DOCS operation support articles update (#17449)
conformance table added ARM merged with CPU precision support and layout tables removed from the overview device article (info available in device articles)
This commit is contained in:
parent
a757506f6f
commit
a91446a875
@ -23,10 +23,10 @@
|
||||
|
||||
openvino_docs_MO_DG_prepare_model_customize_model_optimizer_Customize_Model_Optimizer
|
||||
|
||||
The Intel® Distribution of OpenVINO™ toolkit supports neural network models trained with various frameworks, including
|
||||
The Intel® Distribution of OpenVINO™ toolkit supports neural-network models trained with various frameworks, including
|
||||
TensorFlow, PyTorch, ONNX, TensorFlow Lite, and PaddlePaddle (OpenVINO support for Apache MXNet, Caffe, and Kaldi is currently
|
||||
being deprecated and will be removed entirely in the future). The list of supported operations is different for each of the supported frameworks.
|
||||
To see the operations supported by your framework, refer to :doc:`Supported Framework Operations <openvino_docs_MO_DG_prepare_model_Supported_Frameworks_Layers>`.
|
||||
To see the operations supported by your framework, refer to :doc:`Supported Framework Operations <openvino_resources_supported_operations_frontend>`.
|
||||
|
||||
Custom operations, which are not included in the list, are not recognized by OpenVINO out-of-the-box. The need for custom operation may appear in two cases:
|
||||
|
||||
|
@ -77,7 +77,8 @@ Q3. What does the message "[ ERROR ]: Unable to create ports for node with id" m
|
||||
|
||||
**A:** Most likely, Model Optimizer does not know how to infer output shapes of some layers in the given topology.
|
||||
To lessen the scope, compile the list of layers that are custom for Model Optimizer: present in the topology,
|
||||
absent in the :doc:`list of supported layers <openvino_docs_MO_DG_prepare_model_Supported_Frameworks_Layers>` for the target framework. Then, refer to available options in the corresponding section in the :doc:`[Legacy] Custom Layers in Model Optimizer <openvino_docs_MO_DG_prepare_model_customize_model_optimizer_Customize_Model_Optimizer>` page.
|
||||
absent in the :doc:`list of supported operations <openvino_resources_supported_operations_frontend>` for the target framework.
|
||||
Then, refer to available options in the corresponding section in the :doc:`[Legacy] Custom Layers in Model Optimizer <openvino_docs_MO_DG_prepare_model_customize_model_optimizer_Customize_Model_Optimizer>` page.
|
||||
|
||||
.. _question-7:
|
||||
|
||||
|
@ -1,936 +0,0 @@
|
||||
# Supported Framework Layers {#openvino_docs_MO_DG_prepare_model_Supported_Frameworks_Layers}
|
||||
|
||||
|
||||
@sphinxdirective
|
||||
|
||||
|
||||
In this article, you can find lists of supported framework layers, grouped by frameworks.
|
||||
|
||||
Caffe Supported Layers
|
||||
##########################################
|
||||
|
||||
========================================== ==========================================================================================
|
||||
Layer Name in Caffe Limitations
|
||||
========================================== ==========================================================================================
|
||||
Axpy
|
||||
BN
|
||||
BatchNorm
|
||||
Bias
|
||||
Binarization (Intel experimental)
|
||||
Concat
|
||||
Convolution
|
||||
ConvolutionBinary
|
||||
Crop
|
||||
Deconvolution
|
||||
DetectionOutput
|
||||
Dropout Not needed for inference.
|
||||
Eltwise
|
||||
Flatten
|
||||
GlobalInput
|
||||
InnerProduct
|
||||
Input
|
||||
LRN
|
||||
Normalize
|
||||
Python Supported only for the Python Proposal operation.
|
||||
Permute
|
||||
Pooling
|
||||
Power
|
||||
PReLU
|
||||
PriorBox
|
||||
PriorBoxClustered
|
||||
Proposal
|
||||
PSROIPooling
|
||||
ROIPooling
|
||||
RegionYolo
|
||||
ReorgYolo
|
||||
ReLU
|
||||
Resample
|
||||
Reshape
|
||||
Scale
|
||||
ShuffleChannel
|
||||
Sigmoid
|
||||
Slice
|
||||
Softmax
|
||||
Tile
|
||||
========================================== ==========================================================================================
|
||||
|
||||
|
||||
Apache MXNet Supported Symbols
|
||||
##########################################
|
||||
|
||||
========================================== ==========================================================================================
|
||||
Symbol Name in Apache MXNet Limitations
|
||||
========================================== ==========================================================================================
|
||||
_Plus
|
||||
_contrib_arange_like
|
||||
_contrib_box_nms
|
||||
_contrib_DeformableConvolution
|
||||
_contrib_DeformablePSROIPooling
|
||||
_contrib_div_sqrt_dim
|
||||
_contrib_MultiBoxDetection ``force_suppress`` = 1 is not supported, non-default variances are not supported.
|
||||
_contrib_MultiBoxPrior
|
||||
_contrib_Proposal
|
||||
_copy Not needed for inference
|
||||
_div_scalar
|
||||
_greater_scalar
|
||||
_minus_scalar
|
||||
_mul_scalar
|
||||
_plus_scalar
|
||||
_random_uniform Operation provides sequence from uniform distribution, but exact values won't match.
|
||||
_rnn_param_concat
|
||||
_arange
|
||||
_contrib_AdaptiveAvgPooling2D Converted to the Average Pooling with fixed paddings.
|
||||
_maximum
|
||||
_minimum
|
||||
_np_roll
|
||||
_zeros
|
||||
add_n
|
||||
arccosh
|
||||
arcsinh
|
||||
arctanh
|
||||
batch_dot
|
||||
broadcast_add
|
||||
broadcast_div
|
||||
broadcast_mul
|
||||
broadcast_sub
|
||||
BlockGrad
|
||||
cumsum
|
||||
div_scalar
|
||||
elementwise_sub
|
||||
elemwise_add
|
||||
elemwise_mul
|
||||
elemwise_sub
|
||||
exp
|
||||
expand_dims
|
||||
greater_scalar
|
||||
max
|
||||
minus_scalar
|
||||
null Not needed for inference.
|
||||
LayerNorm ``output_mean_var`` = True is not supported.
|
||||
repeat
|
||||
rnn
|
||||
rnn_param_concat
|
||||
round
|
||||
sigmoid
|
||||
slice
|
||||
SliceChannel
|
||||
slice_axis
|
||||
slice_channel
|
||||
slice_like
|
||||
softmax
|
||||
stack
|
||||
swapaxis
|
||||
tile
|
||||
transpose
|
||||
zeros
|
||||
Activation Supported ``act_type`` = ``relu``, ``sigmoid``, ``softrelu`` or ``tanh``
|
||||
BatchNorm
|
||||
Concat
|
||||
Convolution
|
||||
Crop ``center_crop`` = 1 is not supported.
|
||||
Custom See :doc:`Custom Layers in Model Optimizer <openvino_docs_MO_DG_prepare_model_customize_model_optimizer_Customize_Model_Optimizer>`
|
||||
Deconvolution
|
||||
DeformableConvolution
|
||||
DeformablePSROIPooling
|
||||
Dropout Not needed for inference.
|
||||
ElementWiseSum
|
||||
Embedding
|
||||
Flatten
|
||||
FullyConnected
|
||||
InstanceNorm
|
||||
L2Normalization Only 4D input is supported.
|
||||
LRN
|
||||
LeakyReLU Supported ``act_type`` = ``prelu``, ``elu``, ``leaky``, ``gelu``
|
||||
ones_like
|
||||
Pad
|
||||
Pooling
|
||||
ROIPooling
|
||||
ReLU
|
||||
Reshape
|
||||
ScaleShift
|
||||
SoftmaxActivation
|
||||
SoftmaxOutput
|
||||
SoftSign
|
||||
Take The attribute ``mode`` is not supported.
|
||||
Tile
|
||||
UpSampling
|
||||
Where
|
||||
zeros_like
|
||||
========================================== ==========================================================================================
|
||||
|
||||
|
||||
TensorFlow Supported Operations
|
||||
#########################################
|
||||
|
||||
Some of TensorFlow operations do not match any OpenVINO operations. Yet, they are still supported by
|
||||
Model Optimizer and can be used on constant propagation path. These layers are labeled
|
||||
with ``Constant propagation`` in the table below:
|
||||
|
||||
========================================== ==========================================================================================
|
||||
Operation Name in TensorFlow Limitations
|
||||
========================================== ==========================================================================================
|
||||
Abs
|
||||
Acosh
|
||||
Add
|
||||
AddV2
|
||||
AddN
|
||||
All
|
||||
Any
|
||||
ArgMax
|
||||
ArgMin
|
||||
Asinh
|
||||
Assert Not needed for inference.
|
||||
Assign Not needed for inference.
|
||||
AssignSub Not needed for inference.
|
||||
Atanh
|
||||
AvgPool
|
||||
AvgPoolV2 Supported only for constant-foldable ``kernel_size`` and strides inputs.
|
||||
AvgPool3D
|
||||
BatchMatMul
|
||||
BatchMatMulV2
|
||||
BatchToSpaceND
|
||||
BiasAdd
|
||||
BlockLSTM
|
||||
Bucketize CPU only.
|
||||
BroadcastTo
|
||||
Cast
|
||||
Ceil
|
||||
ClipByValue
|
||||
Concat
|
||||
ConcatV2
|
||||
Const
|
||||
Conv2D
|
||||
Conv2DBackpropInput
|
||||
Conv3D
|
||||
Conv3DBackpropInputV2
|
||||
Cos
|
||||
Cosh
|
||||
CropAndResize ``method`` = ``bilinear`` only.
|
||||
CTCGreedyDecoder Supported only with decoded indices output in a dense format.
|
||||
CTCLoss Supported only with decoded indices input in a dense format.
|
||||
CumSum
|
||||
DepthToSpace
|
||||
DepthwiseConv2dNative
|
||||
Einsum Supported only with equation that does not contain repeated labels within a subscript.
|
||||
Elu
|
||||
EmptyTensorList Supported only when it is part of a sub-graph of the special form.
|
||||
Enter Supported only when it is fused to the TensorIterator layer.
|
||||
Equal
|
||||
Erf
|
||||
Exit Supported only when it is fused to the TensorIterator layer.
|
||||
Exp
|
||||
ExpandDims
|
||||
ExperimentalSparseWeightedSum CPU only.
|
||||
ExtractImagePatches
|
||||
EuclideanNorm
|
||||
FakeQuantWithMinMaxVars
|
||||
FakeQuantWithMinMaxVarsPerChannel
|
||||
FFT Supported only when it is part of a sub-graph of the special form.
|
||||
FFT2D Supported only when it is part of a sub-graph of the special form.
|
||||
FFT3D Supported only when it is part of a sub-graph of the special form.
|
||||
FIFOQueueV2 Supported only when it is part of a sub-graph of the special form.
|
||||
Fill
|
||||
Floor
|
||||
FloorDiv
|
||||
FloorMod
|
||||
FusedBatchNorm
|
||||
FusedBatchNormV2
|
||||
FusedBatchNormV3
|
||||
Gather
|
||||
GatherNd
|
||||
GatherTree
|
||||
GatherV2
|
||||
Greater
|
||||
GreaterEqual
|
||||
Identity Not needed for shape inference.
|
||||
IdentityN
|
||||
IFFT Supported only when it is part of a sub-graph of the special form.
|
||||
IFFT2D Supported only when it is part of a sub-graph of the special form.
|
||||
IFFT3D Supported only when it is part of a sub-graph of the special form.
|
||||
IteratorGetNext Supported only when it is part of a sub-graph of the special form.
|
||||
LRN
|
||||
LeakyRelu
|
||||
Less
|
||||
LessEqual
|
||||
Log
|
||||
Log1p
|
||||
LogicalAnd
|
||||
LogicalOr
|
||||
LogicalNot
|
||||
LogSoftmax
|
||||
LookupTableInsertV2 Supported only when it is part of a sub-graph of the special form.
|
||||
LoopCond Supported only when it is fused to the TensorIterator layer.
|
||||
MatMul
|
||||
Max
|
||||
MaxPool
|
||||
MaxPoolV2 Supported only for constant-foldable ``kernel_size`` and strides inputs.
|
||||
MaxPool3D
|
||||
Maximum
|
||||
Mean
|
||||
Merge Supported only when it is fused to the TensorIterator layer.
|
||||
Min
|
||||
Minimum
|
||||
MirrorPad
|
||||
Mod
|
||||
Mul
|
||||
Neg
|
||||
NextIteration Supported only when it is fused to the TensorIterator layer.
|
||||
NonMaxSuppressionV2
|
||||
NonMaxSuppressionV3
|
||||
NonMaxSuppressionV4
|
||||
NonMaxSuppressionV5
|
||||
NotEqual
|
||||
NoOp
|
||||
OneHot
|
||||
Pack
|
||||
Pad
|
||||
PadV2
|
||||
Placeholder
|
||||
PlaceholderWithDefault
|
||||
Prod
|
||||
QueueDequeue Supported only when it is part of a sub-graph of the special form.
|
||||
QueueDequeueUpToV2 Supported only when it is part of a sub-graph of the special form.
|
||||
QueueDequeueV2 Supported only when it is part of a sub-graph of the special form.
|
||||
RandomUniform
|
||||
RandomUniformInt
|
||||
Range
|
||||
Rank
|
||||
RealDiv
|
||||
Reciprocal
|
||||
Relu
|
||||
Relu6
|
||||
Reshape
|
||||
ResizeBilinear
|
||||
ResizeNearestNeighbor
|
||||
ResourceGather
|
||||
ReverseSequence
|
||||
ReverseV2 Supported only when it can be converted to the ReverseSequence operation.
|
||||
Roll
|
||||
Round
|
||||
Pow
|
||||
Rsqrt
|
||||
ScatterNd
|
||||
Select
|
||||
SelectV2
|
||||
Shape
|
||||
Sigmoid
|
||||
Sin
|
||||
Sinh
|
||||
Size
|
||||
Slice
|
||||
Softmax
|
||||
Softplus
|
||||
Softsign
|
||||
SpaceToBatchND
|
||||
SpaceToDepth
|
||||
SparseFillEmptyRows Supported only when it is part of a sub-graph of the special form.
|
||||
SparseReshape Supported only when it is part of a sub-graph of the special form.
|
||||
SparseSegmentSum Supported only when it is part of a sub-graph of the special form.
|
||||
SparseSegmentMean Supported only when it is part of a sub-graph of the special form.
|
||||
SparseToDense CPU only
|
||||
Split
|
||||
SplitV
|
||||
Sqrt
|
||||
Square
|
||||
SquaredDifference
|
||||
Square
|
||||
Squeeze Cases in which squeeze axis is not specified are not supported.
|
||||
StatelessWhile
|
||||
StopGradient Not needed for shape inference.
|
||||
StridedSlice Supported only for constant-foldable ``begin``, ``end``, and ``strides`` inputs.
|
||||
Sub
|
||||
Sum
|
||||
Swish
|
||||
swish_f32
|
||||
Switch Control flow propagation.
|
||||
Tan
|
||||
Tanh
|
||||
TensorArrayGatherV3 Supported only when it is fused to the TensorIterator layer.
|
||||
TensorArrayReadV3 Supported only when it is fused to the TensorIterator layer.
|
||||
TensorArrayScatterV3 Supported only when it is fused to the TensorIterator layer.
|
||||
TensorArraySizeV3 Supported only when it is fused to the TensorIterator layer.
|
||||
TensorArrayV3 Supported only when it is fused to the TensorIterator layer.
|
||||
TensorArrayWriteV3 Supported only when it is fused to the TensorIterator layer.
|
||||
TensorListPushBack Supported only when it is part of a sub-graph of the special form.
