 gen(static_cast<float>(seed));
auto generateFloatNumbers = [gen](std::size_t vec_len, float min, float max) mutable {
std::vector<float> res;
std::uniform_real_distribution<float> dist(min, max);
for (int i = 0; i < vec_len; i++)
res.emplace_back(static_cast<float>(dist(gen)));
return res;
};
input_bias = generateFloatNumbers(inputSize, -0.25f, 0.0f);
input_weights = generateFloatNumbers(inputSize, 0.0f, 0.15f);
hidden_memory_init = generateFloatNumbers(hiddenSize, -0.2f, 0.2f);
cell_memory_init = generateFloatNumbers(hiddenSize, -0.2f, 0.2f);
weights_vals = generateFloatNumbers(4 * hiddenSize * inputSize, -0.1f, 0.1f);
weights_2_vals = generateFloatNumbers(4 * hiddenSize * hiddenSize, -0.1f, 0.1f);
reccurrenceWeights_vals = generateFloatNumbers(4 * hiddenSize * hiddenSize, -0.1f, 0.1f);
bias_vals = generateFloatNumbers(4 * hiddenSize, -0.25f, 0.15f);
input_bias = CommonTestUtils::generate_float_numbers(inputSize, -0.25f, 0.0f);
input_weights = CommonTestUtils::generate_float_numbers(inputSize, 0.0f, 0.15f);
hidden_memory_init = CommonTestUtils::generate_float_numbers(hiddenSize, -0.2f, 0.2f);
cell_memory_init = CommonTestUtils::generate_float_numbers(hiddenSize, -0.2f, 0.2f);
weights_vals = CommonTestUtils::generate_float_numbers(4 * hiddenSize * inputSize, -0.1f, 0.1f);
weights_2_vals = CommonTestUtils::generate_float_numbers(4 * hiddenSize * hiddenSize, -0.1f, 0.1f);
reccurrenceWeights_vals = CommonTestUtils::generate_float_numbers(4 * hiddenSize * hiddenSize, -0.1f, 0.1f);
bias_vals = CommonTestUtils::generate_float_numbers(4 * hiddenSize, -0.25f, 0.15f);
auto input_parameter = ngraph::builder::makeParams(ngPrc, {input_dims});

View File

@ -49,21 +49,8 @@ void MultipleConcatTest::SetUp() {
std::vector<size_t> input_dims { 1, inputSize };
std::vector<size_t> constant_dims {1, constantSize};
const int seed = 0;
std::mt19937 gen(static_cast<float>(seed));
auto generateFloatNumbers = [gen](std::size_t vec_len, float min, float max) mutable {
std::vector<float> res;
std::uniform_real_distribution<float> dist(min, max);
for (int i = 0; i < vec_len; i++)
res.emplace_back(static_cast<float>(dist(gen)));
return res;
};
auto concat_1_vals = generateFloatNumbers(constantSize, -2.0f, 2.0f);
auto concat_2_vals = generateFloatNumbers(constantSize, -5.0f, 5.0f);
auto concat_1_vals = CommonTestUtils::generate_float_numbers(constantSize, -2.0f, 2.0f);
auto concat_2_vals = CommonTestUtils::generate_float_numbers(constantSize, -5.0f, 5.0f);
auto input_parameter = ngraph::builder::makeParams(ngPrc, {input_dims});

View File

@ -52,19 +52,6 @@ void PermConvPermConcat::SetUp() {
std::vector<size_t> permute_in_order = { 0, 3, 1, 2 };
std::vector<size_t> permute_out_order = { 0, 2, 3, 1 };
const int seed = 0;
std::mt19937 gen(static_cast<float>(seed));
auto generateFloatNumbers = [gen](std::size_t vec_len, float min, float max) mutable {
std::vector<float> res;
std::uniform_real_distribution<float> dist(min, max);
for (int i = 0; i < vec_len; i++)
res.emplace_back(static_cast<float>(dist(gen)));
return res;
};
auto input_parameter = ngraph::builder::makeParams(ngPrc, {input_dims});
auto reshape_in_pattern = std::make_shared<ngraph::op::Constant>(ngraph::element::i64,
@ -79,7 +66,7 @@ void PermConvPermConcat::SetUp() {
auto conv_in_shape = permute_in->get_output_shape(0);
auto conv_weights_size = output_channels * (conv_in_shape[1]) * kernel_shape[0] * kernel_shape[1];
auto conv = ngraph::builder::makeConvolution(permute_in, ngPrc, {kernel_shape[0], kernel_shape[1]}, {1, 1}, {0, 0}, {0, 0}, {1, 1},
ngraph::op::PadType::VALID, output_channels, false, generateFloatNumbers(conv_weights_size, -0.5f, 0.5f));
ngraph::op::PadType::VALID, output_channels, false, CommonTestUtils::generate_float_numbers(conv_weights_size, -0.5f, 0.5f));
auto permute_out_params = std::make_shared<ngraph::opset1::Constant>(ngraph::element::i64,
ngraph::Shape{4},
@ -88,7 +75,8 @@ void PermConvPermConcat::SetUp() {
auto permute_out_shape = permute_out->get_output_shape(0);
auto concat_const = ngraph::builder::makeConstant(ngPrc, {1, 1, 1, permute_out_shape[3]}, generateFloatNumbers(permute_out_shape[3], -10, 10));
auto concat_const = ngraph::builder::makeConstant(ngPrc, {1, 1, 1, permute_out_shape[3]},
CommonTestUtils::generate_float_numbers(permute_out_shape[3], -10, 10));
auto concat = ngraph::builder::makeConcat({permute_out, concat_const}, 2);

View File

@ -31,6 +31,21 @@ static void fill_data_sine(float *data, size_t size, float center, float ampl, f
}
}
/**
* @brief Create vector of floats with length of vec_len, with values ranging from min to max,
* with initial seed equal to variable seed with default of 0
*/
static inline std::vector<float> generate_float_numbers(std::size_t vec_len, float min, float max, int seed = 0) {
std::vector<float> res;
std::mt19937 gen(static_cast<float>(seed));
std::uniform_real_distribution<float> dist(min, max);
for (int i = 0; i < vec_len; i++)
res.emplace_back(static_cast<float>(dist(gen)));
return res;
}
/**
* Fill blob with value data blob. Broadcast semantic is included.
* Broadcasting with alignment through last dimension.