[TF FE] Refactor ReverseSequence and add layer test (#15807)
Signed-off-by: Kazantsev, Roman <roman.kazantsev@intel.com>
This commit is contained in:
parent
1a070b225e
commit
bc8d0ec71e
@ -18,10 +18,10 @@ OutputVector translate_reverse_sequence_op(const NodeContext& node) {
|
|||||||
auto seq_lengths = node.get_input(1);
|
auto seq_lengths = node.get_input(1);
|
||||||
|
|
||||||
// retrieve attributes
|
// retrieve attributes
|
||||||
auto seq_axis = node.get_attribute<int64_t>("seq_dim");
|
auto seq_dim = node.get_attribute<int64_t>("seq_dim");
|
||||||
auto batch_axis = node.get_attribute<int64_t>("batch_dim", 0);
|
auto batch_dim = node.get_attribute<int64_t>("batch_dim", 0);
|
||||||
|
|
||||||
auto reverse_sequence = make_shared<ReverseSequence>(input, seq_lengths, batch_axis, seq_axis);
|
auto reverse_sequence = make_shared<ReverseSequence>(input, seq_lengths, batch_dim, seq_dim);
|
||||||
set_node_name(node.get_name(), reverse_sequence);
|
set_node_name(node.get_name(), reverse_sequence);
|
||||||
return {reverse_sequence};
|
return {reverse_sequence};
|
||||||
}
|
}
|
||||||
|
@ -0,0 +1,53 @@
|
|||||||
|
# Copyright (C) 2018-2023 Intel Corporation
|
||||||
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
import tensorflow as tf
|
||||||
|
from common.tf_layer_test_class import CommonTFLayerTest
|
||||||
|
|
||||||
|
|
||||||
|
class TestReverseSequence(CommonTFLayerTest):
|
||||||
|
def _prepare_input(self, inputs_info):
|
||||||
|
assert 'input' in inputs_info
|
||||||
|
assert 'seq_lengths' in inputs_info
|
||||||
|
input_shape = inputs_info['input']
|
||||||
|
seq_lengths_shape = inputs_info['seq_lengths']
|
||||||
|
inputs_data = {}
|
||||||
|
inputs_data['input'] = np.random.randint(-50, 50, input_shape).astype(self.input_type)
|
||||||
|
inputs_data['seq_lengths'] = np.random.randint(0, self.max_seq_length + 1, seq_lengths_shape).astype(
|
||||||
|
self.seq_lengths_type)
|
||||||
|
return inputs_data
|
||||||
|
|
||||||
|
def create_reverse_sequence_net(self, input_shape, input_type, seq_lengths_type, seq_dim, batch_dim):
|
||||||
|
self.input_type = input_type
|
||||||
|
self.seq_lengths_type = seq_lengths_type
|
||||||
|
assert 0 <= batch_dim and batch_dim < len(input_shape), "Incorrect `batch_dim` in the test case"
|
||||||
|
assert 0 <= seq_dim and seq_dim < len(input_shape), "Incorrect `seq_dim` in the test case"
|
||||||
|
self.max_seq_length = input_shape[seq_dim]
|
||||||
|
batch_size = input_shape[batch_dim]
|
||||||
|
tf.compat.v1.reset_default_graph()
|
||||||
|
# Create the graph and model
|
||||||
|
with tf.compat.v1.Session() as sess:
|
||||||
|
input = tf.compat.v1.placeholder(input_type, input_shape, 'input')
|
||||||
|
seq_lengths = tf.compat.v1.placeholder(seq_lengths_type, [batch_size], 'seq_lengths')
|
||||||
|
tf.raw_ops.ReverseSequence(input=input, seq_lengths=seq_lengths, seq_dim=seq_dim, batch_dim=batch_dim)
|
||||||
|
tf.compat.v1.global_variables_initializer()
|
||||||
|
tf_net = sess.graph_def
|
||||||
|
|
||||||
|
return tf_net, None
|
||||||
|
|
||||||
|
test_data_basic = [
|
||||||
|
dict(input_shape=[2, 3], input_type=np.int32, seq_lengths_type=np.int64, seq_dim=1, batch_dim=0),
|
||||||
|
dict(input_shape=[3, 6, 4], input_type=np.float32, seq_lengths_type=np.int32, seq_dim=2, batch_dim=0),
|
||||||
|
dict(input_shape=[6, 3, 4, 2], input_type=np.float32, seq_lengths_type=np.int32, seq_dim=0, batch_dim=3),
|
||||||
|
]
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("params", test_data_basic)
|
||||||
|
@pytest.mark.precommit_tf_fe
|
||||||
|
@pytest.mark.nightly
|
||||||
|
def test_reverse_sequence_basic(self, params, ie_device, precision, ir_version, temp_dir,
|
||||||
|
use_new_frontend, use_old_api):
|
||||||
|
self._test(*self.create_reverse_sequence_net(**params),
|
||||||
|
ie_device, precision, ir_version, temp_dir=temp_dir,
|
||||||
|
use_new_frontend=use_new_frontend, use_old_api=use_old_api)
|
Loading…
Reference in New Issue
Block a user