|
||||
Tile
|
||||
TopkV2
|
||||
Transpose
|
||||
Unpack
|
||||
Variable
|
||||
VariableV2
|
||||
Where Supported only when it is part of a sub-graph of the special form.
|
||||
ZerosLike
|
||||
========================================== ==========================================================================================
|
||||
|
||||
|
||||
TensorFlow 2 Keras Supported Operations
|
||||
##########################################
|
||||
|
||||
========================================== ==========================================================================================
|
||||
Operation Name in TensorFlow 2 Keras Limitations
|
||||
========================================== ==========================================================================================
|
||||
ActivityRegularization
|
||||
Add
|
||||
AdditiveAttention
|
||||
AlphaDropout
|
||||
Attention
|
||||
Average
|
||||
AveragePooling1D
|
||||
AveragePooling2D
|
||||
AveragePooling3D
|
||||
BatchNormalization
|
||||
Bidirectional
|
||||
Concatenate
|
||||
Conv1D
|
||||
Conv1DTranspose Not supported if ``dilation`` is not equal to 1.
|
||||
Conv2D
|
||||
Conv2DTranspose
|
||||
Conv3D
|
||||
Conv3DTranspose
|
||||
Cropping1D
|
||||
Cropping2D
|
||||
Cropping3D
|
||||
Dense
|
||||
DenseFeatures Not supported for categorical and crossed features.
|
||||
DepthwiseConv2D
|
||||
Dot
|
||||
Dropout
|
||||
ELU
|
||||
Embedding
|
||||
Flatten
|
||||
GRU
|
||||
GRUCell
|
||||
GaussianDropout
|
||||
GaussianNoise
|
||||
GlobalAveragePooling1D
|
||||
GlobalAveragePooling2D
|
||||
GlobalAveragePooling3D
|
||||
GlobalMaxPool1D
|
||||
GlobalMaxPool2D
|
||||
GlobalMaxPool3D
|
||||
LSTM
|
||||
LSTMCell
|
||||
Lambda
|
||||
LayerNormalization
|
||||
LeakyReLU
|
||||
LocallyConnected1D
|
||||
LocallyConnected2D
|
||||
MaxPool1D
|
||||
MaxPool2D
|
||||
MaxPool3D
|
||||
Maximum
|
||||
Minimum
|
||||
Multiply
|
||||
PReLU
|
||||
Permute
|
||||
RNN Not supported for some custom cells.
|
||||
ReLU
|
||||
RepeatVector
|
||||
Reshape
|
||||
Roll
|
||||
SeparableConv1D
|
||||
SeparableConv2D
|
||||
SimpleRNN
|
||||
SimpleRNNCell
|
||||
Softmax
|
||||
SpatialDropout1D
|
||||
SpatialDropout2D
|
||||
SpatialDropout3D
|
||||
StackedRNNCells
|
||||
Subtract
|
||||
ThresholdedReLU
|
||||
TimeDistributed
|
||||
UpSampling1D
|
||||
UpSampling2D
|
||||
UpSampling3D
|
||||
ZeroPadding1D
|
||||
ZeroPadding2D
|
||||
ZeroPadding3D
|
||||
========================================== ==========================================================================================
|
||||
|
||||
Kaldi Supported Layers
|
||||
##########################################
|
||||
|
||||
========================================== ==========================================================================================
|
||||
Symbol Name in Kaldi Limitations
|
||||
========================================== ==========================================================================================
|
||||
addshift
|
||||
affinecomponent
|
||||
affinecomponentpreconditionedonline
|
||||
affinetransform
|
||||
backproptruncationcomponent
|
||||
batchnormcomponent
|
||||
clipgradientcomponent Not needed for inference.
|
||||
concat
|
||||
convolutional1dcomponent
|
||||
convolutionalcomponent
|
||||
copy
|
||||
dropoutmaskcomponent
|
||||
elementwiseproductcomponent
|
||||
fixedaffinecomponent
|
||||
fixedbiascomponent
|
||||
fixedscalecomponent
|
||||
generaldropoutcomponent Not needed for inference.
|
||||
linearcomponent
|
||||
logsoftmaxcomponent
|
||||
lstmnonlinearitycomponent
|
||||
lstmprojected
|
||||
lstmprojectedstreams
|
||||
maxpoolingcomponent
|
||||
naturalgradientaffinecomponent
|
||||
naturalgradientperelementscalecomponent
|
||||
noopcomponent Not needed for inference.
|
||||
normalizecomponent
|
||||
parallelcomponent
|
||||
pnormcomponent
|
||||
rectifiedlinearcomponent
|
||||
rescale
|
||||
sigmoid
|
||||
sigmoidcomponent
|
||||
softmax
|
||||
softmaxComponent
|
||||
specaugmenttimemaskcomponent Not needed for inference.
|
||||
splicecomponent
|
||||
tanhcomponent
|
||||
tdnncomponent
|
||||
timeheightconvolutioncomponent
|
||||
========================================== ==========================================================================================
|
||||
|
||||
|
||||
ONNX Supported Operators
|
||||
##########################################
|
||||
|
||||
|
||||
Standard ONNX Operators
|
||||
++++++++++++++++++++++++++++++++++++++++++
|
||||
|
||||
========================================== ==========================================================================================
|
||||
ONNX Operator Name
|
||||
========================================== ==========================================================================================
|
||||
Abs
|
||||
Acos
|
||||
Acosh
|
||||
And
|
||||
ArgMin
|
||||
ArgMax
|
||||
Asin
|
||||
Asinh
|
||||
Atan
|
||||
ATen
|
||||
Atanh
|
||||
AveragePool
|
||||
BatchNormalization
|
||||
BitShift
|
||||
Cast
|
||||
CastLike
|
||||
Ceil
|
||||
Clip
|
||||
Concat
|
||||
Constant
|
||||
ConstantOfShape
|
||||
Conv
|
||||
ConvInteger
|
||||
ConvTranspose
|
||||
Compress
|
||||
Cos
|
||||
Cosh
|
||||
ConstantFill
|
||||
CumSum
|
||||
DepthToSpace
|
||||
DequantizeLinear
|
||||
Div
|
||||
Dropout
|
||||
Einsum
|
||||
Elu
|
||||
Equal
|
||||
Erf
|
||||
Exp
|
||||
Expand
|
||||
EyeLike
|
||||
Flatten
|
||||
Floor
|
||||
Gather
|
||||
GatherElements
|
||||
GatherND
|
||||
Gemm
|
||||
GlobalAveragePool
|
||||
GlobalLpPool
|
||||
GlobalMaxPool
|
||||
Greater
|
||||
GRU
|
||||
Hardmax
|
||||
HardSigmoid
|
||||
HardSwish
|
||||
Identity
|
||||
If
|
||||
ImageScaler
|
||||
InstanceNormalization
|
||||
LeakyRelu
|
||||
Less
|
||||
Log
|
||||
LogSoftmax
|
||||
Loop
|
||||
LpNormalization
|
||||
LRN
|
||||
LSTM
|
||||
MatMulInteger
|
||||
MatMul
|
||||
MaxPool
|
||||
Max
|
||||
Mean
|
||||
MeanVarianceNormalization
|
||||
Min
|
||||
Mod
|
||||
Mul
|
||||
Neg
|
||||
NonMaxSuppression
|
||||
NonZero
|
||||
Not
|
||||
Or
|
||||
OneHot
|
||||
Pad
|
||||
Pow
|
||||
PRelu
|
||||
QLinearConv
|
||||
QLinearMatMul
|
||||
QuantizeLinear
|
||||
Range
|
||||
RandomNormal
|
||||
RandomNormalLike
|
||||
RandomUniform
|
||||
RandomUniformLike
|
||||
Reciprocal
|
||||
ReduceLogSum
|
||||
ReduceLogSumExp
|
||||
ReduceL1
|
||||
ReduceL2
|
||||
ReduceMax
|
||||
ReduceMean
|
||||
ReduceMin
|
||||
ReduceProd
|
||||
ReduceSum
|
||||
ReduceSumSquare
|
||||
Relu
|
||||
Reshape
|
||||
Resize
|
||||
ReverseSequence
|
||||
RNN
|
||||
RoiAlign
|
||||
Round
|
||||
ScatterElements
|
||||
ScatterND
|
||||
Selu
|
||||
Shape
|
||||
Shrink
|
||||
Sigmoid
|
||||
Sign
|
||||
Sin
|
||||
Sinh
|
||||
Size
|
||||
Slice
|
||||
Softmax
|
||||
Softplus
|
||||
Softsign
|
||||
SpaceToDepth
|
||||
Split
|
||||
Sqrt
|
||||
Squeeze
|
||||
Sub
|
||||
Sum
|
||||
Tan
|
||||
Tanh
|
||||
ThresholdedRelu
|
||||
Tile
|
||||
TopK
|
||||
Transpose
|
||||
Unsqueeze
|
||||
Where
|
||||
Xor
|
||||
========================================== ==========================================================================================
|
||||
|
||||
|
||||
Deprecated ONNX Operators (Supported)
|
||||
++++++++++++++++++++++++++++++++++++++++++
|
||||
|
||||
========================================== ==========================================================================================
|
||||
ONNX Operator Name
|
||||
========================================== ==========================================================================================
|
||||
Affine
|
||||
Crop
|
||||
Scatter
|
||||
Upsample
|
||||
========================================== ==========================================================================================
|
||||
|
||||
|
||||
Operators From the org.openvinotoolkit Domain
|
||||
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
|
||||
===================================================== ===============================================================================
|
||||
Custom ONNX Operator Name
|
||||
===================================================== ===============================================================================
|
||||
DeformableConv2D
|
||||
DetectionOutput
|
||||
ExperimentalDetectronDetectionOutput
|
||||
ExperimentalDetectronGenerateProposalsSingleImage
|
||||
ExperimentalDetectronGroupNorm
|
||||
ExperimentalDetectronPriorGridGenerator
|
||||
ExperimentalDetectronROIFeatureExtractor
|
||||
ExperimentalDetectronTopKROIs
|
||||
FakeQuantize
|
||||
GroupNorm
|
||||
Normalize
|
||||
PriorBox
|
||||
PriorBoxClustered
|
||||
Swish
|
||||
===================================================== ===============================================================================
|
||||
|
||||
|
||||
Operators From the com.microsoft Domain
|
||||
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
|
||||
===================================================== ===============================================================================
|
||||
Custom ONNX Operator Name
|
||||
===================================================== ===============================================================================
|
||||
Attention
|
||||
BiasGelu
|
||||
EmbedLayerNormalization
|
||||
SkipLayerNormalization
|
||||
===================================================== ===============================================================================
|
||||
|
||||
|
||||
PaddlePaddle Supported Operators
|
||||
###########################################################
|
||||
|
||||
paddlepaddle >= 2.1
|
||||
|
||||
========================================== ===============================================================================
|
||||
Operator Name in PaddlePaddle Limitations
|
||||
========================================== ===============================================================================
|
||||
arg_max The ``int32`` output data_type is not supported.
|
||||
adaptive_pool2d The ``NHWC`` data_layout is not supported.
|
||||
assign
|
||||
assign_value
|
||||
batch_norm
|
||||
bicubic_interp
|
||||
bilinear_interp ``NCW``, ``NWC``, ``NHWC``, ``NCDHW``, ``NDHWC`` data_layout are not supported
|
||||
bmm
|
||||
box_coder
|
||||
cast
|
||||
ceil
|
||||
clip
|
||||
concat
|
||||
conditional_block
|
||||
conv2d ``NHWC`` data_layout is not supported
|
||||
conv2d_transpose
|
||||
cumsum
|
||||
deformable_conv
|
||||
depthwise_conv2d ``NHWC`` data_layout is not supported.
|
||||
depthwise_conv2d_transpose
|
||||
dropout
|
||||
elementwise_add
|
||||
elementwise_div
|
||||
elementwise_floordiv
|
||||
elementwise_max
|
||||
elementwise_min
|
||||
elementwise_mod
|
||||
elementwise_mul
|
||||
elementwise_pow
|
||||
elementwise_sub
|
||||
equal
|
||||
exp
|
||||
expand
|
||||
fill_any_like
|
||||
fill_constant
|
||||
fill_constant_batch_size_like
|
||||
flatten_contiguous_range
|
||||
floor
|
||||
gather
|
||||
gather_nd
|
||||
gelu
|
||||
generate_proposals
|
||||
greater_equal
|
||||
greater_than
|
||||
group_norm
|
||||
hard_sigmoid
|
||||
hard_swish
|
||||
index_select
|
||||
layer_norm
|
||||
leaky_relu
|
||||
less_than
|
||||
linear_interp
|
||||
log
|
||||
logical_and
|
||||
logical_not
|
||||
logical_or
|
||||
logical_xor
|
||||
lookup_table
|
||||
matmul
|
||||
matrix_nms Only supports IE CPU plugin with "number of selected boxes" static shape (e.g.: ``min(min(num_boxes, nms_top_k) * num_classes_output, keep_top_k)``).
|
||||
max_pool2d_with_index
|
||||
meshgrid
|
||||
multiclass_nms Only supports IE CPU plugin with "number of selected boxes" static shape (e.g.: ``min(min(num_boxes, nms_top_k) * num_classes_output, keep_top_k)``).
|
||||
nearest_interp ``NCW``, ``NWC``, ``NHWC``, ``NCDHW``, ``NDHWC`` data_layout are not supported.
|
||||
not_equal
|
||||
one_hot_v2
|
||||
p_norm
|
||||
pad3d ``Circular`` mode is not supported.
|
||||
pool2d ``NHWC`` data_layout is not supported.
|
||||
pow
|
||||
prior_box
|
||||
range
|
||||
reduce_max
|
||||
reduce_mean
|
||||
reduce_min
|
||||
reduce_prod
|
||||
reduce_sum
|
||||
relu
|
||||
reshape
|
||||
reverse
|
||||
rnn ``SimpleRNN`` and ``GRU`` modes are not supported.
