[GNA] Added tests for negative memory layer offset and split - trivial permute - concat scenario (#2989)

This commit is contained in:
Elizaveta Lobanova 2020-11-12 17:07:38 +03:00 committed by GitHub
parent 8c89d8d733
commit a10f71feeb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 309 additions and 0 deletions

View File

@ -0,0 +1,41 @@
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include <vector>
#include "subgraph_tests/negative_memory_layer_offset.hpp"
#include "common_test_utils/test_constants.hpp"
#include "gna/gna_config.hpp"
using namespace LayerTestsDefinitions;
namespace {
std::vector<InferenceEngine::Precision> netPrecisions = { InferenceEngine::Precision::FP32,
};
std::map<std::string, std::string> config = {
{"GNA_COMPACT_MODE", "NO"}
};
std::vector<size_t> inputSizes = {
384,
128,
64,
32
};
std::vector<size_t> hiddenSizes = {
384,
128,
64,
32,
100
};
INSTANTIATE_TEST_CASE_P(smoke_negative_memory_layer_offset, NegativeMemoryOffsetTest,
::testing::Combine(
::testing::ValuesIn(netPrecisions),
::testing::Values(CommonTestUtils::DEVICE_GNA),
::testing::ValuesIn(inputSizes),
::testing::ValuesIn(hiddenSizes),
::testing::Values(config)),
NegativeMemoryOffsetTest::getTestCaseName);
} // namespace

View File

@ -0,0 +1,37 @@
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include <vector>
#include "subgraph_tests/split_trivial_permute_concat.hpp"
#include "common_test_utils/test_constants.hpp"
#include "gna/gna_config.hpp"
using namespace LayerTestsDefinitions;
namespace {
std::vector<InferenceEngine::Precision> netPrecisions = { InferenceEngine::Precision::FP32,
};
std::map<std::string, std::string> config = {
{"GNA_COMPACT_MODE", "NO"}
};
std::vector<std::vector<size_t>> inputSizes = {
{ 4, 2, 64, 6 },
{ 4, 16, 4, 128},
{ 2, 10, 16, 64},
{ 2, 32, 64, 2},
};
std::vector<size_t> split_axes = { 1 }; // only channels split is currently supported by gna for 4d inputs
std::vector<size_t> concat_axes = { 1 }; // only channels concat is currently supported by gna for 4d inputs
INSTANTIATE_TEST_CASE_P(smoke_split_trivial_permute_concat, SplitTrivialPermuteConcatTest,
::testing::Combine(
::testing::ValuesIn(netPrecisions),
::testing::Values(CommonTestUtils::DEVICE_GNA),
::testing::ValuesIn(inputSizes),
::testing::ValuesIn(split_axes), // split axis
::testing::ValuesIn(concat_axes), // concat axis
::testing::Values(config)),
SplitTrivialPermuteConcatTest::getTestCaseName);
} // namespace

View File

@ -0,0 +1,36 @@
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include <tuple>
#include <string>
#include <vector>
#include <memory>
#include "functional_test_utils/layer_test_utils.hpp"
#include "ngraph_functions/utils/ngraph_helpers.hpp"
#include "ngraph_functions/builders.hpp"
namespace LayerTestsDefinitions {
typedef std::tuple<
InferenceEngine::Precision, //Network precision
std::string, //Device name
size_t, //Input size
size_t, //Hidden size
std::map<std::string, std::string> //Configuration
> NegativeMemoryLayerOffsetTuple;
class NegativeMemoryOffsetTest
: public testing::WithParamInterface<NegativeMemoryLayerOffsetTuple>,
public LayerTestsUtils::LayerTestsCommon {
private:
void switchToNgraphFriendlyModel();
std::vector<float> memory_init;
public:
static std::string getTestCaseName(const testing::TestParamInfo<NegativeMemoryLayerOffsetTuple>& obj);
protected:
void SetUp() override;
void Run() override;
};
} // namespace LayerTestsDefinitions

