Add CTCLoss op to nGraph Python API (#1642)

This commit is contained in:
Roman Kazantsev 2020-08-06 15:03:39 +03:00 committed by GitHub
parent 21c4312453
commit ab869da588
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 79 additions and 0 deletions

View File

@ -51,6 +51,7 @@ from ngraph.opset4 import convolution_backprop_data
from ngraph.opset4 import cos
from ngraph.opset4 import cosh
from ngraph.opset4 import ctc_greedy_decoder
from ngraph.opset4 import ctc_loss
from ngraph.opset4 import cum_sum
from ngraph.opset4 import cum_sum as cumsum
from ngraph.opset4 import deformable_convolution

View File

@ -40,6 +40,7 @@ from ngraph.opset1.ops import convolution_backprop_data
from ngraph.opset1.ops import cos
from ngraph.opset1.ops import cosh
from ngraph.opset1.ops import ctc_greedy_decoder
from ngraph.opset4.ops import ctc_loss
from ngraph.opset3.ops import cum_sum
from ngraph.opset3.ops import cum_sum as cumsum
from ngraph.opset1.ops import deformable_convolution

View File

@ -58,6 +58,44 @@ _get_node_factory_opset4 = partial(_get_node_factory, "opset4")
# -------------------------------------------- ops ------------------------------------------------
@nameable_op
def ctc_loss(
logits: NodeInput,
logit_length: NodeInput,
labels: NodeInput,
label_length: NodeInput,
blank_index: Optional[NodeInput] = None,
preprocess_collapse_repeated: bool = False,
ctc_merge_repeated: bool = True,
unique: bool = False,
name: Optional[str] = None,
) -> Node:
"""Return a node which performs CTCLoss.
:param logits: 3-D tensor of logits.
:param logit_length: 1-D tensor of lengths for each object from a batch.
:param labels: 2-D tensor of labels for which likelihood is estimated using logits.
:param label_length: 1-D tensor of length for each label sequence.
:param blank_index: Scalar used to mark a blank index.
:param preprocess_collapse_repeated: Flag for preprocessing labels before loss calculation.
:param ctc_merge_repeated: Flag for merging repeated characters in a potential alignment.
:param unique: Flag to find unique elements in a target.
:return: The new node which performs CTCLoss
"""
if blank_index is not None:
inputs = as_nodes(logits, logit_length, labels, label_length, blank_index)
else:
inputs = as_nodes(logits, logit_length, labels, label_length)
attributes = {
"preprocess_collapse_repeated": preprocess_collapse_repeated,
"ctc_merge_repeated": ctc_merge_repeated,
"unique": unique,
}
return _get_node_factory_opset4().create("CTCLoss", inputs, attributes)
@nameable_op
def non_max_suppression(
boxes: NodeInput,

View File

@ -0,0 +1,39 @@
# ******************************************************************************
# Copyright 2017-2020 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
import numpy as np
import ngraph as ng
from ngraph.impl import Type
def test_ctc_loss_props():
ind_dtype = np.int32
float_dtype = np.float32
logits = ng.parameter([2, 100, 80], dtype=float_dtype, name="logits")
logit_length = ng.parameter([2], dtype=ind_dtype, name="logit_length")
labels = ng.parameter([2, 100], dtype=ind_dtype, name="labels")
label_length = ng.parameter([2], dtype=ind_dtype, name="label_length")
blank_index = ng.parameter([], dtype=ind_dtype, name="blank_index")
preprocess_collapse_repeated = False
ctc_merge_repeated = True
unique = False
node = ng.ctc_loss(logits, logit_length, labels, label_length, blank_index,
preprocess_collapse_repeated, ctc_merge_repeated, unique)
assert node.get_type_name() == "CTCLoss"
assert node.get_output_size() == 1
assert list(node.get_output_shape(0)) == [2]
assert node.get_output_element_type(0) == Type.f32