|
||||
roi_align
|
||||
scale
|
||||
select_input
|
||||
shape
|
||||
sigmoid
|
||||
slice
|
||||
softmax
|
||||
softplus
|
||||
softshrink
|
||||
split
|
||||
sqrt
|
||||
squeeze
|
||||
stack
|
||||
strided_slice
|
||||
sum
|
||||
swish
|
||||
sync_batch_norm
|
||||
tanh
|
||||
tile
|
||||
top_k
|
||||
transpose
|
||||
trilinear_interp
|
||||
unsqueeze
|
||||
where
|
||||
where_index
|
||||
while
|
||||
yolo_box
|
||||
========================================== ===============================================================================
|
||||
|
||||
|
||||
TensorFlow Lite Supported Operators
|
||||
###########################################################
|
||||
|
||||
========================================== ===============================================================================
|
||||
Operator Name in TensorFlow Lite Limitations
|
||||
========================================== ===============================================================================
|
||||
ABS
|
||||
ADD
|
||||
ADD_N
|
||||
ARG_MAX
|
||||
ARG_MIN
|
||||
AVERAGE_POOL_2D
|
||||
BATCH_MATMUL
|
||||
BATCH_TO_SPACE_ND
|
||||
BROADCAST_ARGS
|
||||
BROADCAST_TO
|
||||
CAST
|
||||
CEIL
|
||||
COMPLEX_ABS Supported in a specific pattern with RFFT2D
|
||||
CONCATENATION
|
||||
CONV_2D
|
||||
COS
|
||||
DEPTH_TO_SPACE
|
||||
DEPTHWISE_CONV_2D
|
||||
DEQUANTIZE
|
||||
DIV
|
||||
ELU
|
||||
EQUAL
|
||||
EXP
|
||||
EXPAND_DIMS
|
||||
FILL
|
||||
FLOOR
|
||||
FLOOR_DIV
|
||||
FLOOR_MOD
|
||||
FULLY_CONNECTED
|
||||
GATHER
|
||||
GATHER_ND
|
||||
GREATER
|
||||
GREATER_EQUAL
|
||||
HARD_SWISH
|
||||
L2_NORMALIZATION
|
||||
LEAKY_RELU
|
||||
LESS
|
||||
LESS_EQUAL
|
||||
LOG
|
||||
LOG_SOFTMAX
|
||||
LOGICAL_AND
|
||||
LOGICAL_NOT
|
||||
LOGICAL_OR
|
||||
LOGISTIC
|
||||
MATRIX_DIAG
|
||||
MAX_POOL_2D
|
||||
MAXIMUM
|
||||
MEAN
|
||||
MINIMUM
|
||||
MIRROR_PAD
|
||||
MUL
|
||||
NEG
|
||||
NOT_EQUAL
|
||||
ONE_HOT
|
||||
PACK
|
||||
PAD
|
||||
PADV2
|
||||
POW
|
||||
PRELU
|
||||
QUANTIZE
|
||||
RANGE
|
||||
RANK
|
||||
REDUCE_ALL
|
||||
REDUCE_ANY
|
||||
REDUCE_MAX
|
||||
REDUCE_MIN
|
||||
REDUCE_PROD
|
||||
RELU
|
||||
RELU6
|
||||
RESHAPE
|
||||
RESIZE_BILINEAR
|
||||
RESIZE_NEAREST_NEIGHBOR
|
||||
REVERSE_V2
|
||||
RFFT2D Supported in a specific pattern with COMPLEX_ABS
|
||||
ROUND
|
||||
RSQRT
|
||||
SCATTER_ND
|
||||
SEGMENT_SUM
|
||||
SELECT
|
||||
SELECT_V2
|
||||
SHAPE
|
||||
SIGN
|
||||
SIN
|
||||
SLICE
|
||||
SOFTMAX
|
||||
SPACE_TO_BATCH_ND
|
||||
SPACE_TO_DEPTH
|
||||
SPLIT
|
||||
SPLIT_V
|
||||
SQRT
|
||||
SQUARE
|
||||
SQUARED_DIFFERENCE
|
||||
SQUEEZE
|
||||
STRIDED_SLICE
|
||||
SUB
|
||||
SUM
|
||||
TANH
|
||||
TILE
|
||||
TOPK_V2
|
||||
TRANSPOSE
|
||||
TRANSPOSE_CONV
|
||||
UNIQUE
|
||||
UNPACK
|
||||
WHERE
|
||||
ZEROS_LIKE
|
||||
========================================== ===============================================================================
|
||||
|
||||
|
||||
@endsphinxdirective
|
||||
|
||||
|
@ -91,7 +91,7 @@ Internally, when you run Model Optimizer, it loads the model, goes through the t
|
||||
Supported Caffe Layers
|
||||
#######################
|
||||
|
||||
For the list of supported standard layers, refer to the :doc:`Supported Framework Layers <openvino_docs_MO_DG_prepare_model_Supported_Frameworks_Layers>` page.
|
||||
For the list of supported standard layers, refer to the :doc:`Supported Operations <openvino_resources_supported_operations_frontend>` page.
|
||||
|
||||
Frequently Asked Questions (FAQ)
|
||||
################################
|
||||
|
@ -77,7 +77,7 @@ The Model Optimizer finds the last layer of the topology and removes this layer
|
||||
Supported Kaldi Layers
|
||||
######################
|
||||
|
||||
For the list of supported standard layers, refer to the :doc:`Supported Framework Layers <openvino_docs_MO_DG_prepare_model_Supported_Frameworks_Layers>` page.
|
||||
For the list of supported standard layers, refer to the :doc:`Supported Operations <openvino_resources_supported_operations_frontend>` page.
|
||||
|
||||
Additional Resources
|
||||
####################
|
||||
|
@ -51,7 +51,7 @@ Internally, when you run Model Optimizer, it loads the model, goes through the t
|
||||
Supported MXNet Layers
|
||||
#######################
|
||||
|
||||
For the list of supported standard layers, refer to the :doc:`Supported Framework Layers <openvino_docs_MO_DG_prepare_model_Supported_Frameworks_Layers>` page.
|
||||
For the list of supported standard layers, refer to the :doc:`Supported Operations <openvino_resources_supported_operations>` page.
|
||||
|
||||
Frequently Asked Questions (FAQ)
|
||||
################################
|
||||
|
@ -25,7 +25,7 @@ There are no ONNX specific parameters, so only framework-agnostic parameters are
|
||||
Supported ONNX Layers
|
||||
#####################
|
||||
|
||||
For the list of supported standard layers, refer to the :doc:`Supported Framework Layers <openvino_docs_MO_DG_prepare_model_Supported_Frameworks_Layers>` page.
|
||||
For the list of supported standard layers, refer to the :doc:`Supported Operations <openvino_resources_supported_operations_frontend>` page.
|
||||
|
||||
Additional Resources
|
||||
####################
|
||||
|
@ -102,7 +102,7 @@ Converting certain PaddlePaddle models may require setting ``example_input`` or
|
||||
Supported PaddlePaddle Layers
|
||||
#############################
|
||||
|
||||
For the list of supported standard layers, refer to the :doc:`Supported Framework Layers <openvino_docs_MO_DG_prepare_model_Supported_Frameworks_Layers>` page.
|
||||
For the list of supported standard layers, refer to the :doc:`Supported Operations <openvino_resources_supported_operations_frontend>` page.
|
||||
|
||||
Officially Supported PaddlePaddle Models
|
||||
########################################
|
||||
|
@ -283,7 +283,7 @@ MO Python API supports passing TensorFlow/TensorFlow2 models directly from memor
|
||||
Supported TensorFlow and TensorFlow 2 Keras Layers
|
||||
##################################################
|
||||
|
||||
For the list of supported standard layers, refer to the :doc:`Supported Framework Layers <openvino_docs_MO_DG_prepare_model_Supported_Frameworks_Layers>` page.
|
||||
For the list of supported standard layers, refer to the :doc:`Supported Operations <openvino_resources_supported_operations_frontend>` page.
|
||||
|
||||
Frequently Asked Questions (FAQ)
|
||||
################################
|
||||
|
@ -13,7 +13,7 @@ To convert a TensorFlow Lite model, use the ``mo`` script and specify the path t
|
||||
Supported TensorFlow Lite Layers
|
||||
###################################
|
||||
|
||||
For the list of supported standard layers, refer to the :doc:`Supported Framework Layers <openvino_docs_MO_DG_prepare_model_Supported_Frameworks_Layers>` page.
|
||||
For the list of supported standard layers, refer to the :doc:`Supported Operations <openvino_resources_supported_operations_frontend>` page.
|
||||
|
||||
Supported TensorFlow Lite Models
|
||||
###################################
|
||||
|
@ -17,16 +17,9 @@ OpenVINO™ Runtime can infer deep learning models using the following device ty
|
||||
* :doc:`CPU <openvino_docs_OV_UG_supported_plugins_CPU>`
|
||||
* :doc:`GPU <openvino_docs_OV_UG_supported_plugins_GPU>`
|
||||
* :doc:`GNA <openvino_docs_OV_UG_supported_plugins_GNA>`
|
||||
* :doc:`Arm® CPU <openvino_docs_OV_UG_supported_plugins_CPU>`
|
||||
|
||||
For a more detailed list of hardware, see :doc:`Supported Devices <openvino_docs_OV_UG_supported_plugins_Supported_Devices>`.
|
||||
|
||||
Devices similar to the ones used for benchmarking can be accessed, using `Intel® DevCloud for the Edge <https://devcloud.intel.com/edge/>`__,
|
||||
a remote development environment with access to Intel® hardware and the latest versions of the Intel® Distribution of the OpenVINO™ Toolkit.
|
||||
`Learn more <https://devcloud.intel.com/edge/get_started/devcloud/>`__ or `Register here <https://inteliot.force.com/DevcloudForEdge/s/>`__.
|
||||
|
||||
|
||||
|
||||
.. _devicesupport-feature-support-matrix:
|
||||
|
||||
|
||||
|
@ -1,503 +0,0 @@
|
||||
# Supported Devices {#openvino_docs_OV_UG_supported_plugins_Supported_Devices}
|
||||
|
||||
|
||||
@sphinxdirective
|
||||
|
||||
|
||||
The OpenVINO runtime can infer various models of different input and output formats. Here, you can find configurations
|
||||
supported by OpenVINO devices, which are CPU, GPU, or GNA (Gaussian neural accelerator coprocessor). Currently, 11th generation and later processors (currently up to 13th generation) provide a further performance boost, especially with INT8 models.
|
||||
|
||||
.. note::
|
||||
|
||||
With OpenVINO™ 2023.0 release, support has been cancelled for all VPU accelerators based on Intel® Movidius™.
|
||||
|
||||
The OpenVINO Runtime provides unique capabilities to infer deep learning models on the following devices:
|
||||
|
||||
+--------------------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------+
|
||||
| OpenVINO Device | Supported Hardware |
|
||||
+==========================================================================+===============================================================================================================+
|
||||
|| :doc:`GPU <openvino_docs_OV_UG_supported_plugins_GPU>` | Intel® Processor Graphics, including Intel® HD Graphics and Intel® Iris® Graphics |
|
||||
+--------------------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------+
|
||||
|| :doc:`CPU (x86) <openvino_docs_OV_UG_supported_plugins_CPU>` | Intel® Xeon® with Intel® Advanced Vector Extensions 2 (Intel® AVX2), Intel® Advanced Vector |
|
||||
|| | Extensions 512 (Intel® AVX-512), Intel® Advanced Matrix Extensions (Intel® AMX), |
|
||||
|| | Intel® Core™ Processors with Intel® AVX2, |
|
||||
|| | Intel® Atom® Processors with Intel® Streaming SIMD Extensions (Intel® SSE) |
|
||||
+--------------------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------+
|
||||
|| :doc:`CPU (Arm®) <openvino_docs_OV_UG_supported_plugins_CPU>` | Raspberry Pi™ 4 Model B, Apple® Mac with Apple silicon |
|
||||
|| | |
|
||||
+--------------------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------+
|
||||
|| :doc:`GNA plugin <openvino_docs_OV_UG_supported_plugins_GNA>` | Intel® Speech Enabling Developer Kit, Amazon Alexa* Premium Far-Field Developer Kit, Intel® |
|
||||
|| (available in the Intel® Distribution of OpenVINO™ toolkit) | Pentium® Silver J5005 Processor, Intel® Pentium® Silver N5000 Processor, Intel® |
|
||||
|| | Celeron® J4005 Processor, Intel® Celeron® J4105 Processor, Intel® Celeron® |
|
||||
|| | Processor N4100, Intel® Celeron® Processor N4000, Intel® Core™ i3-8121U Processor, |
|
||||
|| | Intel® Core™ i7-1065G7 Processor, Intel® Core™ i7-1060G7 Processor, Intel® |
|
||||
|| | Core™ i5-1035G4 Processor, Intel® Core™ i5-1035G7 Processor, Intel® Core™ |
|
||||
|| | i5-1035G1 Processor, Intel® Core™ i5-1030G7 Processor, Intel® Core™ i5-1030G4 Processor, |
|
||||
|| | Intel® Core™ i3-1005G1 Processor, Intel® Core™ i3-1000G1 Processor, |
|
||||
|| | Intel® Core™ i3-1000G4 Processor |
|
||||
+--------------------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------+
|
||||
|| :doc:`Multi-Device <openvino_docs_OV_UG_Running_on_multiple_devices>` | Multi-Device execution enables simultaneous inference of the same model on several devices in parallel |
|
||||
+--------------------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------+
|
||||
|| :doc:`Auto-Device plugin <openvino_docs_OV_UG_supported_plugins_AUTO>` | Auto-Device enables selecting devices for inference automatically |
|
||||
+--------------------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------+
|
||||
|| :doc:`Heterogeneous plugin <openvino_docs_OV_UG_Hetero_execution>` | Heterogeneous execution enables automatically splitting inference between several devices (for example if |
|
||||
|| | a device doesn't support certain operations) |
|
||||
+--------------------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------+
|
||||
|
||||
.. note::
|
||||
|
||||
ARM® CPU plugin is a community-level add-on to OpenVINO™. Intel® welcomes community participation in the OpenVINO™
|
||||
ecosystem, technical questions and code contributions on community forums. However, this component has not
|
||||
undergone full release validation or qualification from Intel®, hence no official support is offered.
|
||||
|
||||
|
||||
Devices similar to the ones we have used for benchmarking can be accessed using `Intel® DevCloud for the Edge <https://devcloud.intel.com/edge/>`__,
|
||||
a remote development environment with access to Intel® hardware and the latest versions of the Intel® Distribution
|
||||
of OpenVINO™ Toolkit. `Learn more <https://devcloud.intel.com/edge/get_started/devcloud/>`__ or `Register here <https://inteliot.force.com/DevcloudForEdge/s/>`__.
|
||||
|
||||
|
||||
Supported Configurations
|
||||
###########################################################
|
||||
|
||||
The OpenVINO Runtime can inference models in different formats with various input and output formats.
|
||||
This page shows supported and optimal configurations for each plugin.
|
||||
|
||||
|
||||
Terminology
|
||||
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
|
||||
+------------------+----------------------------------------------+
|
||||
| Acronym/Term | Description |
|
||||
+==================+==============================================+
|
||||
| FP32 format | Single-precision floating-point format |
|
||||
+------------------+----------------------------------------------+
|
||||
| BF16 format | Brain floating-point format |
|
||||
+------------------+----------------------------------------------+
|
||||
| FP16 format | Half-precision floating-point format |
|
||||
+------------------+----------------------------------------------+
|
||||
| I16 format | 2-byte signed integer format |
|
||||
+------------------+----------------------------------------------+
|
||||
| I8 format | 1-byte signed integer format |
|
||||
+------------------+----------------------------------------------+
|
||||
| U16 format | 2-byte unsigned integer format |
|
||||
+------------------+----------------------------------------------+
|
||||
| U8 format | 1-byte unsigned integer format |
|
||||
+------------------+----------------------------------------------+
|
||||
|
||||
NHWC, NCHW, and NCDHW refer to the data ordering in batches of images:
|
||||
|
||||
* NHWC and NCHW refer to image data layout.
|
||||
* NCDHW refers to image sequence data layout.
|
||||
|
||||
Abbreviations in the support tables are as follows:
|
||||
|
||||
* N: Number of images in a batch
|
||||
* D: Depth. Depend on model it could be spatial or time dimension
|
||||
* H: Number of pixels in the vertical dimension
|
||||
* W: Number of pixels in the horizontal dimension
|
||||
* C: Number of channels
|
||||
|
||||
CHW, NC, C - Tensor memory layout.
|
||||
For example, the CHW value at index (c,h,w) is physically located at index (c\*H+h)\*W+w, for others by analogy.
|
||||
|
||||
|
||||
Supported Model Formats
|
||||
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
|
||||
+------------------+--------------------------+--------------------------+------------------------+
|
||||
| Plugin | FP32 | FP16 | I8 |
|
||||
+==================+==========================+==========================+========================+
|
||||
| CPU plugin | Supported and preferred | Supported | Supported |
|
||||
+------------------+--------------------------+--------------------------+------------------------+
|
||||
| GPU plugin | Supported | Supported and preferred | Supported |
|
||||
+------------------+--------------------------+--------------------------+------------------------+
|
||||
| GNA plugin | Supported | Supported | Not supported |
|
||||
+------------------+--------------------------+--------------------------+------------------------+
|
||||
| Arm® CPU plugin | Supported and preferred | Supported | Supported (partially) |
|
||||
+------------------+--------------------------+--------------------------+------------------------+
|
||||
|
||||
|
||||
For :doc:`Multi-Device <openvino_docs_OV_UG_Running_on_multiple_devices>` and
|
||||
:doc:`Heterogeneous <openvino_docs_OV_UG_Hetero_execution>` executions, the supported models formats depends
|
||||
on the actual underlying devices.
