cpu fix
This commit is contained in:
parent
86bf737e0a
commit
a9fa429b2d
@ -1,200 +1,200 @@
|
||||
// Copyright (C) 2021 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//// Copyright (C) 2021 Intel Corporation
|
||||
//// SPDX-License-Identifier: Apache-2.0
|
||||
////
|
||||
//
|
||||
|
||||
#include "test_utils/cpu_test_utils.hpp"
|
||||
|
||||
#include "ngraph_functions/builders.hpp"
|
||||
#include "ngraph_functions/utils/ngraph_helpers.hpp"
|
||||
|
||||
using namespace InferenceEngine;
|
||||
using namespace CPUTestUtils;
|
||||
|
||||
namespace CPULayerTestsDefinitions {
|
||||
typedef std::tuple<
|
||||
std::pair<std::vector<ngraph::PartialShape>, std::vector<std::vector<ngraph::Shape>>>, // input shape
|
||||
std::tuple<float, float, float>, // start, limit, delta
|
||||
Precision // output type
|
||||
> RangeSpecificParams;
|
||||
|
||||
typedef std::tuple<
|
||||
RangeSpecificParams,
|
||||
InferenceEngine::Precision, // Net precision
|
||||
LayerTestsUtils::TargetDevice // Device name
|
||||
> RangeLayerTestParams;
|
||||
|
||||
typedef std::tuple<
|
||||
CPULayerTestsDefinitions::RangeLayerTestParams,
|
||||
CPUSpecificParams> RangeLayerCPUTestParamsSet;
|
||||
|
||||
class RangeLayerCPUTest : public testing::WithParamInterface<RangeLayerCPUTestParamsSet>,
|
||||
virtual public LayerTestsUtils::LayerTestsCommon, public CPUTestsBase {
|
||||
float start = 0;
|
||||
float stop = 0;
|
||||
float step = 0;
|
||||
public:
|
||||
static std::string getTestCaseName(testing::TestParamInfo<RangeLayerCPUTestParamsSet> obj) {
|
||||
CPULayerTestsDefinitions::RangeLayerTestParams basicParamsSet;
|
||||
CPUSpecificParams cpuParams;
|
||||
std::tie(basicParamsSet, cpuParams) = obj.param;
|
||||
std::string td;
|
||||
Precision netPrc = Precision::FP32;
|
||||
std::pair<std::vector<ngraph::PartialShape>, std::vector<std::vector<ngraph::Shape>>> shapes;
|
||||
|
||||
RangeSpecificParams rangePar;
|
||||
std::tie(rangePar, netPrc, td) = basicParamsSet;
|
||||
std::tuple<float, float, float> rangeInputs;
|
||||
InferenceEngine::Precision outPrc = Precision::FP32;
|
||||
std::tie(shapes, rangeInputs, outPrc) = rangePar;
|
||||
float start = std::get<0>(rangeInputs);
|
||||
float stop = std::get<1>(rangeInputs);
|
||||
float step = std::get<2>(rangeInputs);
|
||||
|
||||
std::ostringstream result;
|
||||
result << "RangeTest_" << std::to_string(obj.index) << "_";
|
||||
result << "NetPr_" << netPrc.name() << "_";
|
||||
result << "OutPr_" << outPrc.name() << "_";
|
||||
result << "Start_" << start << "_";
|
||||
result << "Stop_" << stop << "_";
|
||||
result << "Step_" << step << "_";
|
||||
result << CPUTestsBase::getTestCaseName(cpuParams);
|
||||
result << CommonTestUtils::vec2str(shapes.second[0]) << "_";
|
||||
return result.str();
|
||||
}
|
||||
protected:
|
||||
void GenerateInputs() override {
|
||||
// for correct work of fill_data_random() method
|
||||
size_t blobFillingRange = (inPrc == Precision::FP32 ? 0 : 1);
|
||||
inputs.clear();
|
||||
const auto& inputsInfo = executableNetwork.GetInputsInfo();
|
||||
const auto& functionParams = function->get_parameters();
|
||||
for (int i = 0; i < functionParams.size(); ++i) {
