[core]Api 2.0/migrate ceiling op to new API (#19909)

* Migrate Ceiling op to new API

* Remove f16 precision from evaluate

* Correct ceiling reference doxy comments
- correct functor arg to be const
This commit is contained in:
Pawel Raasz 2023-09-22 08:53:41 +02:00 committed by GitHub
parent 8d59fcd34f
commit aa293c09ac
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 79 additions and 79 deletions

View File

@ -25,9 +25,7 @@ public:
return true; return true;
} }
std::shared_ptr<Node> clone_with_new_inputs(const OutputVector& new_args) const override; std::shared_ptr<Node> clone_with_new_inputs(const OutputVector& new_args) const override;
OPENVINO_SUPPRESS_DEPRECATED_START bool evaluate(TensorVector& outputs, const TensorVector& inputs) const override;
bool evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const override;
OPENVINO_SUPPRESS_DEPRECATED_END
bool has_evaluate() const override; bool has_evaluate() const override;
}; };
} // namespace v0 } // namespace v0

View File

@ -7,13 +7,36 @@
#include <cmath> #include <cmath>
#include <cstddef> #include <cstddef>
#include "openvino/reference/copy.hpp"
#include "openvino/reference/utils/type_util.hpp"
namespace ov { namespace ov {
namespace reference { namespace reference {
template <typename T>
void ceiling(const T* arg, T* out, size_t count) { /**
for (size_t i = 0; i < count; i++) { * @brief Reference implementation of Ceiling operator (integral types).
out[i] = static_cast<T>(std::ceil(arg[i])); *
} * @param arg Input pointer to data.
* @param out Output pointer to results.
* @param count Number of elements in input buffer.
*/
template <class T, typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
void ceiling(const T* arg, T* out, const size_t count) {
copy(arg, out, count);
}
/**
* @brief Reference implementation of Ceiling operator (floating point types).
*
* @param arg Input pointer to data.
* @param out Output pointer to results.
* @param count Number of elements in input buffer.
*/
template <class T, typename std::enable_if<ov::is_floating_point<T>()>::type* = nullptr>
void ceiling(const T* arg, T* out, const size_t count) {
std::transform(arg, std::next(arg, count), out, [](const T v) {
return std::ceil(v);
});
} }
} // namespace reference } // namespace reference
} // namespace ov } // namespace ov

View File

@ -4,15 +4,13 @@
#pragma once #pragma once
#include <cstddef> #include <algorithm>
namespace ov { namespace ov {
namespace reference { namespace reference {
template <typename T> template <typename T>
void copy(const T* arg, T* out, size_t count) { void copy(const T* arg, T* out, size_t count) {
for (size_t i = 0; i < count; i++) { std::copy_n(arg, count, out);
out[i] = arg[i];
}
} }
} // namespace reference } // namespace reference
} // namespace ov } // namespace ov