|
||||
|
||||
Supported Input Precision
|
||||
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
|
||||
+------------------+------------+----------------+--------------+----------------+----------------+----------------+
|
||||
| Plugin | FP32 | FP16 | U8 | U16 | I8 | I16 |
|
||||
+==================+============+================+==============+================+================+================+
|
||||
| CPU plugin | Supported | Supported | Supported | Supported | Supported | Supported |
|
||||
+------------------+------------+----------------+--------------+----------------+----------------+----------------+
|
||||
| GPU plugin | Supported | Supported\* | Supported\* | Supported\* | Not supported | Supported\* |
|
||||
+------------------+------------+----------------+--------------+----------------+----------------+----------------+
|
||||
| GNA plugin | Supported | Not supported | Supported | Not supported | Supported | Supported |
|
||||
+------------------+------------+----------------+--------------+----------------+----------------+----------------+
|
||||
| Arm® CPU plugin | Supported | Supported | Supported | Supported | Not supported | Not supported |
|
||||
+------------------+------------+----------------+--------------+----------------+----------------+----------------+
|
||||
|
||||
\* - Supported via ``SetBlob`` only, ``GetBlob`` returns FP32
|
||||
|
||||
For :doc:`Multi-Device <openvino_docs_OV_UG_Running_on_multiple_devices>` and
|
||||
:doc:`Heterogeneous <openvino_docs_OV_UG_Hetero_execution>` executions, the supported input precision
|
||||
depends on the actual underlying devices. *Generally, U8 is preferable as it is most ubiquitous*.
|
||||
|
||||
Supported Output Precision
|
||||
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
|
||||
+------------------+-----------------------------+
|
||||
| Plugin | FP32 | FP16 |
|
||||
+==================+============+================+
|
||||
| CPU plugin | Supported | Supported |
|
||||
+------------------+------------+----------------+
|
||||
| GPU plugin | Supported | Supported |
|
||||
+------------------+------------+----------------+
|
||||
| GNA plugin | Supported | Not supported |
|
||||
+------------------+------------+----------------+
|
||||
| Arm® CPU plugin | Supported | Supported |
|
||||
+------------------+------------+----------------+
|
||||
|
||||
For :doc:`Multi-Device <openvino_docs_OV_UG_Running_on_multiple_devices>` and
|
||||
:doc:`Heterogeneous <openvino_docs_OV_UG_Hetero_execution>` executions, the supported output precision
|
||||
depends on the actual underlying devices. *Generally, FP32 is preferable as it is most ubiquitous*.
|
||||
|
||||
Supported Input Layout
|
||||
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
|
||||
+------------------+----------------+------------+------------+------------+
|
||||
| Plugin | NCDHW | NCHW | NHWC | NC |
|
||||
+==================+================+============+============+============+
|
||||
| CPU plugin | Supported | Supported | Supported | Supported |
|
||||
+------------------+----------------+------------+------------+------------+
|
||||
| GPU plugin | Supported | Supported | Supported | Supported |
|
||||
+------------------+----------------+------------+------------+------------+
|
||||
| GNA plugin | Not supported | Supported | Supported | Supported |
|
||||
+------------------+----------------+------------+------------+------------+
|
||||
| Arm® CPU plugin | Not supported | Supported | Supported | Supported |
|
||||
+------------------+----------------+------------+------------+------------+
|
||||
|
||||
Supported Output Layout
|
||||
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
|
||||
+-----------------------+--------+-------+------+-----+----+
|
||||
| Number of dimensions | 5 | 4 | 3 | 2 | 1 |
|
||||
+=======================+========+=======+======+=====+====+
|
||||
| Layout | NCDHW | NCHW | CHW | NC | C |
|
||||
+-----------------------+--------+-------+------+-----+----+
|
||||
|
||||
|
||||
For setting relevant configuration, refer to the
|
||||
:doc:`Integrate with Customer Application <openvino_docs_OV_UG_Integrate_OV_with_your_application>`
|
||||
topic (step 3 "Configure input and output").
|
||||
|
||||
|
||||
Supported Layers
|
||||
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
|
||||
The following layers are supported by the plugins:
|
||||
|
||||
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Layers | GPU | CPU | GNA | Arm® CPU |
|
||||
+================================+================+=================+================+====================+
|
||||
| Abs | Supported | Supported\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Acos | Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Acosh | Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Activation-Clamp | Supported | Supported\*\*\* | Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Activation-ELU | Supported | Supported\*\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Activation-Exp | Supported | Supported\*\*\* | Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Activation-Leaky ReLU | Supported | Supported\*\*\* | Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Activation-Not | Supported | Supported\*\*\* | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Activation-PReLU | Supported | Supported\*\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Activation-ReLU | Supported | Supported\*\*\* | Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Activation-ReLU6 | Supported | Supported\*\*\* | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Activation-Sigmoid/Logistic | Supported | Supported\*\*\* | Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Activation-TanH | Supported | Supported\*\*\* | Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| ArgMax | Supported | Supported\*\* | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Asin | Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Asinh | Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Atan | Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Atanh | Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| BatchNormalization | Supported | Supported | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| BinaryConvolution | Supported | Supported | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Broadcast | Supported | Supported\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Ceil | Supported | Supported\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Concat | Supported | Supported\*\*\* | Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Const | Supported | Supported | Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Convolution-Dilated | Supported | Supported | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Convolution-Dilated 3D | Supported | Supported | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Convolution-Grouped | Supported | Supported | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Convolution-Grouped 3D | Supported | Supported | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Convolution-Ordinary | Supported | Supported | Supported\* | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Convolution-Ordinary 3D | Supported | Supported | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Cos | Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Cosh | Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Crop | Supported | Supported | Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| CTCGreedyDecoder | Supported\*\* | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Deconvolution | Supported | Supported | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Deconvolution 3D | Supported | Supported | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| DeformableConvolution | Supported | Supported | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| DepthToSpace | Supported | Supported\*\* | Not Supported | Supported\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| DetectionOutput | Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Eltwise-And | Supported | Supported\*\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Eltwise-Add | Supported | Supported\*\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Eltwise-Div | Supported | Supported\*\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Eltwise-Equal | Supported | Supported\*\*\* | Not Supported | Supported\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Eltwise-FloorMod | Supported | Supported\*\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Eltwise-Greater | Supported | Supported\*\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Eltwise-GreaterEqual | Supported | Supported\*\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Eltwise-Less | Supported | Supported\*\*\* | Not Supported | Supported\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Eltwise-LessEqual | Supported | Supported\*\*\* | Not Supported | Supported\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Eltwise-LogicalAnd | Supported | Supported\*\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Eltwise-LogicalOr | Supported | Supported\*\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Eltwise-LogicalXor | Supported | Supported\*\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Eltwise-Max | Supported | Supported\*\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Eltwise-Min | Supported | Supported\*\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Eltwise-Mul | Supported | Supported\*\*\* | Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Eltwise-NotEqual | Supported | Supported\*\*\* | Not Supported | Supported\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Eltwise-Pow | Supported | Supported\*\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Eltwise-Prod | Supported | Supported\*\*\* | Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Eltwise-SquaredDiff | Supported | Supported\*\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Eltwise-Sub | Supported | Supported\*\*\* | Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Eltwise-Sum | Supported | Supported\*\*\* | Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Erf | Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Exp | Supported | Supported | Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| FakeQuantize | Not Supported | Supported | Not Supported | Supported\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Fill | Not Supported | Supported\*\* | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Flatten | Supported | Supported | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Floor | Supported | Supported\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| FullyConnected (Inner Product) | Supported | Supported\*\*\* | Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Gather | Supported | Supported\*\* | Not Supported | Supported\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| GatherTree | Not Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Gemm | Supported | Supported | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| GRN | Supported\*\* | Supported\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| HardSigmoid | Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Interp | Supported\*\* | Supported\*\* | Not Supported | Supported\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Log | Supported | Supported\*\* | Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| LRN (Norm) | Supported | Supported | Not Supported | Supported\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| LSTMCell | Supported | Supported | Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| GRUCell | Supported | Supported | Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| RNNCell | Supported | Supported | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| LSTMSequence | Supported | Supported | Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| GRUSequence | Supported | Supported | Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| RNNSequence | Supported | Supported | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| LogSoftmax | Supported | Supported\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Memory | Not Supported | Supported | Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| MVN | Supported | Supported\*\* | Not Supported | Supported\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Neg | Supported | Supported\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| NonMaxSuppression | Not Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Normalize | Supported | Supported\*\* | Not Supported | Supported\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| OneHot | Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Pad | Supported | Supported\*\* | Not Supported | Supported\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Permute | Supported | Supported | Supported\* | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Pooling(AVG,MAX) | Supported | Supported | Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Pooling(AVG,MAX) 3D | Supported | Supported | Not Supported | Supported\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Power | Supported | Supported\*\* | Supported\* | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| PowerFile | Not Supported | Supported\*\* | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| PriorBox | Supported | Supported\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| PriorBoxClustered | Supported\*\* | Supported\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Proposal | Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| PSROIPooling | Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Range | Not Supported | Supported\*\* | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Reciprocal | Supported | Supported\*\* | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| ReduceAnd | Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| ReduceL1 | Supported | Supported\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| ReduceL2 | Supported | Supported\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| ReduceLogSum | Supported | Supported\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| ReduceLogSumExp | Supported | Supported\*\* | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| ReduceMax | Supported | Supported\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| ReduceMean | Supported | Supported\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| ReduceMin | Supported | Supported\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| ReduceOr | Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| ReduceProd | Supported | Supported\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| ReduceSum | Supported | Supported\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| ReduceSumSquare | Supported | Supported\*\* | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| RegionYolo | Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| ReorgYolo | Supported | Supported\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Resample | Supported | Supported\*\* | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Reshape | Supported | Supported\*\*\* | Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| ReverseSequence | Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| RNN | Not Supported | Supported | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| ROIPooling | Supported\* | Supported | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| ScaleShift | Supported | Supported\*\*\* | Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| ScatterUpdate | Not Supported | Supported\*\* | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Select | Supported | Supported | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Selu | Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| ShuffleChannels | Supported | Supported\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Sign | Supported | Supported\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Sin | Supported | Supported\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Sinh | Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| SimplerNMS | Supported | Supported\*\* | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Slice | Supported | Supported\*\*\* | Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| SoftMax | Supported | Supported\*\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Softplus | Supported | Supported\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Softsign | Supported | Supported\*\* | Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| SpaceToDepth | Not Supported | Supported\*\* | Not Supported | Supported\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| SpatialTransformer | Not Supported | Supported\*\* | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Split | Supported | Supported\*\*\* | Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Squeeze | Supported | Supported\*\* | Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| StridedSlice | Supported | Supported\*\* | Not Supported | Supported\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Tan | Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| TensorIterator | Not Supported | Supported | Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Tile | Supported\*\* | Supported\*\*\* | Not Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| TopK | Supported | Supported\*\* | Not Supported | Supported\*\*\*\* |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Unpooling | Supported | Not Supported | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Unsqueeze | Supported | Supported\*\* | Supported | Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
| Upsampling | Supported | Not Supported | Not Supported | Not Supported |
|
||||
+--------------------------------+----------------+-----------------+----------------+--------------------+
|
||||
|
||||
|
||||
\* - support is limited to the specific parameters. Refer to "Known Layer Limitations" section for the device :doc:`from the list of supported <openvino_docs_OV_UG_supported_plugins_Supported_Devices>`.
|
||||
|
||||
\*\* - support is implemented via :doc:`Extensibility mechanism <openvino_docs_Extensibility_UG_Intro>`.
|
||||
|
||||
\*\*\* - supports NCDHW layout.
|
||||
|
||||
\*\*\*\* - support is implemented via runtime reference.