|
||||
const float scalarVal = (i == 0 ? start : (i == 1 ? stop : step));
|
||||
const auto& param = functionParams[i];
|
||||
const auto infoIt = inputsInfo.find(param->get_friendly_name());
|
||||
GTEST_ASSERT_NE(infoIt, inputsInfo.cend());
|
||||
InferenceEngine::InputInfo::CPtr info = infoIt->second;
|
||||
InferenceEngine::Blob::Ptr blob = nullptr;
|
||||
if (!inputDynamicShapes.empty()) {
|
||||
if (inputDynamicShapes[i].rank() != 0) {
|
||||
InferenceEngine::DataPtr dataNew(
|
||||
new InferenceEngine::Data(infoIt->first, info->getTensorDesc().getPrecision(),
|
||||
targetStaticShapes[index][i],
|
||||
info->getTensorDesc().getLayout()));
|
||||
InferenceEngine::InputInfo infoNew;
|
||||
infoNew.setInputData(dataNew);
|
||||
blob = FuncTestUtils::createAndFillBlob(infoNew.getTensorDesc(), blobFillingRange, scalarVal);
|
||||
}
|
||||
}
|
||||
if (blob == nullptr) {
|
||||
blob = FuncTestUtils::createAndFillBlob((*info).getTensorDesc(), blobFillingRange, scalarVal);
|
||||
}
|
||||
inputs.push_back(blob);
|
||||
}
|
||||
}
|
||||
|
||||
void SetUp() override {
|
||||
CPULayerTestsDefinitions::RangeLayerTestParams basicParamsSet;
|
||||
CPUSpecificParams cpuParams;
|
||||
std::tie(basicParamsSet, cpuParams) = this->GetParam();
|
||||
std::tie(inFmts, outFmts, priority, selectedType) = cpuParams;
|
||||
CPULayerTestsDefinitions::RangeSpecificParams rangeParams;
|
||||
std::pair<std::vector<ngraph::PartialShape>, std::vector<std::vector<ngraph::Shape>>> shapes;
|
||||
std::tie(rangeParams, inPrc, targetDevice) = basicParamsSet;
|
||||
std::tuple<float, float, float> rangeInputs;
|
||||
|
||||
std::tie(shapes, rangeInputs, outPrc) = rangeParams;
|
||||
targetStaticShapes = shapes.second;
|
||||
inputDynamicShapes = shapes.first;
|
||||
|
||||
start = std::get<0>(rangeInputs);
|
||||
stop = std::get<1>(rangeInputs);
|
||||
step = std::get<2>(rangeInputs);
|
||||
auto ngOutPr = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(outPrc);
|
||||
auto ngNetPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(inPrc);
|
||||
auto startPar = std::make_shared<ngraph::opset5::Parameter>(ngNetPrc, ngraph::Shape{});
|
||||
auto stopPar = std::make_shared<ngraph::opset5::Parameter>(ngNetPrc, ngraph::Shape{});
|
||||
auto stepPar = std::make_shared<ngraph::opset5::Parameter>(ngNetPrc, ngraph::Shape{});
|
||||
auto range = std::make_shared<ngraph::opset4::Range>(startPar, stopPar, stepPar, ngOutPr);
|
||||
range->get_rt_info() = getCPUInfo();
|
||||
selectedType = std::string("ref_any_") + (inPrc == outPrc ? inPrc.name() : "FP32");
|
||||
startPar->set_friendly_name("start");
|
||||
stopPar->set_friendly_name("stop");
|
||||
stepPar->set_friendly_name("step");
|
||||
|
||||
const ngraph::ResultVector results{std::make_shared<ngraph::opset3::Result>(range)};
|
||||
function = std::make_shared<ngraph::Function>(results, ngraph::ParameterVector {
|
||||
startPar, stopPar, stepPar}, "Range");
|
||||
functionRefs = ngraph::clone_function(*function);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(RangeLayerCPUTest, CompareWithRefs) {
|
||||
SKIP_IF_CURRENT_TEST_IS_DISABLED()
|
||||
Run();
|
||||
