Add CTCLoss op to nGraph Python API (#1642)
This commit is contained in:
parent
21c4312453
commit
ab869da588
@ -51,6 +51,7 @@ from ngraph.opset4 import convolution_backprop_data
|
||||
from ngraph.opset4 import cos
|
||||
from ngraph.opset4 import cosh
|
||||
from ngraph.opset4 import ctc_greedy_decoder
|
||||
from ngraph.opset4 import ctc_loss
|
||||
from ngraph.opset4 import cum_sum
|
||||
from ngraph.opset4 import cum_sum as cumsum
|
||||
from ngraph.opset4 import deformable_convolution
|
||||
|
@ -40,6 +40,7 @@ from ngraph.opset1.ops import convolution_backprop_data
|
||||
from ngraph.opset1.ops import cos
|
||||
from ngraph.opset1.ops import cosh
|
||||
from ngraph.opset1.ops import ctc_greedy_decoder
|
||||
from ngraph.opset4.ops import ctc_loss
|
||||
from ngraph.opset3.ops import cum_sum
|
||||
from ngraph.opset3.ops import cum_sum as cumsum
|
||||
from ngraph.opset1.ops import deformable_convolution
|
||||
|
@ -58,6 +58,44 @@ _get_node_factory_opset4 = partial(_get_node_factory, "opset4")
|
||||
# -------------------------------------------- ops ------------------------------------------------
|
||||
|
||||
|
||||
@nameable_op
|
||||
def ctc_loss(
|
||||
logits: NodeInput,
|
||||
logit_length: NodeInput,
|
||||
labels: NodeInput,
|
||||
label_length: NodeInput,
|
||||
blank_index: Optional[NodeInput] = None,
|
||||
preprocess_collapse_repeated: bool = False,
|
||||
ctc_merge_repeated: bool = True,
|
||||
unique: bool = False,
|
||||
name: Optional[str] = None,
|
||||
) -> Node:
|
||||
"""Return a node which performs CTCLoss.
|
||||
|
||||
:param logits: 3-D tensor of logits.
|
||||
:param logit_length: 1-D tensor of lengths for each object from a batch.
|
||||
:param labels: 2-D tensor of labels for which likelihood is estimated using logits.
|
||||
:param label_length: 1-D tensor of length for each label sequence.
|
||||
:param blank_index: Scalar used to mark a blank index.
|
||||
:param preprocess_collapse_repeated: Flag for preprocessing labels before loss calculation.
|
||||
:param ctc_merge_repeated: Flag for merging repeated characters in a potential alignment.
|
||||
:param unique: Flag to find unique elements in a target.
|
||||
:return: The new node which performs CTCLoss
|
||||
"""
|
||||
if blank_index is not None:
|
||||
inputs = as_nodes(logits, logit_length, labels, label_length, blank_index)
|
||||
else:
|
||||
inputs = as_nodes(logits, logit_length, labels, label_length)
|
||||
|
||||
attributes = {
|
||||
"preprocess_collapse_repeated": preprocess_collapse_repeated,
|
||||
"ctc_merge_repeated": ctc_merge_repeated,
|
||||
"unique": unique,
|
||||
}
|
||||
|
||||
return _get_node_factory_opset4().create("CTCLoss", inputs, attributes)
|
||||
|
||||
|
||||
@nameable_op
|
||||
def non_max_suppression(
|
||||
boxes: NodeInput,
|
||||
|
39
ngraph/python/tests/test_ngraph/test_ctc_loss.py
Normal file
39
ngraph/python/tests/test_ngraph/test_ctc_loss.py
Normal file
@ -0,0 +1,39 @@
|
||||
# ******************************************************************************
|
||||
# Copyright 2017-2020 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ******************************************************************************
|
||||
import numpy as np
|
||||
|
||||
import ngraph as ng
|
||||
from ngraph.impl import Type
|
||||
|
||||
|
||||
def test_ctc_loss_props():
|
||||
ind_dtype = np.int32
|
||||
float_dtype = np.float32
|
||||
logits = ng.parameter([2, 100, 80], dtype=float_dtype, name="logits")
|
||||
logit_length = ng.parameter([2], dtype=ind_dtype, name="logit_length")
|
||||
labels = ng.parameter([2, 100], dtype=ind_dtype, name="labels")
|
||||
label_length = ng.parameter([2], dtype=ind_dtype, name="label_length")
|
||||
blank_index = ng.parameter([], dtype=ind_dtype, name="blank_index")
|
||||
preprocess_collapse_repeated = False
|
||||
ctc_merge_repeated = True
|
||||
unique = False
|
||||
|
||||
node = ng.ctc_loss(logits, logit_length, labels, label_length, blank_index,
|
||||
preprocess_collapse_repeated, ctc_merge_repeated, unique)
|
||||
assert node.get_type_name() == "CTCLoss"
|
||||
assert node.get_output_size() == 1
|
||||
assert list(node.get_output_shape(0)) == [2]
|
||||
assert node.get_output_element_type(0) == Type.f32
|
Loading…
Reference in New Issue
Block a user