|
||||
|
||||
@endsphinxdirective
|
||||
|
||||
|
22864
docs/_static/download/operation_conformance_table_files/opset_report_omz_static.html
vendored
Normal file
22864
docs/_static/download/operation_conformance_table_files/opset_report_omz_static.html
vendored
Normal file
File diff suppressed because it is too large
Load Diff
3
docs/_static/download/operation_conformance_table_files/template/chosen.jquery.min.js
vendored
Normal file
3
docs/_static/download/operation_conformance_table_files/template/chosen.jquery.min.js
vendored
Normal file
File diff suppressed because one or more lines are too long
239
docs/_static/download/operation_conformance_table_files/template/filters.js
vendored
Normal file
239
docs/_static/download/operation_conformance_table_files/template/filters.js
vendored
Normal file
@ -0,0 +1,239 @@
|
||||
deviceList = [];
|
||||
$(document).ready(function () {
|
||||
LoadOpsetNumbers();
|
||||
LoadDevices();
|
||||
$('#status').prop("disabled", true);
|
||||
$("#status").chosen({max_selected_options: 6});
|
||||
|
||||
$("#filters").submit(function (event) {
|
||||
event.preventDefault();
|
||||
filterTable();
|
||||
});
|
||||
$('#reset').click(function () {
|
||||
$('#opsetNumber').val(0);
|
||||
$('#operationName').val('');
|
||||
$('#status').prop("disabled", true).val('');
|
||||
$('#devices').val(0);
|
||||
$('#implementation').val(0);
|
||||
$("#status").chosen("destroy");
|
||||
$("#status").chosen({max_selected_options: 6});
|
||||
filterTable();
|
||||
});
|
||||
$('#devices').on('change', function () {
|
||||
if (this.value == 0) {
|
||||
$('#status').prop("disabled", true).val('');
|
||||
$("#status").chosen("destroy");
|
||||
$("#status").chosen({max_selected_options: 6});
|
||||
} else {
|
||||
$('#status').prop("disabled", false);
|
||||
$("#status").chosen("destroy");
|
||||
$("#status").chosen({max_selected_options: 6});
|
||||
};
|
||||
});
|
||||
});
|
||||
|
||||
function LoadOpsetNumbers() {
|
||||
var data = [];
|
||||
|
||||
$('#data th[scope="row"]').each(function () {
|
||||
|
||||
num = $(this).text().split("-")[1];
|
||||
if (data.indexOf(num) < 0) {
|
||||
data.push(num);
|
||||
}
|
||||
});
|
||||
data.sort();
|
||||
data = $.map(data, function (item) {
|
||||
return "<option value=" + item + ">" + item + "</option>";
|
||||
});
|
||||
$("#opsetNumber").html('<option value="0">All</option>');
|
||||
$("#opsetNumber").append(data.join(""));
|
||||
}
|
||||
|
||||
function LoadDevices() {
|
||||
var data = [];
|
||||
|
||||
$('.table-dark.device').each(function () {
|
||||
if (data.indexOf($(this).text()) < 0) {
|
||||
data.push($(this).text());
|
||||
}
|
||||
});
|
||||
data.sort();
|
||||
deviceList = data;
|
||||
data = $.map(data, function (item) {
|
||||
return "<option value=" + item + ">" + item + "</option>";
|
||||
});
|
||||
$("#devices").html('<option value="0">All</option>');
|
||||
$("#devices").append(data.join(""));
|
||||
}
|
||||
|
||||
function filterTable() {
|
||||
device = $("#devices").val();
|
||||
if (device == 0) {
|
||||
$("#report td.value, #report td.nr_value, #report td.table-secondary, #report td.table-primary, #report th.table-dark.device").show();
|
||||
} else {
|
||||
$("#report td.value, #report td.nr_value, #report td.table-secondary, #report td.table-primary, #report th.table-dark.device").filter(function () {
|
||||
$(this).toggle($(this).hasClass(device))
|
||||
});
|
||||
}
|
||||
opsetNumber = $("#opsetNumber").val();
|
||||
operationName = $('#operationName').val().trim();
|
||||
status = $('#status').val();
|
||||
implementation = $('#implementation').val();
|
||||
|
||||
$("#report #data tr").show();
|
||||
$('#report').show();
|
||||
$('#message').hide();
|
||||
if (opsetNumber != 0) {
|
||||
$("#report #data tr").filter(function () {
|
||||
$(this).toggle(checkVersion($(this), opsetNumber));
|
||||
});
|
||||
}
|
||||
|
||||
if (operationName) {
|
||||
$("#report #data tr:not(:hidden)").filter(function () {
|
||||
$(this).toggle($(this).find('th').text().toLowerCase().indexOf(operationName.toLowerCase()) > -1);
|
||||
});
|
||||
}
|
||||
|
||||
if (implementation != 0) {
|
||||
if (implementation == 'ni') {
|
||||
$("#report #data tr:not(:hidden)").filter(function () {
|
||||
$(this).toggle($(this).find('td').hasClass("value " + device + " not_impl"))
|
||||
});
|
||||
} else if (implementation == 'i') {
|
||||
$("#report #data tr:not(:hidden)").filter(function () {
|
||||
$(this).toggle($(this).find('td').hasClass("value " + device + " impl"));
|
||||
});
|
||||
} else {
|
||||
$("#report #data tr:not(:hidden)").filter(function () {
|
||||
$(this).toggle(!$(this).find('td').hasClass("value"));
|
||||
});
|
||||
}
|
||||
}
|
||||
if (status) {
|
||||
select = status.split(',');
|
||||
selector = [];
|
||||
select.forEach(item => {
|
||||
if (item == '100p') {
|
||||
selector.push('.value:visible[crashed="0"][failed="0"][skipped="0"][hanged="0"][value!="---"]');
|
||||
}
|
||||
if (item == '100f') {
|
||||
selector.push('.value:visible[passed="0"][value!="---"]');
|
||||
}
|
||||
if (item == 'p') {
|
||||
selector.push('.value:visible[passed!="0"][value!="---"]');
|
||||
}
|
||||
if (item == 'f') {
|
||||
selector.push('.value:visible[failed!="0"][value!="---"]');
|
||||
}
|
||||
if (item == 'c') {
|
||||
selector.push('.value:visible[crashed!="0"][value!="---"]');
|
||||
}
|
||||
if (item == 'h') {
|
||||
selector.push('.value:visible[hanged!="0"][value!="---"]');
|
||||
}
|
||||
if (item == 's') {
|
||||
selector.push('.value:visible[value!="---"][skipped!="0"]');
|
||||
}
|
||||
if (item == 'ex') {
|
||||
selector.push('.value:visible[value!="---"]');
|
||||
}
|
||||
if (item == 'na') {
|
||||
selector.push('.table-secondary:visible');
|
||||
}
|
||||
if (item == 'ns') {
|
||||
selector.push('.value:visible[value="---"]');
|
||||
}
|
||||
});
|
||||
elements = selector.join(',');
|
||||
$("#report #data tr:not(:hidden)").filter(function () {
|
||||
$(this).toggle($(this).find(elements).length > 0)
|
||||
});
|
||||
}
|
||||
|
||||
if ($("#report #data tr").length == $("#report #data tr:hidden").length) {
|
||||
$('#report').hide();
|
||||
$('#message').show();
|
||||
} else {
|
||||
calculateStatistics(device);
|
||||
}
|
||||
}
|
||||
|
||||
function checkVersion(element, opsetNumber) {
|
||||
var name = element.find('th').text().split("-")[0];
|
||||
var version = Number(element.find('th').text().split("-")[1]);
|
||||
var realOpsetNumber = Number(opsetNumber);
|
||||
if (version > realOpsetNumber) {
|
||||
return false;
|
||||
} else {
|
||||
var versions = [];
|
||||
$('#report #data tr th[name^="' + name + '-"]').each(function () {
|
||||
if (Number($(this).text().split('-')[1]) <= realOpsetNumber) {
|
||||
versions.push(Number(+$(this).text().split('-')[1]));
|
||||
}
|
||||
});
|
||||
return version == Math.max.apply(null, versions);
|
||||
}
|
||||
}
|
||||
|
||||
function calculateStatistics() {
|
||||
if (device != 0) {
|
||||
calculateColumnStatistics(device);
|
||||
} else {
|
||||
deviceList.map((el) => calculateColumnStatistics(el))
|
||||
}
|
||||
}
|
||||
|
||||
function calculateColumnStatistics(device) {
|
||||
// total
|
||||
total = $("#report #data tr:not(:hidden)").length;
|
||||
$('#statistic .table-primary[scope="row"] i').text(total);
|
||||
// trusted op
|
||||
count_trusted_op = $("#report #data tr:not(:hidden) ." + device + ".value[value^='100'][crashed='0'][failed='0'][skipped='0']").length;
|
||||
all_operations = $("#report #data tr:not(:hidden) .value[value!='N/A'][value!='---'][value!='NOT RUN']." + device).length;
|
||||
if (!all_operations) {
|
||||
trusted_op = "---";
|
||||
} else {
|
||||
trusted_op = (count_trusted_op * 100 / all_operations).toFixed(1) + ' %';
|
||||
}
|
||||
$('#statistic .table-primary.' + device + '.trusted-ops').text(trusted_op);
|
||||
$('#statistic .table-primary.' + device + '.test_total').text(all_operations || 0);
|
||||
|
||||
// tested op_counter
|
||||
tested_op_count = 0;
|
||||
passed_tested_op_count = 0;
|
||||
$("#report #data tr:not(:hidden) ." + device + ".value span").each(function () {
|
||||
text = $(this).text().split(':')[1];
|
||||
if (text) {
|
||||
if ($(this).hasClass('green')) {
|
||||
passed_tested_op_count += +text;
|
||||
}
|
||||
tested_op_count += +text;
|
||||
}
|
||||
});
|
||||
|
||||
// General Pass Rate
|
||||
if (tested_op_count == 0) {
|
||||
$('#statistic .table-primary.' + device + '.general_pass_rate').text('---');
|
||||
|
||||
} else {
|
||||
general_pass_rate = (passed_tested_op_count * 100 / tested_op_count).toFixed(1) + ' %';
|
||||
$('#statistic .table-primary.' + device + '.general_pass_rate').text(general_pass_rate);
|
||||
}
|
||||
$('#statistic .table-primary.' + device + '.tested-ops_count').text(tested_op_count);
|
||||
|
||||
// AVG Pass Rate
|
||||
sum_pass_rate = 0;
|
||||
$("#report #data tr:not(:hidden) ." + device + ".value").each(function () {
|
||||
if ($(this).attr('value') != 'N/A' && $(this).attr('value') != 'NOT RUN' && $(this).attr('value') != '---') {
|
||||
sum_pass_rate += +$(this).attr('value');
|
||||
}
|
||||
});
|
||||
if (all_operations == 0) {
|
||||
$('#statistic .table-primary.' + device + '.avg_pass_rate').text('---');
|
||||
} else {
|
||||
avg_pass_rate = (sum_pass_rate / all_operations).toFixed(1) + ' %';
|
||||
$('#statistic .table-primary.' + device + '.avg_pass_rate').text(avg_pass_rate);
|
||||
}
|
||||
}
|
123
docs/_static/download/operation_conformance_table_files/template/highlight_tables_template.html
vendored
Normal file
123
docs/_static/download/operation_conformance_table_files/template/highlight_tables_template.html
vendored
Normal file
@ -0,0 +1,123 @@
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<meta http-equiv="X-UA-Compatible" content="ie=edge">
|
||||
<!-- Bootstrap CSS -->
|
||||
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css"
|
||||
integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous">
|
||||
<title>{% block title %}highlight_table{% endblock %}</title>
|
||||
</head>
|
||||
<body>
|
||||
{% block content%}
|
||||
<h1 class="ml-3 mt-3">Highlights</h1>
|
||||
<ul class="list-group list-group-flush">
|
||||
{% for test_mode in expected_test_mode %}
|
||||
<li class="list-group-item">
|
||||
{% if expected_test_mode|length > 1 %}
|
||||
<h3><span class="mr-3">●</span>{{ test_mode }}</h3>
|
||||
{% endif %}
|
||||
<table class="table table-hover">
|
||||
<thead>
|
||||
<tr>
|
||||
<th class="table-dark">Plugins</th>
|
||||
{% for device in devices %}
|
||||
<th class="table-dark">{{ device }}</th>
|
||||
{% endfor %}
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
<tr>
|
||||
<td class="table-primary">Total ops pass:</td>
|
||||
{% for device in devices %}
|
||||
<td>
|
||||
{% if device in ops_info[test_mode] %}
|
||||
<!-- 10(+3)/(205)(-10) -->
|
||||
{{ ops_info[test_mode][device]['totalPass'] }}
|
||||
{% if ops_info[test_mode][device]['diffTotalPass'] > 0 %}
|
||||
(<span class="text-success font-weight-bold">+{{ ops_info[test_mode][device]['diffTotalPass'] }}</span>)
|
||||
{% elif ops_info[test_mode][device]['diffTotalPass'] < 0 %}
|
||||
(<span class="text-danger font-weight-bold">{{ ops_info[test_mode][device]['diffTotalPass'] }}</span>)
|
||||
{% endif %}
|
||||
/{{ ops_info[test_mode][device]['totalAmount'] }}
|
||||
{% if ops_info[test_mode][device]['diffTotalAmount'] > 0 %}
|
||||
(<span class="text-success font-weight-bold">+{{ ops_info[test_mode][device]['diffTotalAmount'] }}</span>)
|
||||
{% elif ops_info[test_mode][device]['diffTotalAmount'] < 0 %}
|
||||
(<span class="text-danger font-weight-bold">{{ ops_info[test_mode][device]['diffTotalAmount'] }}</span>)
|
||||
{% endif %}
|
||||
{% else %}
|
||||
NOT RUN
|
||||
{% endif %}
|
||||
</td>
|
||||
{% endfor %}
|
||||
</tr>
|
||||
<tr>
|
||||
<td class="table-primary">Passrate:</td>
|
||||
{% for device in devices %}
|
||||
<td>
|
||||
{% if device in general_pass_rate[test_mode] %}
|
||||
{{ general_pass_rate[test_mode][device]['current'] }}
|
||||
{% if general_pass_rate[test_mode][device]['prev'] > 0 %}
|
||||
(<span class="text-success font-weight-bold">+{{ general_pass_rate[test_mode][device]['prev'] }}</span>)
|
||||
{% elif general_pass_rate[test_mode][device]['prev'] < 0 %}
|
||||
(<span class="text-danger font-weight-bold">{{ general_pass_rate[test_mode][device]['prev'] }}</span>)
|
||||
{% endif %}
|
||||
%
|
||||
{% else %}
|
||||
NOT RUN
|
||||
{% endif %}
|
||||
</td>
|
||||
{% endfor %}
|
||||
</tr>
|
||||
|
||||
</tbody>
|
||||
</table>
|
||||
</li>
|
||||
{% endfor %}
|
||||
{% if api_info.keys()|length > 0 %}
|
||||
<li class="list-group-item">
|
||||
<h3><span class="mr-3">●</span> API </h3>
|
||||
<table class="table table-hover">
|
||||
<thead>
|
||||
<tr>
|
||||
<th class="table-dark">Plugins</th>
|
||||
<th class="table-dark">SW Plugins</th>
|
||||
{% for device in devices %}
|
||||
<th class="table-dark">{{ device }}</th>
|
||||
{% endfor %}
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
{% for test_type in api_info %}
|
||||
<td class="table-primary" rowspan="{{ api_info[test_type].keys()|length + 1 }}">{{ test_type }}</td>
|
||||
|
||||
{% for sw_plugin in sw_plugins %}
|
||||
<tr>
|
||||
<td>{{sw_plugin}}</td>
|
||||
{% for device in devices %}
|
||||
{% if device in api_info[test_type][sw_plugin] %}
|
||||
<td>
|
||||
{{ api_info[test_type][sw_plugin][device]['passrate'] }}
|
||||
{% if api_info[test_type][sw_plugin][device]['diff'] > 0 %}
|
||||
(<span class="text-success font-weight-bold">+{{ api_info[test_type][sw_plugin][device]['diff'] }}</span>)
|
||||
{% elif api_info[test_type][sw_plugin][device]['diff'] < 0 %}
|
||||
(<span class="text-danger font-weight-bold">{{ api_info[test_type][sw_plugin][device]['diff'] }}</span>)
|
||||
{% endif %}
|
||||
%
|
||||
</td>
|
||||
{% else %}
|
||||
<td>NOT RUN</td>
|
||||
{% endif %}
|
||||
{% endfor %}
|
||||
</tr>
|
||||
{% endfor %}
|
||||
{% endfor %}
|
||||
</tbody>
|
||||
</table>
|
||||
</li>
|
||||
{% endif %}
|
||||
</ul>
|
||||
{% endblock %}
|
||||
</body>
|
||||
</html>
|
188
docs/_static/download/operation_conformance_table_files/template/report_template.html
vendored
Normal file
188
docs/_static/download/operation_conformance_table_files/template/report_template.html