CheckPluginRelatedResults(executableNetwork, "Range");
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
/* CPU PARAMS */
|
||||
std::vector<CPUSpecificParams> filterCPUInfoForDevice() {
|
||||
return std::vector<CPUSpecificParams> {CPUSpecificParams{{}, {x}, {}, {}}};
|
||||
}
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::I32
|
||||
};
|
||||
const std::vector<InferenceEngine::Precision> outputType = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::I32
|
||||
};
|
||||
|
||||
std::vector<std::pair<std::vector<ngraph::PartialShape>, std::vector<std::vector<ngraph::Shape>>>> inShapesDynamic = {
|
||||
{{ngraph::PartialShape(), ngraph::PartialShape(), ngraph::PartialShape()},
|
||||
{{ngraph::Shape{}, ngraph::Shape{}, ngraph::Shape{}}, {ngraph::Shape{}, ngraph::Shape{}, ngraph::Shape{}}}}
|
||||
};
|
||||
std::vector<std::pair<std::vector<ngraph::PartialShape>, std::vector<std::vector<ngraph::Shape>>>> inShapesPseudoStatic = {
|
||||
{{}, {{ngraph::Shape{}, ngraph::Shape{}, ngraph::Shape{}}}}
|
||||
};
|
||||
|
||||
const std::vector<std::tuple<float, float, float>> rangeInputValues = {
|
||||
std::tuple<float, float, float> {1.0, -5.0, -1.0},
|
||||
std::tuple<float, float, float> {1.0, 10.0, 1.2},
|
||||
std::tuple<float, float, float> {1.1, 12.2, 1.1},
|
||||
std::tuple<float, float, float> {1.1, -5.1, -1.1},
|
||||
std::tuple<float, float, float> {1.0, 5.0, 2.0},
|
||||
std::tuple<float, float, float> {10.0, 6.0, -3.0},
|
||||
std::tuple<float, float, float> {5, 35, 5}
|
||||
};
|
||||
const auto rangeParDynamic = ::testing::Combine(
|
||||
::testing::ValuesIn(inShapesDynamic),
|
||||
::testing::ValuesIn(rangeInputValues),
|
||||
::testing::ValuesIn(outputType)
|
||||
);
|
||||
const auto rangeParStatic = ::testing::Combine(
|
||||
::testing::ValuesIn(inShapesPseudoStatic),
|
||||
::testing::ValuesIn(rangeInputValues),
|
||||
::testing::ValuesIn(outputType)
|
||||
);
|
||||
const auto params3dDynamic = ::testing::Combine(
|
||||
::testing::Combine(
|
||||
rangeParDynamic,
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
::testing::ValuesIn(filterCPUInfoForDevice()));
|
||||
const auto params3dPseudoStatic = ::testing::Combine(
|
||||
::testing::Combine(
|
||||
rangeParStatic,
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
::testing::ValuesIn(filterCPUInfoForDevice()));
|
||||
// We don't check static case, because of constant folding, but we can use static shape for test infrastructure,
|
||||
// however Range node will be dynamic, since inputs are parameters, not a constants
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_RangePseudoStaticLayoutTest, RangeLayerCPUTest,
|
||||
params3dPseudoStatic, RangeLayerCPUTest::getTestCaseName);
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_RangeDynamicLayoutTest, RangeLayerCPUTest,
|
||||
params3dDynamic, RangeLayerCPUTest::getTestCaseName);
|
||||
} // namespace
|
||||
} // namespace CPULayerTestsDefinitions
|
||||
//#include "test_utils/cpu_test_utils.hpp"
|
||||
//
|
||||
//#include "ngraph_functions/builders.hpp"
|
||||
//#include "ngraph_functions/utils/ngraph_helpers.hpp"
|
||||
//
|
||||
//using namespace InferenceEngine;
|
||||