View File

@ -0,0 +1,33 @@
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include <tuple>
#include <string>
#include <vector>
#include <memory>
#include "functional_test_utils/layer_test_utils.hpp"
#include "ngraph_functions/utils/ngraph_helpers.hpp"
#include "ngraph_functions/builders.hpp"
namespace LayerTestsDefinitions {
typedef std::tuple<
InferenceEngine::Precision, //Network precision
std::string, //Device name
std::vector<size_t>, //Input sizes
size_t, //Split axis
size_t, //Concat axis
std::map<std::string, std::string> //Configuration
> SplitTrivialPermuteConcatTuple;
class SplitTrivialPermuteConcatTest
: public testing::WithParamInterface<SplitTrivialPermuteConcatTuple>,
public LayerTestsUtils::LayerTestsCommon {
public:
static std::string getTestCaseName(const testing::TestParamInfo<SplitTrivialPermuteConcatTuple>& obj);
protected:
void SetUp() override;
};
} // namespace LayerTestsDefinitions

View File

@ -0,0 +1,101 @@
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include <tuple>
#include <string>
#include <vector>
#include <memory>
#include <debug.h>
#include "common_test_utils/common_utils.hpp"
#include "functional_test_utils/precision_utils.hpp"
#include "functional_test_utils/skip_tests_config.hpp"
#include "subgraph_tests/negative_memory_layer_offset.hpp"
namespace LayerTestsDefinitions {
std::string NegativeMemoryOffsetTest::getTestCaseName(const testing::TestParamInfo<NegativeMemoryLayerOffsetTuple>& obj) {
InferenceEngine::Precision netPrecision;
std::string targetName;
size_t inputSize;
size_t hiddenSize;
std::tie(netPrecision, targetName, inputSize, hiddenSize, std::ignore) = obj.param;
std::ostringstream results;
results << "netPRC=" << netPrecision.name() << "_";
results << "IS=" << inputSize << "_";
results << "HS=" << hiddenSize << "_";
results << "targetDevice=" << targetName;
return results.str();
}
void NegativeMemoryOffsetTest::SetUp() {
InferenceEngine::Precision netPrecision;
size_t inputSize;
size_t hiddenSize;
std::map<std::string, std::string> config;
std::tie(netPrecision, targetDevice, inputSize, hiddenSize, config) = this->GetParam();
configuration.insert(config.begin(), config.end());
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
const int seed = 0;
std::mt19937 gen(static_cast<float>(seed));
std::uniform_real_distribution<float> dist(-0.2f, 0.2f);
for (int i = 0; i < hiddenSize; ++i)
memory_init.emplace_back(static_cast<float>(dist(gen)));
auto input = ngraph::builder::makeParams(ngPrc, { {1, inputSize} });
auto mem_c = std::make_shared<ngraph::op::Constant>(ngPrc, ngraph::Shape{ 1, hiddenSize }, memory_init);
auto mem_r = std::make_shared<ngraph::opset3::ReadValue>(mem_c, "memory");
// Use memory layer as the second input of 'concat' to get negative offset
auto concat = std::make_shared<ngraph::opset1::Concat>(ngraph::OutputVector{ input[0], mem_r }, 1);
auto split = ngraph::builder::makeVariadicSplit(concat, { hiddenSize, inputSize }, 1);
auto mem_w = std::make_shared<ngraph::opset3::Assign>(split->output(0), "memory");
auto sigm = std::make_shared<ngraph::opset1::Sigmoid>(split->output(1));
mem_w->add_control_dependency(mem_r);
sigm->add_control_dependency(mem_w);
function = std::make_shared<ngraph::Function>(sigm, input, "negative_memory_layer_offset_memory");
}
void NegativeMemoryOffsetTest::switchToNgraphFriendlyModel() {
InferenceEngine::Precision netPrecision;
size_t inputSize;
size_t hiddenSize;
std::tie(netPrecision, targetDevice, inputSize, hiddenSize, std::ignore) = this->GetParam();
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
auto input = ngraph::builder::makeParams(ngPrc, { {1, inputSize} });
auto mem_c = std::make_shared<ngraph::op::Constant>(ngPrc, ngraph::Shape{ 1, hiddenSize }, memory_init);
auto concat = std::make_shared<ngraph::opset1::Concat>(ngraph::OutputVector{ input[0], mem_c }, 1);
auto split = ngraph::builder::makeVariadicSplit(concat, { hiddenSize, inputSize }, 1);
auto sigm = std::make_shared<ngraph::opset1::Sigmoid>(split->output(1));
function = std::make_shared<ngraph::Function>(sigm, input, "negative_memory_layer_offset_nonmemory");
}
void NegativeMemoryOffsetTest::Run() {
SKIP_IF_CURRENT_TEST_IS_DISABLED()
LoadNetwork();
auto states = executableNetwork.QueryState();
for (auto& state : states) {
auto name = state.GetName();
if (name == "memory") {
auto blob = FuncTestUtils::createAndFillBlobWithFloatArray(state.GetLastState()->getTensorDesc(),
memory_init.data(), memory_init.size());
state.SetState(blob);
} else {
GTEST_FAIL() << "unknown memory state";
}
}
Infer();
switchToNgraphFriendlyModel();
Validate();
}
TEST_P(NegativeMemoryOffsetTest, CompareWithRefs) {
Run();
};
} // namespace LayerTestsDefinitions