vendored
Normal file
@ -0,0 +1,188 @@
|
||||
<!doctype html>
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<!-- Required meta tags -->
|
||||
<meta charset="utf-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
|
||||
|
||||
<!-- Bootstrap CSS -->
|
||||
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css"
|
||||
integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous">
|
||||
<link rel="stylesheet" href="template/style.css" />
|
||||
<script src="https://code.jquery.com/jquery-3.2.1.slim.min.js"
|
||||
integrity="sha384-KJ3o2DKtIkvYIK3UENzmM7KCkRr/rE9/Qpg6aAZGJwFDMVNA/GpGFF93hXpG5KkN"
|
||||
crossorigin="anonymous"></script>
|
||||
<script src="template/filters.js"></script>
|
||||
<script src="template/chosen.jquery.min.js" type="text/javascript"></script>
|
||||
<title>Report</title>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<div class="main">
|
||||
<h2>Operations coverage summary: Tag: {{report_tag}} | Version: {{report_version}} | Time: {{ timestamp }}</h2>
|
||||
<div class="legend">
|
||||
<div>
|
||||
<span class="table-primary border"></span><span>Collected statistic info</span>
|
||||
</div>
|
||||
<div>
|
||||
<span class="table-secondary border">N/A</span><span>No Tests</span>
|
||||
</div>
|
||||
<div>
|
||||
<span><b>Status:</b></span>
|
||||
<span class="green">P:85</span><span>Passed</span>
|
||||
<span class="red">F:0</span><span>Failed</span>
|
||||
<span class="grey">S:2</span><span>Skipped</span>
|
||||
<span class="dark">C:0</span><span>Crashed</span>
|
||||
<span class="grey-red">H:0</span><span>Hanged</span>
|
||||
</div>
|
||||
<div>
|
||||
<span><b>Plugin operation implementation status:</b></span>
|
||||
<div class="checkmark"></div><div>Implemented</div>
|
||||
<div class="check"></div><div>Not implemented</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<!-- Filters block -->
|
||||
<div class="filters">
|
||||
<form id="filters">
|
||||
<div class="form-group">
|
||||
<label for="operationName"><b>Operation Name</b></label>
|
||||
<input id="operationName" type="text" class="form-control" />
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<label for="opsetNumber"><b>Opset Number</b></label>
|
||||
<select id="opsetNumber" class="form-control"></select>
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<label for="devices"><b>Devices</b></label>
|
||||
<select id="devices" class="form-control"></select>
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<label for="implementation"><b>Plugin Implementation</b></label>
|
||||
<select id="implementation" class="form-control">
|
||||
<option value="0">All</option>
|
||||
<option value="i">Implemented</option>
|
||||
<option value="ni">Not implemented</option>
|
||||
<option value="ns">No status</option>
|
||||
</select>
|
||||
</div>
|
||||
<div class="form-group col-5" style="padding-left:0">
|
||||
<label for="status"><b>Status</b></label>
|
||||
<select id="status" class="form-control" multiple>
|
||||
<option value="100p">100% Passed</option>
|
||||
<option value="100f">100% Failed</option>
|
||||
<option value="p">Passed</option>
|
||||
<option value="f">Failed</option>
|
||||
<option value="s">Skipped</option>
|
||||
<option value="c">Crashed</option>
|
||||
<option value="h">Hanged</option>
|
||||
<option value="ex">Existing tests</option>
|
||||
<option value="na">No tests</option>
|
||||
<option value="ns">No status</option>
|
||||
</select>
|
||||
</div>
|
||||
<button type="submit" class="btn btn-primary">Apply filters</button>
|
||||
<button type="button" class="btn btn-secondary" id="reset">Reset filters</button>
|
||||
</form>
|
||||
</div>
|
||||
|
||||
<!-- Results -->
|
||||
<table class="table table-hover" id="report">
|
||||
<thead>
|
||||
<tr>
|
||||
<th class="table-dark" scope="col" style="position: sticky; top: 97px">Operation</th>
|
||||
{% for d in devices -%}
|
||||
<th class="table-dark device {{ d }}" style="position: sticky; top: 97px">{{ d }}</th>
|
||||
{% endfor %}
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody id="statistic">
|
||||
<tr>
|
||||
<th class="table-primary" scope="row">Total: <i>{{ordered_ops|length}}</i></th>
|
||||
{% for d in devices -%}
|
||||
<td class="table-primary {{ d }} test_total"> {% if d in covered_ops -%} {{covered_ops[d]}} {% else -%} 0 {% endif -%}</td>
|
||||
{% endfor %}
|
||||
</tr>
|
||||
<tr>
|
||||
<th class="table-primary" scope="row">Trusted op (passrate=100%):</th>
|
||||
{% for d in devices -%}
|
||||
<td class="table-primary {{ d }} trusted-ops">{{trusted_ops[d]}} {% if trusted_ops[d] != "NOT RUN" -%}%{% endif -%}</td>
|
||||
{% endfor %}
|
||||
</tr>
|
||||
<tr>
|
||||
<th class="table-primary" scope="row">Tested op counter:</th>
|
||||
{% for d in devices -%}
|
||||
<td class="table-primary {{ d }} tested-ops_count">{{general_test_count[d]}}</td>
|
||||
{% endfor %}
|
||||
</tr>
|
||||
<tr>
|
||||
<th class="table-primary" scope="row">AVG passrate per op (=sum_pass_rates/covered_ops_num):</th>
|
||||
{% for d in devices -%}
|
||||
<td class="table-primary {{ d }} avg_pass_rate">{{pass_rate_avg[d]}} {% if pass_rate_avg[d] != "NOT RUN" -%}%{% endif -%}</td>
|
||||
{% endfor %}
|
||||
</tr>
|
||||
<tr>
|
||||
<th class="table-primary" scope="row">General passrate (=passed_tests/all_tests):</th>
|
||||
{% for d in devices -%}
|
||||
<td class="table-primary {{ d }} general_pass_rate">{{general_pass_rate[d]}} {% if general_pass_rate[d] != "NOT RUN" -%}%{% endif -%}</td>
|
||||
{% endfor %}
|
||||
</tr>
|
||||
</tbody>
|
||||
<tbody id="data">
|
||||
{% for op in ordered_ops -%}
|
||||
<tr>
|
||||
<th scope="row" name="{{ op }}">{{ op }}</th>
|
||||
|
||||
{% for d in devices -%}
|
||||
{% if op in results[d] -%}
|
||||
{% if results[d][op] == "NOT RUN" -%}
|
||||
<td class="nr_value {{ d }} not_run" title="{{op}} is not run for {{d}} plugin"> NOT RUN</td>
|
||||
{% else -%}
|
||||
<td class="value {{ d }} {% if results[d][op].implemented == 'true' -%} impl {% else -%} not_impl {% endif -%}"
|
||||
passed="{{ results[d][op].passed }}" failed="{{ results[d][op].failed }}"
|
||||
skipped="{{ results[d][op].skipped }}" crashed="{{ results[d][op].crashed }}"
|
||||
hanged="{{ results[d][op].hanged }}"
|
||||
value="{% if (results[d][op].passed != '0' or results[d][op].failed != '0' or results[d][op].crashed != '0' or results[d][op].skipped) != '0' -%}{{ results[d][op].passrate }}{% else -%}---{% endif -%}"
|
||||
title="{% if results[d][op].implemented == 'true' -%}
|
||||
{{op}} is implemented in {{d}} plugin
|
||||
{% else -%}
|
||||
{{op}} is not implemented in {{d}} plugin
|
||||
{% endif -%}">
|
||||
<span class="{% if results[d][op].implemented == 'true' -%} checkmark {% else -%} check {% endif -%}"></span>
|
||||
{% if (results[d][op].passed != '0' or results[d][op].failed != '0' or results[d][op].crashed != '0' or results[d][op].skipped != '0' or results[d][op].hanged != '0') -%}
|
||||
{{ results[d][op].passrate }} % <br />
|
||||
{% else -%}
|
||||
---<br />
|
||||
{% endif -%}
|
||||
<div class="flex">
|
||||
<div>
|
||||
{% if (results[d][op].passed != '0' or results[d][op].failed != '0' or results[d][op].crashed != '0' or results[d][op].skipped != '0' or results[d][op].hanged != '0') -%}
|
||||
<span class="green" title="Passed">P:{{ results[d][op].passed }}</span>
|
||||
<span class="red" title="Failed">F:{{ results[d][op].failed }}</span>
|
||||
<span class="grey" title="Skipped">S:{{ results[d][op].skipped }}</span>
|
||||
<span class="dark" title="Crashed">C:{{ results[d][op].crashed }}</span>
|
||||
<span class="grey-red" title="Hanged">H:{{ results[d][op].hanged }}</span>
|
||||
{% else -%}
|
||||
{% endif -%}
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</td>
|
||||
{% endif -%}
|
||||
{% else -%}
|
||||
<td class="table-secondary {{ d }}">N/A</td>
|
||||
{% endif -%}
|
||||
|
||||
{% endfor %}
|
||||
</tr>
|
||||
{% endfor -%}
|
||||
|
||||
</tbody>
|
||||
</table>
|
||||
<div id="message" style="display:none">
|
||||
There is no data related to selected filters. Please set new filters.
|
||||
</div>
|
||||
</body>
|
||||
|
||||
</html>
|
619
docs/_static/download/operation_conformance_table_files/template/style.css
vendored
Normal file
619
docs/_static/download/operation_conformance_table_files/template/style.css
vendored
Normal file
@ -0,0 +1,619 @@
|
||||
body {
|
||||
font-size: 14px;
|
||||
}
|
||||
.table td, .table th {
|
||||
padding: .5em .75em;
|
||||
}
|
||||
.table td span {
|
||||
font-size: 0.8em;
|
||||
}
|
||||
.value {
|
||||
font-weight: 500;
|
||||
}
|
||||
.value span {
|
||||
display:inline-block;
|
||||
font-weight: 400;
|
||||
padding: 1px 5px;
|
||||
border-radius: 2px;
|
||||
cursor: default;
|
||||
}
|
||||
|
||||
.nr_value value {
|
||||
font-weight: inherit;
|
||||
background: #8080803d;
|
||||
}
|
||||
.nr_value span {
|
||||
display:inherit;
|
||||
font-weight: inherit;
|
||||
padding: inherit;
|
||||
border-radius: inherit;
|
||||
cursor: inherit;
|
||||
}
|
||||
|
||||
.green {
|
||||
background: #0080002e;
|
||||
}
|
||||
.red {
|
||||
background: #ff000038;
|
||||
}
|
||||
.grey {
|
||||
background: #8080803d;
|
||||
}
|
||||
.dark {
|
||||
background: #8b000040;
|
||||
}
|
||||
.grey-red {
|
||||
background: #5e121275;
|
||||
}
|
||||
.filters {
|
||||
background: #FFF;
|
||||
padding: 5px 10px;
|
||||
position: sticky;
|
||||
top: 0;
|
||||
z-index: 30;
|
||||
}
|
||||
.filters form {
|
||||
display: flex;
|
||||
background: #efefef;
|
||||
padding: 10px;
|
||||
border-radius: 5px;
|
||||
}
|
||||
form div{
|
||||
margin-right: 10px;
|
||||
}
|
||||
form button {
|
||||
align-self: center;
|
||||
margin-top: 26px;
|
||||
margin-left: 20px;
|
||||
}
|
||||
.main {
|
||||
margin: 10px;
|
||||
}
|
||||
.legend {
|
||||
display: flex;
|
||||
}
|
||||
.legend div {
|
||||
display:flex;
|
||||
align-items: center;
|
||||
margin-right: 20px;
|
||||
}
|
||||
.legend span{
|
||||
display: inline-block;
|
||||
padding: 3px 5px;
|
||||
min-height: 25px;
|
||||
min-width: 25px;
|
||||
}
|
||||
.form-group {
|
||||
margin-bottom: 0;
|
||||
}
|
||||
#message {
|
||||
font-weight: 500;
|
||||
font-size: 20px;
|
||||
margin: 20px;
|
||||
text-align: center;
|
||||
color: #cf1d1d;
|
||||
}
|
||||
.table-dark:hover {
|
||||
background: #212529!important;
|
||||
}
|
||||
h2 {
|
||||
margin-bottom: 2rem;
|
||||
}
|
||||
|
||||
|
||||
/* @group Base */
|
||||
.chosen-container {
|
||||
position: relative;
|
||||
display: block;
|
||||
user-select: none;
|
||||
}
|
||||
|
||||
.chosen-container * {
|
||||
box-sizing: border-box;
|
||||
}
|
||||
|
||||
.chosen-container .chosen-drop {
|
||||
position: absolute;
|
||||
top: 100%;
|
||||
z-index: 1010;
|
||||
width: 100%;
|
||||
border: 1px solid #aaa;
|
||||
border-top: 0;
|
||||
background: #fff;
|
||||
-webkit-box-shadow: 0 4px 5px rgba(0, 0, 0, 0.15);
|
||||
box-shadow: 0 4px 5px rgba(0, 0, 0, 0.15);
|
||||
clip: rect(0, 0, 0, 0);
|
||||
-webkit-clip-path: inset(100% 100%);
|
||||
clip-path: inset(100% 100%);
|
||||
}
|
||||
|
||||
.chosen-container.chosen-with-drop .chosen-drop {
|
||||
clip: auto;
|
||||
-webkit-clip-path: none;
|
||||
clip-path: none;
|
||||
}
|
||||
|
||||
.chosen-container a {
|
||||
cursor: pointer;
|
||||
}
|
||||
|
||||
.chosen-container .search-choice .group-name, .chosen-container .chosen-single .group-name {
|
||||
margin-right: 4px;
|
||||
overflow: hidden;
|
||||
white-space: nowrap;
|
||||
text-overflow: ellipsis;
|
||||
font-weight: normal;
|
||||
color: #999999;
|
||||
}
|
||||
|
||||
.chosen-container .search-choice .group-name:after, .chosen-container .chosen-single .group-name:after {
|
||||
content: ":";
|
||||
padding-left: 2px;
|
||||
vertical-align: top;
|
||||
}
|
||||
|
||||
/* @end */
|
||||
/* @group Single Chosen */
|
||||
.chosen-container-single .chosen-single {
|
||||
position: relative;
|
||||
display: block;
|
||||
overflow: hidden;
|
||||
padding: 0 0 0 8px;
|
||||
height: 25px;
|
||||
border: 1px solid #aaa;
|
||||
border-radius: 5px;
|
||||
background-color: #fff;
|
||||
background: -webkit-gradient(linear, left top, left bottom, color-stop(20%, #fff), color-stop(50%, #f6f6f6), color-stop(52%, #eee), to(#f4f4f4));
|
||||
background: linear-gradient(#fff 20%, #f6f6f6 50%, #eee 52%, #f4f4f4 100%);
|
||||
background-clip: padding-box;
|
||||
-webkit-box-shadow: 0 0 3px #fff inset, 0 1px 1px rgba(0, 0, 0, 0.1);
|
||||
box-shadow: 0 0 3px #fff inset, 0 1px 1px rgba(0, 0, 0, 0.1);
|
||||
color: #444;
|
||||
text-decoration: none;
|
||||
white-space: nowrap;
|
||||
line-height: 24px;
|
||||
}
|
||||
|
||||
.chosen-container-single .chosen-default {
|
||||
color: #999;
|
||||
}
|
||||
|
||||
.chosen-container-single .chosen-single span {
|
||||
display: block;
|
||||
overflow: hidden;
|
||||
margin-right: 26px;
|
||||
text-overflow: ellipsis;
|
||||
white-space: nowrap;
|
||||
}
|
||||
|
||||
.chosen-container-single .chosen-single-with-deselect span {
|
||||
margin-right: 38px;
|
||||
}
|
||||
|
||||
.chosen-container-single .chosen-single abbr:hover {
|
||||
background-position: -42px -10px;
|
||||
}
|
||||
|
||||
.chosen-container-single.chosen-disabled .chosen-single abbr:hover {
|
||||
background-position: -42px -10px;
|
||||
}
|
||||
|
||||
.chosen-container-single .chosen-single div {
|
||||
position: absolute;
|
||||
top: 0;
|
||||
right: 0;
|
||||
display: block;
|
||||
width: 18px;
|
||||
height: 100%;
|
||||
}
|
||||
|
||||
.chosen-container-single .chosen-search {
|
||||
position: relative;
|
||||
z-index: 1010;
|
||||
margin: 0;
|
||||
padding: 3px 4px;
|
||||
white-space: nowrap;
|
||||
}
|
||||
|
||||
.chosen-container-single .chosen-drop {
|
||||
margin-top: -1px;
|
||||
border-radius: 0 0 4px 4px;
|
||||
background-clip: padding-box;
|
||||
}
|
||||
|
||||
.chosen-container-single.chosen-container-single-nosearch .chosen-search {
|
||||
position: absolute;
|
||||
clip: rect(0, 0, 0, 0);
|
||||
-webkit-clip-path: inset(100% 100%);
|
||||
clip-path: inset(100% 100%);
|
||||
}
|
||||
|
||||
/* @end */
|
||||
/* @group Results */
|
||||
.chosen-container .chosen-results {
|
||||
color: #444;
|
||||
position: relative;
|
||||
overflow-x: hidden;
|
||||
overflow-y: auto;
|
||||
margin: 0 4px 4px 0;