//using namespace CPUTestUtils;
|
||||
//
|
||||
//namespace CPULayerTestsDefinitions {
|
||||
//typedef std::tuple<
|
||||
// std::pair<std::vector<ngraph::PartialShape>, std::vector<std::vector<ngraph::Shape>>>, // input shape
|
||||
// std::tuple<float, float, float>, // start, limit, delta
|
||||
// Precision // output type
|
||||
//> RangeSpecificParams;
|
||||
//
|
||||
//typedef std::tuple<
|
||||
// RangeSpecificParams,
|
||||
// InferenceEngine::Precision, // Net precision
|
||||
// LayerTestsUtils::TargetDevice // Device name
|
||||
//> RangeLayerTestParams;
|
||||
//
|
||||
//typedef std::tuple<
|
||||
// CPULayerTestsDefinitions::RangeLayerTestParams,
|
||||
// CPUSpecificParams> RangeLayerCPUTestParamsSet;
|
||||
//
|
||||
//class RangeLayerCPUTest : public testing::WithParamInterface<RangeLayerCPUTestParamsSet>,
|
||||
// virtual public LayerTestsUtils::LayerTestsCommon, public CPUTestsBase {
|
||||
// float start = 0;
|
||||
// float stop = 0;
|
||||
// float step = 0;
|
||||
//public:
|
||||
// static std::string getTestCaseName(testing::TestParamInfo<RangeLayerCPUTestParamsSet> obj) {
|
||||
// CPULayerTestsDefinitions::RangeLayerTestParams basicParamsSet;
|
||||
// CPUSpecificParams cpuParams;
|
||||
// std::tie(basicParamsSet, cpuParams) = obj.param;
|
||||
// std::string td;
|
||||
// Precision netPrc = Precision::FP32;
|
||||
// std::pair<std::vector<ngraph::PartialShape>, std::vector<std::vector<ngraph::Shape>>> shapes;
|
||||
//
|
||||
// RangeSpecificParams rangePar;
|
||||
// std::tie(rangePar, netPrc, td) = basicParamsSet;
|
||||
// std::tuple<float, float, float> rangeInputs;
|
||||
// InferenceEngine::Precision outPrc = Precision::FP32;
|
||||
// std::tie(shapes, rangeInputs, outPrc) = rangePar;
|
||||
// float start = std::get<0>(rangeInputs);
|
||||
// float stop = std::get<1>(rangeInputs);
|
||||
// float step = std::get<2>(rangeInputs);
|
||||
//
|
||||
// std::ostringstream result;
|
||||
// result << "RangeTest_" << std::to_string(obj.index) << "_";
|
||||
// result << "NetPr_" << netPrc.name() << "_";
|
||||
// result << "OutPr_" << outPrc.name() << "_";
|
||||
// result << "Start_" << start << "_";
|
||||
// result << "Stop_" << stop << "_";
|
||||
// result << "Step_" << step << "_";
|
||||
// result << CPUTestsBase::getTestCaseName(cpuParams);
|
||||
// result << CommonTestUtils::vec2str(shapes.second[0]) << "_";
|
||||
// return result.str();
|
||||
// }
|
||||
//protected:
|
||||
// void GenerateInputs() override {
|
||||
// // for correct work of fill_data_random() method
|
||||
// size_t blobFillingRange = (inPrc == Precision::FP32 ? 0 : 1);
|
||||
// inputs.clear();
|
||||
// const auto& inputsInfo = executableNetwork.GetInputsInfo();
|
||||
// const auto& functionParams = function->get_parameters();
|
||||
// for (int i = 0; i < functionParams.size(); ++i) {
|
||||
// const float scalarVal = (i == 0 ? start : (i == 1 ? stop : step));
|
||||
// const auto& param = functionParams[i];
|
||||
// const auto infoIt = inputsInfo.find(param->get_friendly_name());
|
||||
// GTEST_ASSERT_NE(infoIt, inputsInfo.cend());
|
||||
// InferenceEngine::InputInfo::CPtr info = infoIt->second;
|
||||
