This commit is contained in:
Sebastian Golebiewski 2023-07-18 14:51:23 +02:00 committed by GitHub
parent 9334ad0790
commit b7e8338e29
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 8 additions and 1306 deletions

File diff suppressed because it is too large Load Diff

View File

@ -91,7 +91,7 @@ Load the model
# read the network and corresponding weights from file # read the network and corresponding weights from file
model = ie.read_model(model=model_path) model = ie.read_model(model=model_path)
# compile the model for the CPU (you can choose manually CPU, GPU, MYRIAD etc.) # compile the model for the CPU (you can choose manually CPU, GPU, etc.)
# or let the engine choose the best available device (AUTO) # or let the engine choose the best available device (AUTO)
compiled_model = ie.compile_model(model=model, device_name="CPU") compiled_model = ie.compile_model(model=model, device_name="CPU")

View File

@ -393,7 +393,7 @@ Now, you can read and load the network.
ie = Core() ie = Core()
You may run the network on multiple devices. By default, it will load You may run the network on multiple devices. By default, it will load
the model on CPU (you can choose manually CPU, GPU, MYRIAD, etc.) or let the model on CPU (you can choose manually CPU, GPU, etc.) or let
the engine choose the best available device (AUTO). the engine choose the best available device (AUTO).
To list all available devices that can be used, run To list all available devices that can be used, run

View File

@ -144,7 +144,7 @@ specified device.
# Read the network and corresponding weights from a file. # Read the network and corresponding weights from a file.
model = ie_core.read_model(model=model_path) model = ie_core.read_model(model=model_path)
# Compile the model for CPU (you can use GPU or MYRIAD as well). # Compile the model for CPU (you can also use GPU).
compiled_model = ie_core.compile_model(model=model, device_name="CPU") compiled_model = ie_core.compile_model(model=model, device_name="CPU")
# Get input and output names of nodes. # Get input and output names of nodes.
input_keys = compiled_model.input(0) input_keys = compiled_model.input(0)

View File

@ -900,9 +900,8 @@ OpenVINO Inference Engine Setup
ie = Core() ie = Core()
# Neural Compute Stick # Neural Compute Stick
# compile the model for the CPU (you can choose manually CPU, GPU, MYRIAD etc.) # compile the model for the CPU (you can choose manually CPU, GPU, etc.)
# or let the engine choose the best available device (AUTO) # or let the engine choose the best available device (AUTO)
# compiled_model = ie.compile_model(model=model, device_name="MYRIAD")
compiled_model = ie.compile_model(model=ir_model, device_name="CPU") compiled_model = ie.compile_model(model=ir_model, device_name="CPU")
del ir_model del ir_model

View File

@ -97,7 +97,7 @@ desired device.
ie_core = Core() ie_core = Core()
# Read the network from a file. # Read the network from a file.
model = ie_core.read_model(model_path) model = ie_core.read_model(model_path)
# Let the AUTO device decide where to load the model (you can use CPU, GPU or MYRIAD as well). # Let the AUTO device decide where to load the model (you can use CPU or GPU).
compiled_model = ie_core.compile_model(model=model, device_name="AUTO", config={"PERFORMANCE_HINT": "LATENCY"}) compiled_model = ie_core.compile_model(model=model, device_name="AUTO", config={"PERFORMANCE_HINT": "LATENCY"})
# Get the input and output names of nodes. # Get the input and output names of nodes.

View File

@ -183,7 +183,7 @@ Model Initialization function
# Read the network and corresponding weights from a file. # Read the network and corresponding weights from a file.
model = ie_core.read_model(model=model_path) model = ie_core.read_model(model=model_path)
# Compile the model for CPU (you can use GPU or MYRIAD as well). # Compile the model for CPU (you can also use GPU).
compiled_model = ie_core.compile_model(model=model, device_name="CPU") compiled_model = ie_core.compile_model(model=model, device_name="CPU")
# Get input and output names of nodes. # Get input and output names of nodes.
input_keys = compiled_model.input(0) input_keys = compiled_model.input(0)

View File

@ -164,7 +164,7 @@ results.
# Read the network and corresponding weights from IR Model. # Read the network and corresponding weights from IR Model.
model = ie_core.read_model(model=ir_path) model = ie_core.read_model(model=ir_path)
# Compile the model for CPU (or change to GPU, MYRIAD etc. for other devices) # Compile the model for CPU (or change to GPU, etc. for other devices)
# or let OpenVINO select the best available device with AUTO. # or let OpenVINO select the best available device with AUTO.
compiled_model = ie_core.compile_model(model=model, device_name="AUTO") compiled_model = ie_core.compile_model(model=model, device_name="AUTO")

View File

@ -209,7 +209,7 @@ created to infer the compiled model.
ie_core = Core() ie_core = Core()
# read the network and corresponding weights from file # read the network and corresponding weights from file
model = ie_core.read_model(model=ir_model_path, weights=model_weights_path) model = ie_core.read_model(model=ir_model_path, weights=model_weights_path)
# load the model on the CPU (you can use GPU or MYRIAD as well) # load the model on the CPU (you can also use GPU)
compiled_model = ie_core.compile_model(model=model, device_name="CPU") compiled_model = ie_core.compile_model(model=model, device_name="CPU")
infer_request = compiled_model.create_infer_request() infer_request = compiled_model.create_infer_request()
input_tensor_name = model.inputs[0].get_any_name() input_tensor_name = model.inputs[0].get_any_name()

View File

@ -117,8 +117,6 @@ Tutorials that explain how to optimize and quantize models with OpenVINO tools.
+----------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+ +----------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+
| `107-speech-recognition-quantization <notebooks/107-speech-recognition-quantization-data2vec-with-output.html>`__ |br| |c107| | Optimize and quantize a pre-trained Data2Vec speech model. | | `107-speech-recognition-quantization <notebooks/107-speech-recognition-quantization-data2vec-with-output.html>`__ |br| |c107| | Optimize and quantize a pre-trained Data2Vec speech model. |
+----------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+ +----------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+
| `108-gpu-device <notebooks/108-gpu-device-with-output.html>`__ | Working with GPUs in OpenVINO™. |
+----------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+
| `109-performance-tricks <notebooks/109-latency-tricks-with-output.html>`__ | Performance tricks in OpenVINO™. | | `109-performance-tricks <notebooks/109-latency-tricks-with-output.html>`__ | Performance tricks in OpenVINO™. |
+----------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+ +----------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+
| `110-ct-segmentation-quantize <notebooks/110-ct-scan-live-inference-with-output.html>`__ |br| |n110| | Live inference of a kidney segmentation model and benchmark CT-scan data with OpenVINO. | | `110-ct-segmentation-quantize <notebooks/110-ct-scan-live-inference-with-output.html>`__ |br| |n110| | Live inference of a kidney segmentation model and benchmark CT-scan data with OpenVINO. |