|
||||
padding: 0 0 0 4px;
|
||||
max-height: 240px;
|
||||
-webkit-overflow-scrolling: touch;
|
||||
}
|
||||
|
||||
.chosen-container .chosen-results li {
|
||||
display: none;
|
||||
margin: 0;
|
||||
padding: .75rem;
|
||||
list-style: none;
|
||||
line-height: 15px;
|
||||
word-wrap: break-word;
|
||||
-webkit-touch-callout: none;
|
||||
font-size: 1rem;
|
||||
}
|
||||
|
||||
.chosen-container .chosen-results li.active-result {
|
||||
display: list-item;
|
||||
cursor: pointer;
|
||||
}
|
||||
|
||||
.chosen-container .chosen-results li.disabled-result {
|
||||
display: list-item;
|
||||
color: #ccc;
|
||||
cursor: default;
|
||||
}
|
||||
|
||||
.chosen-container .chosen-results li.highlighted {
|
||||
background-color: #007bff;
|
||||
color: #fff;
|
||||
}
|
||||
|
||||
.chosen-container .chosen-results li.no-results {
|
||||
color: #777;
|
||||
display: list-item;
|
||||
background: #f4f4f4;
|
||||
}
|
||||
|
||||
.chosen-container .chosen-results li.group-result {
|
||||
display: list-item;
|
||||
font-weight: bold;
|
||||
cursor: default;
|
||||
}
|
||||
|
||||
.chosen-container .chosen-results li.group-option {
|
||||
padding-left: 15px;
|
||||
}
|
||||
|
||||
.chosen-container .chosen-results li em {
|
||||
font-style: normal;
|
||||
text-decoration: underline;
|
||||
}
|
||||
|
||||
/* @end */
|
||||
/* @group Multi Chosen */
|
||||
.chosen-container-multi .chosen-choices {
|
||||
position: relative;
|
||||
overflow: hidden;
|
||||
margin: 0;
|
||||
width: 100%;
|
||||
height: calc(2.25rem + 2px);
|
||||
box-sizing: border-box;
|
||||
cursor: text;
|
||||
|
||||
padding: .375rem .75rem;
|
||||
font-size: 0.75rem;
|
||||
line-height: 1.5;
|
||||
color: #495057;
|
||||
background-color: #fff;
|
||||
background-clip: padding-box;
|
||||
border: 1px solid #ced4da;
|
||||
border-radius: .25rem;
|
||||
transition: border-color .15s ease-in-out,box-shadow .15s ease-in-out;
|
||||
}
|
||||
|
||||
|
||||
.chosen-container-multi .chosen-choices li {
|
||||
float: left;
|
||||
list-style: none;
|
||||
}
|
||||
|
||||
.chosen-container-multi .chosen-choices li.search-field {
|
||||
margin: 0;
|
||||
padding: 0;
|
||||
white-space: nowrap;
|
||||
}
|
||||
|
||||
.chosen-container-multi .chosen-choices li.search-field input[type="text"] {
|
||||
margin: 1px 0;
|
||||
padding: 0;
|
||||
height: auto;
|
||||
outline: 0;
|
||||
border: 0 !important;
|
||||
background: transparent !important;
|
||||
-webkit-box-shadow: none;
|
||||
box-shadow: none;
|
||||
color: #999;
|
||||
font-size: 1rem;
|
||||
font-family: sans-serif;
|
||||
line-height: normal;
|
||||
border-radius: 0;
|
||||
width: 25px;
|
||||
}
|
||||
|
||||
.chosen-container-multi .chosen-choices li.search-choice {
|
||||
position: relative;
|
||||
margin: 0px 5px 0px 0;
|
||||
padding: 3px 20px 3px 5px;
|
||||
border: 1px solid #aaa;
|
||||
max-width: 100%;
|
||||
border-radius: 3px;
|
||||
background-color: #eeeeee;
|
||||
background-image: -webkit-gradient(linear, left top, left bottom, color-stop(20%, #f4f4f4), color-stop(50%, #f0f0f0), color-stop(52%, #e8e8e8), to(#eee));
|
||||
background-image: linear-gradient(#f4f4f4 20%, #f0f0f0 50%, #e8e8e8 52%, #eee 100%);
|
||||
background-size: 100% 19px;
|
||||
background-repeat: repeat-x;
|
||||
background-clip: padding-box;
|
||||
-webkit-box-shadow: 0 0 2px #fff inset, 0 1px 0 rgba(0, 0, 0, 0.05);
|
||||
box-shadow: 0 0 2px #fff inset, 0 1px 0 rgba(0, 0, 0, 0.05);
|
||||
color: #333;
|
||||
line-height: 1rem;
|
||||
cursor: default;
|
||||
}
|
||||
|
||||
.chosen-container-multi .chosen-choices li.search-choice span {
|
||||
word-wrap: break-word;
|
||||
}
|
||||
|
||||
.chosen-container-multi .chosen-choices li.search-choice .search-choice-close {
|
||||
position: absolute;
|
||||
top: calc( 50% - 6px);
|
||||
right: 3px;
|
||||
display: block;
|
||||
width: 12px;
|
||||
height: 12px;
|
||||
}
|
||||
.chosen-container-multi .chosen-choices li.search-choice .search-choice-close:before {
|
||||
content: "";
|
||||
width: 0;
|
||||
height: 12px;
|
||||
border-left: 2px solid #555;
|
||||
position: absolute;
|
||||
top: 0;
|
||||
left: 50%;
|
||||
transform: rotate(45deg);
|
||||
}
|
||||
.chosen-container-multi .chosen-choices li.search-choice .search-choice-close:after {
|
||||
content:"";
|
||||
width: 0;
|
||||
height: 12px;
|
||||
border-left: 2px solid #555;
|
||||
position: absolute;
|
||||
top: 0;
|
||||
left: 50%;
|
||||
transform: rotate(-45deg);
|
||||
}
|
||||
|
||||
.chosen-container-multi .chosen-choices li.search-choice .search-choice-close:hover {
|
||||
background-position: -42px -10px;
|
||||
}
|
||||
|
||||
.chosen-container-multi .chosen-choices li.search-choice-disabled {
|
||||
padding-right: 5px;
|
||||
border: 1px solid #ccc;
|
||||
background-color: #e4e4e4;
|
||||
background-image: -webkit-gradient(linear, left top, left bottom, color-stop(20%, #f4f4f4), color-stop(50%, #f0f0f0), color-stop(52%, #e8e8e8), to(#eee));
|
||||
background-image: linear-gradient(#f4f4f4 20%, #f0f0f0 50%, #e8e8e8 52%, #eee 100%);
|
||||
color: #666;
|
||||
}
|
||||
|
||||
.chosen-container-multi .chosen-choices li.search-choice-focus {
|
||||
background: #d4d4d4;
|
||||
}
|
||||
|
||||
.chosen-container-multi .chosen-choices li.search-choice-focus .search-choice-close {
|
||||
background-position: -42px -10px;
|
||||
}
|
||||
|
||||
.chosen-container-multi .chosen-results {
|
||||
margin: 0;
|
||||
padding: 0;
|
||||
}
|
||||
|
||||
.chosen-container-multi .chosen-drop .result-selected {
|
||||
display: list-item;
|
||||
color: #ccc;
|
||||
cursor: default;
|
||||
}
|
||||
|
||||
/* @end */
|
||||
/* @group Active */
|
||||
.chosen-container-active .chosen-single {
|
||||
border: 1px solid #5897fb;
|
||||
-webkit-box-shadow: 0 0 5px rgba(0, 0, 0, 0.3);
|
||||
box-shadow: 0 0 5px rgba(0, 0, 0, 0.3);
|
||||
}
|
||||
|
||||
.chosen-container-active.chosen-with-drop .chosen-single {
|
||||
border: 1px solid #aaa;
|
||||
border-bottom-right-radius: 0;
|
||||
border-bottom-left-radius: 0;
|
||||
background-image: -webkit-gradient(linear, left top, left bottom, color-stop(20%, #eee), color-stop(80%, #fff));
|
||||
background-image: linear-gradient(#eee 20%, #fff 80%);
|
||||
-webkit-box-shadow: 0 1px 0 #fff inset;
|
||||
box-shadow: 0 1px 0 #fff inset;
|
||||
}
|
||||
|
||||
.chosen-container-active.chosen-with-drop .chosen-single div {
|
||||
border-left: none;
|
||||
background: transparent;
|
||||
}
|
||||
|
||||
.chosen-container-active.chosen-with-drop .chosen-single div b {
|
||||
background-position: -18px 2px;
|
||||
}
|
||||
|
||||
.chosen-container-active .chosen-choices {
|
||||
border: 1px solid #80bdff;
|
||||
box-shadow:0 0 0 0.2rem rgb(0 123 255 / 25%)
|
||||
}
|
||||
|
||||
.chosen-container-active .chosen-choices li.search-field input[type="text"] {
|
||||
color: #222 !important;
|
||||
}
|
||||
|
||||
/* @end */
|
||||
/* @group Disabled Support */
|
||||
.chosen-disabled {
|
||||
opacity: 0.5 !important;
|
||||
cursor: default;
|
||||
}
|
||||
|
||||
.chosen-disabled .chosen-single {
|
||||
cursor: default;
|
||||
}
|
||||
|
||||
.chosen-disabled .chosen-choices .search-choice .search-choice-close {
|
||||
cursor: default;
|
||||
}
|
||||
|
||||
/* @end */
|
||||
/* @group Right to Left */
|
||||
.chosen-rtl {
|
||||
text-align: right;
|
||||
}
|
||||
|
||||
.chosen-rtl .chosen-single {
|
||||
overflow: visible;
|
||||
padding: 0 8px 0 0;
|
||||
}
|
||||
|
||||
.chosen-rtl .chosen-single span {
|
||||
margin-right: 0;
|
||||
margin-left: 26px;
|
||||
direction: rtl;
|
||||
}
|
||||
|
||||
.chosen-rtl .chosen-single-with-deselect span {
|
||||
margin-left: 38px;
|
||||
}
|
||||
|
||||
.chosen-rtl .chosen-single div {
|
||||
right: auto;
|
||||
left: 3px;
|
||||
}
|
||||
|
||||
.chosen-rtl .chosen-single abbr {
|
||||
right: auto;
|
||||
left: 26px;
|
||||
}
|
||||
|
||||
.chosen-rtl .chosen-choices li {
|
||||
float: right;
|
||||
}
|
||||
|
||||
.chosen-rtl .chosen-choices li.search-field input[type="text"] {
|
||||
direction: rtl;
|
||||
}
|
||||
|
||||
.chosen-rtl .chosen-choices li.search-choice {
|
||||
margin: 3px 5px 3px 0;
|
||||
padding: 3px 5px 3px 19px;
|
||||
}
|
||||
|
||||
.chosen-rtl .chosen-choices li.search-choice .search-choice-close {
|
||||
right: auto;
|
||||
left: 4px;
|
||||
}
|
||||
|
||||
.chosen-rtl.chosen-container-single .chosen-results {
|
||||
margin: 0 0 4px 4px;
|
||||
padding: 0 4px 0 0;
|
||||
}
|
||||
|
||||
.chosen-rtl .chosen-results li.group-option {
|
||||
padding-right: 15px;
|
||||
padding-left: 0;
|
||||
}
|
||||
|
||||
.chosen-rtl.chosen-container-active.chosen-with-drop .chosen-single div {
|
||||
border-right: none;
|
||||
}
|
||||
|
||||
.chosen-rtl.chosen-container-single .chosen-single div b {
|
||||
background-position: 6px 2px;
|
||||
}
|
||||
|
||||
.chosen-rtl.chosen-container-single.chosen-with-drop .chosen-single div b {
|
||||
background-position: -12px 2px;
|
||||
}
|
||||
|
||||
|
||||
.check {
|
||||
width: 16px;
|
||||
height: 16px;
|
||||
background: #be2d2d;
|
||||
text-indent: -1000;
|
||||
border-radius: 8px;
|
||||
position: relative;
|
||||
}
|
||||
|
||||
.check::before {
|
||||
display: block;
|
||||
border-bottom: 2px solid #FFF;
|
||||
position: absolute;
|
||||
z:index: 10;
|
||||
width: 8px;
|
||||
top:7px;
|
||||
left: 4px;
|
||||
content: "";
|
||||
}
|
||||
|
||||
.checkmark {
|
||||
display: block;
|
||||
width: 16px;
|
||||
height: 16px;
|
||||
position: relative;
|
||||
}
|
||||
|
||||
.checkmark::before {
|
||||
position: absolute;
|
||||
display: block;
|
||||
width: 2px;
|
||||
height: 16px;
|
||||
background-color: green;
|
||||
left: 10px;
|
||||
content: '';
|
||||
top: 0px;
|
||||
z-index: 20;
|
||||
transform: rotate(45deg);
|
||||
}
|
||||
|
||||
.checkmark::after {
|
||||
position: absolute;
|
||||
width: 2px;
|
||||
content: '';
|
||||
height: 7px;
|
||||
background-color: green;
|
||||
left:3px;
|
||||
display: block;
|
||||
top: 7px;
|
||||
z-index: 20;
|
||||
transform: rotate(-45deg);
|
||||
}
|
||||
|
||||
.flex {
|
||||
display: flex;
|
||||
justify-content: space-between;
|
||||
}
|
||||
|
||||
.not_impl:hover {
|
||||
background: #ffdee1;
|
||||
}
|
||||
|
||||
.impl:hover {
|
||||
background: #e0fde6;
|
||||
}
|
||||
|
||||
.not_run:hover {
|
||||
background: #8b000040;
|
||||
}
|
72
docs/resources/Supported_Devices.md
Normal file
72
docs/resources/Supported_Devices.md
Normal file
@ -0,0 +1,72 @@
|
||||
# Supported Devices {#openvino_docs_OV_UG_supported_plugins_Supported_Devices}
|
||||
|
||||
|
||||
@sphinxdirective
|
||||
|
||||
|
||||
The OpenVINO runtime can infer various models of different input and output formats. Here, you can find configurations
|
||||
supported by OpenVINO devices, which are CPU, GPU, and GNA (Gaussian Neural Accelerator coprocessor).
|
||||
Currently, processors of the 11th generation and later (up to the 13th generation at the moment) provide a further performance boost, especially with INT8 models.
|
||||
|
||||
.. note::
|
||||
|
||||
With OpenVINO™ 2023.0 release, support has been cancelled for all VPU accelerators based on Intel® Movidius™.
|
||||
|
||||
|
||||
+---------------------------------------------------------------------+------------------------------------------------------------------------------------------------------+
|
||||
| OpenVINO Device | Supported Hardware |
|
||||
+=====================================================================+======================================================================================================+
|
||||
|| :doc:`CPU <openvino_docs_OV_UG_supported_plugins_CPU>` | Intel® Xeon® with Intel® Advanced Vector Extensions 2 (Intel® AVX2), Intel® Advanced Vector |
|
||||
|| (x86) | Extensions 512 (Intel® AVX-512), Intel® Advanced Matrix Extensions (Intel® AMX), |
|
||||
|| | Intel® Core™ Processors with Intel® AVX2, |
|
||||
|| | Intel® Atom® Processors with Intel® Streaming SIMD Extensions (Intel® SSE) |
|
||||
|| | |
|
||||
|| (Arm®) | Raspberry Pi™ 4 Model B, Apple® Mac mini with M1 chip, NVIDIA® Jetson Nano™, Android™ devices |
|
||||
|| | |
|
||||
+---------------------------------------------------------------------+------------------------------------------------------------------------------------------------------+
|
||||
|| :doc:`GPU <openvino_docs_OV_UG_supported_plugins_GPU>` | Intel® Processor Graphics including Intel® HD Graphics and Intel® Iris® Graphics, |
|
||||
|| | Intel® Arc™ A-Series Graphics, Intel® Data Center GPU Flex Series, Intel® Data Center GPU Max Series |
|
||||
+---------------------------------------------------------------------+------------------------------------------------------------------------------------------------------+
|
||||
|| :doc:`GNA plugin <openvino_docs_OV_UG_supported_plugins_GNA>` | Intel® Speech Enabling Developer Kit, Amazon Alexa* Premium Far-Field Developer Kit, Intel® |
|
||||
|| (available in the Intel® Distribution of OpenVINO™ toolkit) | Pentium® Silver J5005 Processor, Intel® Pentium® Silver N5000 Processor, Intel® |
|
||||
|| | Celeron® J4005 Processor, Intel® Celeron® J4105 Processor, Intel® Celeron® |
|
||||
|| | Processor N4100, Intel® Celeron® Processor N4000, Intel® Core™ i3-8121U Processor, |
|
||||
|| | Intel® Core™ i7-1065G7 Processor, Intel® Core™ i7-1060G7 Processor, Intel® |
|
||||
|| | Core™ i5-1035G4 Processor, Intel® Core™ i5-1035G7 Processor, Intel® Core™ |
|
||||
|| | i5-1035G1 Processor, Intel® Core™ i5-1030G7 Processor, Intel® Core™ i5-1030G4 Processor, |
|
||||
|| | Intel® Core™ i3-1005G1 Processor, Intel® Core™ i3-1000G1 Processor, |
|
||||
|| | Intel® Core™ i3-1000G4 Processor |
|
||||
+---------------------------------------------------------------------+------------------------------------------------------------------------------------------------------+
|
||||
|
||||
|
||||
Beside inference using a specific device, OpenVINO offers three inference modes for automated inference management. These are:
|
||||
|
||||
* :doc:`Automatic Device Selection <openvino_docs_OV_UG_supported_plugins_AUTO>` - automatically selects the best device
|
||||
available for the given task. It offers many additional options and optimizations, including inference on
|
||||
multiple devices at the same time.