// InferenceEngine::Blob::Ptr blob = nullptr;
|
||||
// if (!inputDynamicShapes.empty()) {
|
||||
// if (inputDynamicShapes[i].rank() != 0) {
|
||||
// InferenceEngine::DataPtr dataNew(
|
||||
// new InferenceEngine::Data(infoIt->first, info->getTensorDesc().getPrecision(),
|
||||
// targetStaticShapes[index][i],
|
||||
// info->getTensorDesc().getLayout()));
|
||||
// InferenceEngine::InputInfo infoNew;
|
||||
// infoNew.setInputData(dataNew);
|
||||
// blob = FuncTestUtils::createAndFillBlob(infoNew.getTensorDesc(), blobFillingRange, scalarVal);
|
||||
// }
|
||||
// }
|
||||
// if (blob == nullptr) {
|
||||
// blob = FuncTestUtils::createAndFillBlob((*info).getTensorDesc(), blobFillingRange, scalarVal);
|
||||
// }
|
||||
// inputs.push_back(blob);
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// void SetUp() override {
|
||||
// CPULayerTestsDefinitions::RangeLayerTestParams basicParamsSet;
|
||||
// CPUSpecificParams cpuParams;
|
||||
// std::tie(basicParamsSet, cpuParams) = this->GetParam();
|
||||
// std::tie(inFmts, outFmts, priority, selectedType) = cpuParams;
|
||||
// CPULayerTestsDefinitions::RangeSpecificParams rangeParams;
|
||||
// std::pair<std::vector<ngraph::PartialShape>, std::vector<std::vector<ngraph::Shape>>> shapes;
|
||||
// std::tie(rangeParams, inPrc, targetDevice) = basicParamsSet;
|
||||
// std::tuple<float, float, float> rangeInputs;
|
||||
//
|
||||
// std::tie(shapes, rangeInputs, outPrc) = rangeParams;
|
||||
// targetStaticShapes = shapes.second;
|
||||
// inputDynamicShapes = shapes.first;
|
||||
//
|
||||
// start = std::get<0>(rangeInputs);
|
||||
// stop = std::get<1>(rangeInputs);
|
||||
// step = std::get<2>(rangeInputs);
|
||||
// auto ngOutPr = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(outPrc);
|
||||
// auto ngNetPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(inPrc);
|
||||
// auto startPar = std::make_shared<ngraph::opset5::Parameter>(ngNetPrc, ngraph::Shape{});
|
||||
// auto stopPar = std::make_shared<ngraph::opset5::Parameter>(ngNetPrc, ngraph::Shape{});
|
||||
// auto stepPar = std::make_shared<ngraph::opset5::Parameter>(ngNetPrc, ngraph::Shape{});
|
||||
// auto range = std::make_shared<ngraph::opset4::Range>(startPar, stopPar, stepPar, ngOutPr);
|
||||
// range->get_rt_info() = getCPUInfo();
|
||||
// selectedType = std::string("ref_any_") + (inPrc == outPrc ? inPrc.name() : "FP32");
|
||||
// startPar->set_friendly_name("start");
|
||||
// stopPar->set_friendly_name("stop");
|
||||
// stepPar->set_friendly_name("step");
|
||||
//
|
||||
// const ngraph::ResultVector results{std::make_shared<ngraph::opset3::Result>(range)};
|
||||
// function = std::make_shared<ngraph::Function>(results, ngraph::ParameterVector {
|
||||
// startPar, stopPar, stepPar}, "Range");
|
||||
// functionRefs = ngraph::clone_function(*function);
|
||||
// }
|
||||
//};
|
||||
//
|
||||
//TEST_P(RangeLayerCPUTest, CompareWithRefs) {
|
||||
// SKIP_IF_CURRENT_TEST_IS_DISABLED()
|
||||
// Run();
|
||||
// CheckPluginRelatedResults(executableNetwork, "Range");
|
||||
//}
|
||||
//
|
||||
//namespace {
|
||||
//
|
||||
///* CPU PARAMS */
|
||||
//std::vector<CPUSpecificParams> filterCPUInfoForDevice() {