View File

@ -0,0 +1,61 @@
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include <tuple>
#include <string>
#include <vector>
#include <memory>
#include <debug.h>
#include "common_test_utils/common_utils.hpp"
#include "functional_test_utils/precision_utils.hpp"
#include "functional_test_utils/skip_tests_config.hpp"
#include "subgraph_tests/split_trivial_permute_concat.hpp"
#include "ngraph_functions/utils/ngraph_helpers.hpp"
namespace LayerTestsDefinitions {
std::string SplitTrivialPermuteConcatTest::getTestCaseName(const testing::TestParamInfo<SplitTrivialPermuteConcatTuple>& obj) {
InferenceEngine::Precision netPrecision;
std::string targetName;
std::vector<size_t> inputShape;
size_t splitAxis;
size_t concatAxis;
std::tie(netPrecision, targetName, inputShape, splitAxis, concatAxis, std::ignore) = obj.param;
std::ostringstream results;
results << "netPRC=" << netPrecision.name() << "_";
results << "IS=";
for (size_t size : inputShape)
results << size << "_";
results << "SA=" << splitAxis << "_";
results << "CA=" << concatAxis << "_";
results << "targetDevice=" << targetName;
return results.str();
}
void SplitTrivialPermuteConcatTest::SetUp() {
InferenceEngine::Precision netPrecision;
std::vector<size_t> inputShape;
size_t splitAxis;
size_t concatAxis;
std::map<std::string, std::string> config;
std::tie(netPrecision, targetDevice, inputShape, splitAxis, concatAxis, config) = this->GetParam();
configuration.insert(config.begin(), config.end());
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
auto input = ngraph::builder::makeParams(ngPrc, { inputShape });
auto split = ngraph::builder::makeSplit(input[0], ngPrc, 2, splitAxis);
auto permute_in_params = std::make_shared<ngraph::opset1::Constant>(ngraph::element::i64,
ngraph::Shape{ 4 },
ngraph::Shape{ {0, 3, 2, 1} });
auto permute_0 = std::make_shared<ngraph::opset1::Transpose>(split->output(0), permute_in_params);
auto permute_1 = std::make_shared<ngraph::opset1::Transpose>(split->output(1), permute_in_params);
auto concat = std::make_shared<ngraph::opset1::Concat>(ngraph::OutputVector{ split->output(0), split->output(1) }, concatAxis);
auto act = ngraph::builder::makeActivation(concat, ngPrc, ngraph::helpers::ActivationTypes::Relu);
function = std::make_shared<ngraph::Function>(act, input, "split_trivial_permute_concat");
}
TEST_P(SplitTrivialPermuteConcatTest, CompareWithRefs) {
Run();
};
} // namespace LayerTestsDefinitions