View File

@ -2,91 +2,72 @@
// SPDX-License-Identifier: Apache-2.0 // SPDX-License-Identifier: Apache-2.0
// //
#include "ngraph/op/ceiling.hpp" #include "openvino/op/ceiling.hpp"
#include "element_visitor.hpp"
#include "itt.hpp" #include "itt.hpp"
#include "ngraph/op/util/eval_copy.hpp" #include "openvino/core/validation_util.hpp"
#include "ngraph/runtime/host_tensor.hpp"
#include "ngraph/validation_util.hpp"
#include "openvino/reference/ceiling.hpp" #include "openvino/reference/ceiling.hpp"
#include "openvino/reference/copy.hpp"
using namespace std; namespace ov {
using namespace ngraph; namespace op {
namespace ceiling {
op::Ceiling::Ceiling(const Output<Node>& arg) : UnaryElementwiseArithmetic(arg) { struct Evaluate : element::NoAction<bool> {
using element::NoAction<bool>::visit;
template <element::Type_t ET>
static result_type visit(const Tensor& arg0, Tensor& out, const size_t count) {
using T = typename element_type_traits<ET>::value_type;
reference::ceiling(arg0.data<const T>(), out.data<T>(), count);
return true;
}
};
} // namespace ceiling
namespace v0 {
Ceiling::Ceiling(const Output<Node>& arg) : UnaryElementwiseArithmetic(arg) {
constructor_validate_and_infer_types(); constructor_validate_and_infer_types();
} }
shared_ptr<Node> op::Ceiling::clone_with_new_inputs(const OutputVector& new_args) const { std::shared_ptr<Node> Ceiling::clone_with_new_inputs(const OutputVector& new_args) const {
OV_OP_SCOPE(v0_Ceiling_clone_with_new_inputs); OV_OP_SCOPE(v0_Ceiling_clone_with_new_inputs);
check_new_args_count(this, new_args); check_new_args_count(this, new_args);
return make_shared<Ceiling>(new_args.at(0)); return std::make_shared<Ceiling>(new_args.at(0));
} }
OPENVINO_SUPPRESS_DEPRECATED_START bool Ceiling::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
namespace ceiling {
namespace {
// function used by TYPE_CASE
template <element::Type_t ET>
inline bool evaluate(const HostTensorPtr& arg0, const HostTensorPtr& out, const size_t count) {
using T = typename element_type_traits<ET>::value_type;
ov::reference::ceiling<T>(arg0->get_data_ptr<ET>(), out->get_data_ptr<ET>(), count);
return true;
}
// function used by COPY_TENSOR
template <element::Type_t ET>
inline bool copy_tensor(const HostTensorPtr& arg0, const HostTensorPtr& out, const size_t count) {
ov::reference::copy(arg0->get_data_ptr<ET>(), out->get_data_ptr<ET>(), count);
return true;
}
bool evaluate_ceiling(const HostTensorPtr& arg0, const HostTensorPtr& out, const size_t count) {
bool rc = true;
out->set_unary(arg0);
switch (arg0->get_element_type()) {
NGRAPH_COPY_TENSOR(evaluate_ceiling, i8, arg0, out, count);
NGRAPH_COPY_TENSOR(evaluate_ceiling, i16, arg0, out, count);
NGRAPH_COPY_TENSOR(evaluate_ceiling, i32, arg0, out, count);
NGRAPH_COPY_TENSOR(evaluate_ceiling, i64, arg0, out, count);
NGRAPH_COPY_TENSOR(evaluate_ceiling, u8, arg0, out, count);
NGRAPH_COPY_TENSOR(evaluate_ceiling, u16, arg0, out, count);
NGRAPH_COPY_TENSOR(evaluate_ceiling, u32, arg0, out, count);
NGRAPH_COPY_TENSOR(evaluate_ceiling, u64, arg0, out, count);
NGRAPH_TYPE_CASE(evaluate_ceiling, f16, arg0, out, count);
NGRAPH_TYPE_CASE(evaluate_ceiling, f32, arg0, out, count);
default:
rc = false;
break;
}
return rc;
}
} // namespace
} // namespace ceiling
bool op::Ceiling::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const {
OV_OP_SCOPE(v0_Ceiling_evaluate); OV_OP_SCOPE(v0_Ceiling_evaluate);
return ceiling::evaluate_ceiling(inputs[0], outputs[0], shape_size(inputs[0]->get_shape())); OPENVINO_ASSERT(outputs.size() == 1);
OPENVINO_ASSERT(inputs.size() == 1);
outputs[0].set_shape(inputs[0].get_shape());
using namespace ov::element;
return IfTypeOf<f32, i8, i16, i32, i64, u8, u16, u32, u64>::apply<ceiling::Evaluate>(
inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(inputs[0].get_shape()));
} }
bool op::Ceiling::has_evaluate() const { bool Ceiling::has_evaluate() const {
OV_OP_SCOPE(v0_Ceiling_has_evaluate); OV_OP_SCOPE(v0_Ceiling_has_evaluate);
switch (get_input_element_type(0)) { switch (get_input_element_type(0)) {
case ngraph::element::i8: case element::i8:
case ngraph::element::i16: case element::i16:
case ngraph::element::i32: case element::i32:
case ngraph::element::i64: case element::i64:
case ngraph::element::u8: case element::u8:
case ngraph::element::u16: case element::u16:
case ngraph::element::u32: case element::u32:
case ngraph::element::u64: case element::u64:
case ngraph::element::f16: case element::f32:
case ngraph::element::f32:
return true; return true;
default: default:
break; return false;
} }
return false;
} }
} // namespace v0
} // namespace op
} // namespace ov