|
||||
* :doc:`Multi-device Inference <openvino_docs_OV_UG_Running_on_multiple_devices>` - executes inference on multiple devices.
|
||||
Currently, this mode is considered a legacy solution. Using Automatic Device Selection is advised.
|
||||
* :doc:`Heterogeneous Inference <openvino_docs_OV_UG_Hetero_execution>` - enables splitting inference among several devices
|
||||
automatically, for example, if one device doesn’t support certain operations.
|
||||
|
||||
|
||||
Devices similar to the ones we have used for benchmarking can be accessed using `Intel® DevCloud for the Edge <https://devcloud.intel.com/edge/>`__,
|
||||
a remote development environment with access to Intel® hardware and the latest versions of the Intel® Distribution
|
||||
of OpenVINO™ Toolkit. `Learn more <https://devcloud.intel.com/edge/get_started/devcloud/>`__ or `Register here <https://inteliot.force.com/DevcloudForEdge/s/>`__.
|
||||
|
||||
|
||||
To learn more about each of the supported devices and modes, refer to the sections of:
|
||||
* :doc:`Inference Device Support <openvino_docs_OV_UG_Working_with_devices>`
|
||||
* :doc:`Inference Modes <openvino_docs_Runtime_Inference_Modes_Overview>`
|
||||
|
||||
|
||||
|
||||
For setting relevant configuration, refer to the
|
||||
:doc:`Integrate with Customer Application <openvino_docs_OV_UG_Integrate_OV_with_your_application>`
|
||||
topic (step 3 "Configure input and output").
|
||||
|
||||
|
||||
|
||||
@endsphinxdirective
|
||||
|
||||
|
@ -16,7 +16,8 @@
|
||||
|
||||
openvino_docs_OV_UG_supported_plugins_Supported_Devices
|
||||
openvino_supported_models
|
||||
openvino_docs_MO_DG_prepare_model_Supported_Frameworks_Layers
|
||||
openvino_resources_supported_operations
|
||||
openvino_resources_supported_operations_frontend
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
@ -35,9 +36,11 @@ and its proprietary model format, OpenVINO IR.
|
||||
|
||||
:doc:`Supported Devices <openvino_docs_OV_UG_supported_plugins_Supported_Devices>` is compatibility information about supported hardware accelerators.
|
||||
|
||||
:doc:`Supported Models <openvino_supported_models>` is a table of models officially supported by OpenVINO.
|
||||
:doc:`Supported Models <openvino_supported_models>` is a table of models officially supported by OpenVINO.
|
||||
|
||||
:doc:`Supported Framework Layers <openvino_docs_MO_DG_prepare_model_Supported_Frameworks_Layers>` are lists of framework layers supported by OpenVINO.
|
||||
:doc:`Supported Operations <openvino_resources_supported_operations>` is a listing of framework layers supported by OpenVINO.
|
||||
|
||||
:doc:`Supported Operations <openvino_resources_supported_operations_frontend>` is a listing of layers supported by OpenVINO inference devices.
|
||||
|
||||
:doc:`Glossary <openvino_docs_OV_Glossary>` contains terms used in OpenVINO.
|
||||
|
||||
|
1140
docs/resources/supported_operations_framework_frontend.md
Normal file
1140
docs/resources/supported_operations_framework_frontend.md
Normal file
File diff suppressed because it is too large
Load Diff
171
docs/resources/supported_operations_inference_devices.md
Normal file
171
docs/resources/supported_operations_inference_devices.md
Normal file
@ -0,0 +1,171 @@
|
||||
# Supported Operations - by Inference Devices {#openvino_resources_supported_operations}
|
||||
|
||||
@sphinxdirective
|
||||
|
||||
This page lists operations supported by OpenVINO inference devices. The table presents general information,
|
||||
for a more detailed and most recent listing of operations that are implemented and tested:
|
||||
|
||||
.. button-link:: _static/download/operation_conformance_table_files/opset_report_omz_static.html
|
||||
:color: primary
|
||||
:outline:
|
||||
|
||||
See the full conformance report table
|
||||
|
||||
|
||||
================================= =============== ============== ================ ==================
|
||||
Operations CPU (x86) GPU GNA CPU (Arm®)
|
||||
================================= =============== ============== ================ ==================
|
||||
Abs Supported** Supported Not Supported Supported
|
||||
Acos Supported** Supported Not Supported Supported****
|
||||
Acosh Supported** Supported Not Supported Supported****
|
||||
Activation-Clamp Supported*** Supported Supported Supported
|
||||
Activation-ELU Supported*** Supported Not Supported Supported
|
||||
Activation-Exp Supported*** Supported Supported Supported
|
||||
Activation-Leaky ReLU Supported*** Supported Supported Not Supported
|
||||
Activation-Not Supported*** Supported Not Supported Not Supported
|
||||
Activation-PReLU Supported*** Supported Not Supported Supported
|
||||
Activation-ReLU Supported*** Supported Supported Supported
|
||||
Activation-ReLU6 Supported*** Supported Not Supported Not Supported
|
||||
Activation-Sigmoid/Logistic Supported*** Supported Supported Supported
|
||||
Activation-TanH Supported*** Supported Supported Supported
|
||||
ArgMax Supported** Supported Not Supported Not Supported
|
||||
Asin Supported** Supported Not Supported Supported****
|
||||
Asinh Supported** Supported Not Supported Supported****
|
||||
Atan Supported** Supported Not Supported Supported****
|
||||
Atanh Supported** Supported Not Supported Supported****
|
||||
BatchNormalization Supported Supported Not Supported Supported
|
||||
BinaryConvolution Supported Supported Not Supported Not Supported
|
||||
Broadcast Supported** Supported Not Supported Supported
|
||||
Ceil Supported** Supported Not Supported Supported
|
||||
Concat Supported*** Supported Supported Supported
|
||||
Const Supported Supported Supported Supported
|
||||
Convolution-Dilated Supported Supported Not Supported Supported
|
||||
Convolution-Dilated 3D Supported Supported Not Supported Not Supported
|
||||
Convolution-Grouped Supported Supported Not Supported Supported
|
||||
Convolution-Grouped 3D Supported Supported Not Supported Not Supported
|
||||
Convolution-Ordinary Supported Supported Supported* Supported
|
||||
Convolution-Ordinary 3D Supported Supported Not Supported Not Supported
|
||||
Cos Supported** Supported Not Supported Supported****
|
||||
Cosh Supported** Supported Not Supported Supported****
|
||||
Crop Supported Supported Supported Not Supported
|
||||
CTCGreedyDecoder Supported** Supported** Not Supported Supported****
|
||||
Deconvolution Supported Supported Not Supported Not Supported
|
||||
Deconvolution 3D Supported Supported Not Supported Not Supported
|
||||
DeformableConvolution Supported Supported Not Supported Not Supported
|
||||
DepthToSpace Supported** Supported Not Supported Supported*
|
||||
DetectionOutput Supported** Supported Not Supported Supported****
|
||||
Eltwise-And Supported*** Supported Not Supported Supported
|
||||
Eltwise-Add Supported*** Supported Not Supported Supported
|
||||
Eltwise-Div Supported*** Supported Not Supported Supported
|
||||
Eltwise-Equal Supported*** Supported Not Supported Supported*
|
||||
Eltwise-FloorMod Supported*** Supported Not Supported Supported****
|
||||
Eltwise-Greater Supported*** Supported Not Supported Supported
|
||||
Eltwise-GreaterEqual Supported*** Supported Not Supported Supported
|
||||
Eltwise-Less Supported*** Supported Not Supported Supported*
|
||||
Eltwise-LessEqual Supported*** Supported Not Supported Supported*
|
||||
Eltwise-LogicalAnd Supported*** Supported Not Supported Supported
|
||||
Eltwise-LogicalOr Supported*** Supported Not Supported Supported
|
||||
Eltwise-LogicalXor Supported*** Supported Not Supported Supported
|
||||
Eltwise-Max Supported*** Supported Not Supported Supported
|
||||
Eltwise-Min Supported*** Supported Not Supported Supported
|
||||
Eltwise-Mul Supported*** Supported Supported Supported
|
||||
Eltwise-NotEqual Supported*** Supported Not Supported Supported*
|
||||
Eltwise-Pow Supported*** Supported Not Supported Supported
|
||||
Eltwise-Prod Supported*** Supported Supported Not Supported
|
||||
Eltwise-SquaredDiff Supported*** Supported Not Supported Supported
|
||||
Eltwise-Sub Supported*** Supported Supported Supported
|
||||
Eltwise-Sum Supported*** Supported Supported Supported****
|
||||
Erf Supported** Supported Not Supported Supported****
|
||||
Exp Supported Supported Supported Supported
|
||||
FakeQuantize Supported Not Supported Not Supported Supported*
|
||||
Fill Supported** Not Supported Not Supported Not Supported
|
||||
Flatten Supported Supported Not Supported Not Supported
|
||||
Floor Supported** Supported Not Supported Supported
|
||||
FullyConnected (Inner Product) Supported*** Supported Supported Supported
|
||||
Gather Supported** Supported Not Supported Supported*
|
||||
GatherTree Supported** Not Supported Not Supported Supported****
|
||||
Gemm Supported Supported Not Supported Not Supported
|
||||
GRN Supported** Supported** Not Supported Supported
|
||||
HardSigmoid Supported** Supported Not Supported Supported****
|
||||
Interp Supported** Supported** Not Supported Supported*
|
||||
Log Supported** Supported Supported Supported
|
||||
LRN (Norm) Supported Supported Not Supported Supported*
|
||||
LSTMCell Supported Supported Supported Supported
|
||||
GRUCell Supported Supported Supported Supported
|
||||
RNNCell Supported Supported Not Supported Supported
|
||||
LSTMSequence Supported Supported Supported Supported****
|
||||
GRUSequence Supported Supported Supported Supported****
|
||||
RNNSequence Supported Supported Not Supported Supported****
|
||||
LogSoftmax Supported** Supported Not Supported Supported
|
||||
Memory Supported Not Supported Supported Not Supported
|
||||
MVN Supported** Supported Not Supported Supported*
|
||||
Neg Supported** Supported Not Supported Supported
|
||||
NonMaxSuppression Supported** Not Supported Not Supported Supported****
|
||||
Normalize Supported** Supported Not Supported Supported*
|
||||
OneHot Supported** Supported Not Supported Supported****
|
||||
Pad Supported** Supported Not Supported Supported*
|
||||
Permute Supported Supported Supported* Not Supported
|
||||
Pooling(AVG,MAX) Supported Supported Supported Supported
|
||||
Pooling(AVG,MAX) 3D Supported Supported Not Supported Supported*
|
||||
Power Supported** Supported Supported* Supported
|
||||
PowerFile Supported** Not Supported Not Supported Not Supported
|
||||
PriorBox Supported** Supported Not Supported Supported
|
||||
PriorBoxClustered Supported** Supported** Not Supported Supported
|
||||
Proposal Supported** Supported Not Supported Supported****
|
||||
PSROIPooling Supported** Supported Not Supported Supported****
|
||||
Range Supported** Not Supported Not Supported Not Supported
|
||||
Reciprocal Supported** Supported Not Supported Not Supported
|
||||
ReduceAnd Supported** Supported Not Supported Supported****
|
||||
ReduceL1 Supported** Supported Not Supported Supported
|
||||
ReduceL2 Supported** Supported Not Supported Supported
|
||||
ReduceLogSum Supported** Supported Not Supported Supported
|
||||
ReduceLogSumExp Supported** Supported Not Supported Not Supported
|
||||
ReduceMax Supported** Supported Not Supported Supported
|
||||
ReduceMean Supported** Supported Not Supported Supported
|
||||
ReduceMin Supported** Supported Not Supported Supported
|
||||
ReduceOr Supported** Supported Not Supported Supported****
|
||||
ReduceProd Supported** Supported Not Supported Supported
|
||||
ReduceSum Supported** Supported Not Supported Supported
|
||||
ReduceSumSquare Supported** Supported Not Supported Not Supported
|
||||
RegionYolo Supported** Supported Not Supported Supported****
|
||||
ReorgYolo Supported** Supported Not Supported Supported
|
||||
Resample Supported** Supported Not Supported Not Supported
|
||||
Reshape Supported*** Supported Supported Supported
|
||||
ReverseSequence Supported** Supported Not Supported Supported****
|
||||
RNN Supported Not Supported Not Supported Supported
|
||||
ROIPooling Supported Supported* Not Supported Supported****
|
||||
ScaleShift Supported*** Supported Supported Not Supported
|
||||
ScatterUpdate Supported** Not Supported Not Supported Not Supported
|
||||
Select Supported Supported Not Supported Supported
|
||||
Selu Supported** Supported Not Supported Supported****
|
||||
ShuffleChannels Supported** Supported Not Supported Supported
|
||||
Sign Supported** Supported Not Supported Supported
|
||||
Sin Supported** Supported Not Supported Supported
|
||||
Sinh Supported** Supported Not Supported Supported****
|
||||
SimplerNMS Supported** Supported Not Supported Not Supported
|
||||
Slice Supported*** Supported Supported Not Supported
|
||||
SoftMax Supported*** Supported Not Supported Supported
|
||||
Softplus Supported** Supported Not Supported Supported
|
||||
Softsign Supported** Supported Supported Not Supported
|
||||
SpaceToDepth Supported** Not Supported Not Supported Supported*
|
||||
SpatialTransformer Supported** Not Supported Not Supported Not Supported
|
||||
Split Supported*** Supported Supported Supported
|
||||
Squeeze Supported** Supported Supported Supported
|
||||
StridedSlice Supported** Supported Not Supported Supported*
|
||||
Tan Supported** Supported Not Supported Supported****
|
||||
TensorIterator Supported Not Supported Supported Supported
|
||||
Tile Supported*** Supported** Not Supported Supported
|
||||
TopK Supported** Supported Not Supported Supported****
|
||||
Unpooling Not Supported Supported Not Supported Not Supported
|
||||
Unsqueeze Supported** Supported Supported Supported
|
||||
Upsampling Not Supported Supported Not Supported Not Supported
|
||||
================================= =============== ============== ================ ==================
|
||||
|
||||
| `*` - support is limited to the specific parameters. Refer to "Known Layer Limitations" section for the device :doc:`from the list of supported <openvino_docs_OV_UG_supported_plugins_Supported_Devices>`.
|
||||
| `**` - support is implemented via :doc:`Extensibility mechanism <openvino_docs_Extensibility_UG_Intro>`.
|
||||
| `***` - supports NCDHW layout.
|
||||
| `****` - support is implemented via runtime reference.
|
||||
|
||||
|
||||
|
||||
@endsphinxdirective
|
Loading…
Reference in New Issue
Block a user