[TF FE] Support ShapeN operation (#18913)
Signed-off-by: Kazantsev, Roman <roman.kazantsev@intel.com>
This commit is contained in:
parent
7b4a7e5eb4
commit
b44f915a9d
@ -233,6 +233,7 @@ const std::map<std::string, CreatorFunction> get_supported_ops() {
|
|||||||
{"Select", CreatorFunction(translate_select_op)},
|
{"Select", CreatorFunction(translate_select_op)},
|
||||||
{"SelectV2", CreatorFunction(translate_select_v2_op)},
|
{"SelectV2", CreatorFunction(translate_select_v2_op)},
|
||||||
{"Shape", CreatorFunction(translate_shape_op)},
|
{"Shape", CreatorFunction(translate_shape_op)},
|
||||||
|
{"ShapeN", CreatorFunction(translate_shape_op)},
|
||||||
{"Size", CreatorFunction(translate_size_op)},
|
{"Size", CreatorFunction(translate_size_op)},
|
||||||
{"Slice", CreatorFunction(translate_slice_op)},
|
{"Slice", CreatorFunction(translate_slice_op)},
|
||||||
{"Snapshot", CreatorFunction(translate_identity_op)},
|
{"Snapshot", CreatorFunction(translate_identity_op)},
|
||||||
|
@ -3,24 +3,41 @@
|
|||||||
//
|
//
|
||||||
|
|
||||||
#include "common_op_table.hpp"
|
#include "common_op_table.hpp"
|
||||||
#include "openvino/opsets/opset8.hpp"
|
#include "openvino/op/shape_of.hpp"
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
using namespace ov;
|
using namespace ov;
|
||||||
using namespace ov::opset8;
|
using namespace ov::op;
|
||||||
|
|
||||||
namespace ov {
|
namespace ov {
|
||||||
namespace frontend {
|
namespace frontend {
|
||||||
namespace tensorflow {
|
namespace tensorflow {
|
||||||
namespace op {
|
namespace op {
|
||||||
|
|
||||||
ov::OutputVector translate_shape_op(const NodeContext& node) {
|
OutputVector translate_shape_op(const NodeContext& node) {
|
||||||
default_op_checks(node, 1, {"Shape", "SHAPE"});
|
default_op_checks(node, 1, {"Shape", "ShapeN", "SHAPE"});
|
||||||
auto input = node.get_input(0);
|
auto input_size = static_cast<int>(node.get_input_size());
|
||||||
auto out_type = node.get_attribute<element::Type>("out_type", element::i32);
|
auto out_type = node.get_attribute<element::Type>("out_type", element::i32);
|
||||||
auto shapeof = make_shared<ShapeOf>(input, out_type);
|
auto node_name = node.get_name();
|
||||||
set_node_name(node.get_name(), shapeof);
|
|
||||||
return {shapeof};
|
if (input_size == 1) {
|
||||||
|
auto input = node.get_input(0);
|
||||||
|
auto shapeof = make_shared<v3::ShapeOf>(input, out_type);
|
||||||
|
set_node_name(node_name, shapeof);
|
||||||
|
return {shapeof};
|
||||||
|
}
|
||||||
|
|
||||||
|
OutputVector outputs;
|
||||||
|
for (int input_ind = 0; input_ind < input_size; ++input_ind) {
|
||||||
|
auto input = node.get_input(input_ind);
|
||||||
|
auto shapeof = make_shared<v3::ShapeOf>(input, out_type);
|
||||||
|
shapeof->set_friendly_name(node_name + "_" + to_string(input_ind));
|
||||||
|
auto shapeof_output = shapeof->output(0);
|
||||||
|
set_out_name({node_name + ":" + to_string(input_ind)}, shapeof_output);
|
||||||
|
outputs.push_back(shapeof_output);
|
||||||
|
}
|
||||||
|
|
||||||
|
return outputs;
|
||||||
}
|
}
|
||||||
|
|
||||||
} // namespace op
|
} // namespace op
|
||||||
|
38
tests/layer_tests/tensorflow_tests/test_tf_ShapeN.py
Normal file
38
tests/layer_tests/tensorflow_tests/test_tf_ShapeN.py
Normal file
@ -0,0 +1,38 @@
|
|||||||
|
# Copyright (C) 2018-2023 Intel Corporation
|
||||||
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
import tensorflow as tf
|
||||||
|
from common.tf_layer_test_class import CommonTFLayerTest
|
||||||
|
|
||||||
|
|
||||||
|
class TestShapeN(CommonTFLayerTest):
|
||||||
|
def create_shape_n_net(self, input_shapes, out_type):
|
||||||
|
tf.compat.v1.reset_default_graph()
|
||||||
|
# Create the graph and model
|
||||||
|
with tf.compat.v1.Session() as sess:
|
||||||
|
inputs = []
|
||||||
|
for ind, input_shape in enumerate(input_shapes):
|
||||||
|
inputs.append(tf.compat.v1.placeholder(tf.float32, input_shape, 'input_{}'.format(ind)))
|
||||||
|
|
||||||
|
shapen = tf.raw_ops.ShapeN(input=inputs, out_type=out_type)
|
||||||
|
tf.raw_ops.ConcatV2(values=shapen, axis=0)
|
||||||
|
|
||||||
|
tf.compat.v1.global_variables_initializer()
|
||||||
|
tf_net = sess.graph_def
|
||||||
|
|
||||||
|
return tf_net, None
|
||||||
|
|
||||||
|
test_data_basic = [
|
||||||
|
dict(input_shapes=[[2, 3], [1]], out_type=tf.int32),
|
||||||
|
dict(input_shapes=[[3], [3, 2, 1], [], [4, 3, 1, 1]], out_type=tf.int64),
|
||||||
|
]
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("params", test_data_basic)
|
||||||
|
@pytest.mark.precommit_tf_fe
|
||||||
|
@pytest.mark.nightly
|
||||||
|
def test_shape_n_basic(self, params, ie_device, precision, ir_version, temp_dir,
|
||||||
|
use_new_frontend, use_old_api):
|
||||||
|
self._test(*self.create_shape_n_net(**params),
|
||||||
|
ie_device, precision, ir_version, temp_dir=temp_dir,
|
||||||
|
use_new_frontend=use_new_frontend, use_old_api=use_old_api)
|
Loading…
Reference in New Issue
Block a user