[TF FE] Refactor Size translator and add layer test (#15653)
Signed-off-by: Kazantsev, Roman <roman.kazantsev@intel.com>
This commit is contained in:
parent
166566a777
commit
a91f173166
@ -6,6 +6,7 @@
|
||||
#include "openvino/opsets/opset8.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace ov;
|
||||
using namespace ov::opset8;
|
||||
|
||||
namespace ov {
|
||||
@ -14,13 +15,23 @@ namespace tensorflow {
|
||||
namespace op {
|
||||
|
||||
ov::OutputVector translate_size_op(const NodeContext& node) {
|
||||
auto data = node.get_input(0);
|
||||
auto out_type = node.get_attribute<ov::element::Type>("out_type", ov::element::i32);
|
||||
auto shape_of = make_shared<ShapeOf>(data, out_type);
|
||||
auto axis = make_shared<Constant>(ov::element::i64, Shape{}, 0);
|
||||
auto res = make_shared<ReduceProd>(shape_of, axis);
|
||||
set_node_name(node.get_name(), res);
|
||||
return res->outputs();
|
||||
// Size operation computes a number of elements in the input tensor
|
||||
default_op_checks(node, 1, {"Size"});
|
||||
auto input = node.get_input(0);
|
||||
|
||||
// retrive attribute of the output type
|
||||
auto out_type = node.get_attribute<element::Type>("out_type", element::i32);
|
||||
|
||||
// introduce extra dimension in order to compute size in case of a scalar input
|
||||
auto const_zero = make_shared<Constant>(element::i32, Shape{1}, 0);
|
||||
input = make_shared<Unsqueeze>(input, const_zero);
|
||||
|
||||
// compute the input tensor size
|
||||
auto shape_of = make_shared<ShapeOf>(input, out_type);
|
||||
auto axis = make_shared<Constant>(element::i32, Shape{}, 0);
|
||||
auto size = make_shared<ReduceProd>(shape_of, axis);
|
||||
set_node_name(node.get_name(), size);
|
||||
return {size};
|
||||
}
|
||||
|
||||
} // namespace op
|
||||
|
45
tests/layer_tests/tensorflow_tests/test_tf_Size.py
Normal file
45
tests/layer_tests/tensorflow_tests/test_tf_Size.py
Normal file
@ -0,0 +1,45 @@
|
||||
# Copyright (C) 2018-2023 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import tensorflow as tf
|
||||
from common.tf_layer_test_class import CommonTFLayerTest
|
||||
|
||||
|
||||
class TestSize(CommonTFLayerTest):
|
||||
def _prepare_input(self, inputs_info):
|
||||
assert 'input' in inputs_info
|
||||
input_shape = inputs_info['input']
|
||||
input_type = self.input_type
|
||||
inputs_data = {}
|
||||
inputs_data['input'] = np.random.randint(-50, 50, input_shape).astype(input_type)
|
||||
|
||||
return inputs_data
|
||||
|
||||
def create_size_net(self, input_shape, input_type, out_type):
|
||||
self.input_type = input_type
|
||||
tf.compat.v1.reset_default_graph()
|
||||
# Create the graph and model
|
||||
with tf.compat.v1.Session() as sess:
|
||||
input = tf.compat.v1.placeholder(input_type, input_shape, 'input')
|
||||
tf.raw_ops.Size(input=input, out_type=out_type)
|
||||
tf.compat.v1.global_variables_initializer()
|
||||
tf_net = sess.graph_def
|
||||
|
||||
return tf_net, None
|
||||
|
||||
test_data_basic = [
|
||||
dict(input_shape=[], input_type=np.float32, out_type=tf.int32),
|
||||
dict(input_shape=[2, 3], input_type=np.int32, out_type=None),
|
||||
dict(input_shape=[4, 1, 3], input_type=np.float32, out_type=tf.int64),
|
||||
]
|
||||
|
||||
@pytest.mark.parametrize("params", test_data_basic)
|
||||
@pytest.mark.precommit_tf_fe
|
||||
@pytest.mark.nightly
|
||||
def test_size_basic(self, params, ie_device, precision, ir_version, temp_dir,
|
||||
use_new_frontend, use_old_api):
|
||||
self._test(*self.create_size_net(**params),
|
||||
ie_device, precision, ir_version, temp_dir=temp_dir,
|
||||
use_new_frontend=use_new_frontend, use_old_api=use_old_api)
|
Loading…
Reference in New Issue
Block a user