|
||||
// return std::vector<CPUSpecificParams> {CPUSpecificParams{{}, {x}, {}, {}}};
|
||||
//}
|
||||
//
|
||||
//const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
// InferenceEngine::Precision::FP32,
|
||||
// InferenceEngine::Precision::I32
|
||||
//};
|
||||
//const std::vector<InferenceEngine::Precision> outputType = {
|
||||
// InferenceEngine::Precision::FP32,
|
||||
// InferenceEngine::Precision::I32
|
||||
//};
|
||||
//
|
||||
//std::vector<std::pair<std::vector<ngraph::PartialShape>, std::vector<std::vector<ngraph::Shape>>>> inShapesDynamic = {
|
||||
// {{ngraph::PartialShape(), ngraph::PartialShape(), ngraph::PartialShape()},
|
||||
// {{ngraph::Shape{}, ngraph::Shape{}, ngraph::Shape{}}, {ngraph::Shape{}, ngraph::Shape{}, ngraph::Shape{}}}}
|
||||
//};
|
||||
//std::vector<std::pair<std::vector<ngraph::PartialShape>, std::vector<std::vector<ngraph::Shape>>>> inShapesPseudoStatic = {
|
||||
// {{}, {{ngraph::Shape{}, ngraph::Shape{}, ngraph::Shape{}}}}
|
||||
//};
|
||||
//
|
||||
//const std::vector<std::tuple<float, float, float>> rangeInputValues = {
|
||||
// std::tuple<float, float, float> {1.0, -5.0, -1.0},
|
||||
// std::tuple<float, float, float> {1.0, 10.0, 1.2},
|
||||
// std::tuple<float, float, float> {1.1, 12.2, 1.1},
|
||||
// std::tuple<float, float, float> {1.1, -5.1, -1.1},
|
||||
// std::tuple<float, float, float> {1.0, 5.0, 2.0},
|
||||
// std::tuple<float, float, float> {10.0, 6.0, -3.0},
|
||||
// std::tuple<float, float, float> {5, 35, 5}
|
||||
//};
|
||||
//const auto rangeParDynamic = ::testing::Combine(
|
||||
// ::testing::ValuesIn(inShapesDynamic),
|
||||
// ::testing::ValuesIn(rangeInputValues),
|
||||
// ::testing::ValuesIn(outputType)
|
||||
//);
|
||||
//const auto rangeParStatic = ::testing::Combine(
|
||||
// ::testing::ValuesIn(inShapesPseudoStatic),
|
||||
// ::testing::ValuesIn(rangeInputValues),
|
||||
// ::testing::ValuesIn(outputType)
|
||||
//);
|
||||
//const auto params3dDynamic = ::testing::Combine(
|
||||
// ::testing::Combine(
|
||||
// rangeParDynamic,
|
||||
// ::testing::ValuesIn(netPrecisions),
|
||||
// ::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
// ::testing::ValuesIn(filterCPUInfoForDevice()));
|
||||
//const auto params3dPseudoStatic = ::testing::Combine(
|
||||
// ::testing::Combine(
|
||||
// rangeParStatic,
|
||||
// ::testing::ValuesIn(netPrecisions),
|
||||
// ::testing::Values(CommonTestUtils::DEVICE_CPU)),
|
||||
// ::testing::ValuesIn(filterCPUInfoForDevice()));
|
||||
//// We don't check static case, because of constant folding, but we can use static shape for test infrastructure,
|
||||
//// however Range node will be dynamic, since inputs are parameters, not a constants
|
||||
//INSTANTIATE_TEST_SUITE_P(smoke_RangePseudoStaticLayoutTest, RangeLayerCPUTest,
|
||||
// params3dPseudoStatic, RangeLayerCPUTest::getTestCaseName);
|
||||
//INSTANTIATE_TEST_SUITE_P(smoke_RangeDynamicLayoutTest, RangeLayerCPUTest,
|
||||
// params3dDynamic, RangeLayerCPUTest::getTestCaseName);
|
||||
//} // namespace
|
||||
//} // namespace CPULayerTestsDefinitions
|
||||
|
Loading…
Reference in New Issue
Block a user