Temporary revert "[TF FE] Support different types" (#21656)

This reverts commit f9d20d5aa0.
This commit is contained in:
Anastasiia Pnevskaia 2023-12-15 10:27:18 +01:00 committed by GitHub
parent 825778308b
commit bf00569ae1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 73 additions and 162 deletions

View File

@ -18,12 +18,25 @@ namespace frontend {
namespace tensorflow { namespace tensorflow {
bool GraphIteratorMeta::is_valid_signature(const ::tensorflow::SignatureDef& signature) const { bool GraphIteratorMeta::is_valid_signature(const ::tensorflow::SignatureDef& signature) const {
const std::map<::tensorflow::DataType, ov::element::Type> types{
{::tensorflow::DataType::DT_BOOL, ov::element::boolean},
{::tensorflow::DataType::DT_INT16, ov::element::i16},
{::tensorflow::DataType::DT_INT32, ov::element::i32},
{::tensorflow::DataType::DT_INT64, ov::element::i64},
{::tensorflow::DataType::DT_HALF, ov::element::f16},
{::tensorflow::DataType::DT_FLOAT, ov::element::f32},
{::tensorflow::DataType::DT_DOUBLE, ov::element::f64},
{::tensorflow::DataType::DT_UINT8, ov::element::u8},
{::tensorflow::DataType::DT_INT8, ov::element::i8},
{::tensorflow::DataType::DT_BFLOAT16, ov::element::bf16},
{::tensorflow::DataType::DT_STRING, ov::element::dynamic}};
for (const auto& it : signature.inputs()) { for (const auto& it : signature.inputs()) {
if (it.second.name().empty()) if (it.second.name().empty() || types.find(it.second.dtype()) == types.end())
return false; return false;
} }
for (const auto& it : signature.outputs()) { for (const auto& it : signature.outputs()) {
if (it.second.name().empty()) if (it.second.name().empty() || types.find(it.second.dtype()) == types.end())
return false; return false;
} }
return true; return true;

View File

@ -18,12 +18,25 @@ namespace frontend {
namespace tensorflow { namespace tensorflow {
bool GraphIteratorSavedModel::is_valid_signature(const ::tensorflow::SignatureDef& signature) const { bool GraphIteratorSavedModel::is_valid_signature(const ::tensorflow::SignatureDef& signature) const {
const std::map<::tensorflow::DataType, ov::element::Type> types{
{::tensorflow::DataType::DT_BOOL, ov::element::boolean},
{::tensorflow::DataType::DT_INT16, ov::element::i16},
{::tensorflow::DataType::DT_INT32, ov::element::i32},
{::tensorflow::DataType::DT_INT64, ov::element::i64},
{::tensorflow::DataType::DT_HALF, ov::element::f16},
{::tensorflow::DataType::DT_FLOAT, ov::element::f32},
{::tensorflow::DataType::DT_DOUBLE, ov::element::f64},
{::tensorflow::DataType::DT_UINT8, ov::element::u8},
{::tensorflow::DataType::DT_INT8, ov::element::i8},
{::tensorflow::DataType::DT_BFLOAT16, ov::element::bf16},
{::tensorflow::DataType::DT_STRING, ov::element::dynamic}};
for (const auto& it : signature.inputs()) { for (const auto& it : signature.inputs()) {
if (it.second.name().empty()) if (it.second.name().empty() || types.find(it.second.dtype()) == types.end())
return false; return false;
} }
for (const auto& it : signature.outputs()) { for (const auto& it : signature.outputs()) {
if (it.second.name().empty()) if (it.second.name().empty() || types.find(it.second.dtype()) == types.end())
return false; return false;
} }
return true; return true;

View File

@ -82,17 +82,17 @@ void extract_tensor_content(const std::string& tensor_content, Tensor* values) {
# pragma warning(disable : 4244) // possible loss of data # pragma warning(disable : 4244) // possible loss of data
# pragma warning(disable : 4267) // possible loss of data # pragma warning(disable : 4267) // possible loss of data
#endif #endif
template <typename SRC_T, typename DST_T = SRC_T> template <typename T>
void extract_compressed_tensor_content(const ::tensorflow::TensorProto& tensor_proto, void extract_compressed_tensor_content(const ::tensorflow::TensorProto& tensor_proto,
int64_t val_size, int64_t val_size,
Tensor* values) { Tensor* values) {
auto val_lastsaved = static_cast<SRC_T>(0); auto val_lastsaved = static_cast<T>(0);
auto values_data = values->data<DST_T>(); auto values_data = values->data<T>();
for (size_t i = 0; i < values->get_size(); i++) { for (size_t i = 0; i < values->get_size(); i++) {
if (val_size == 0) { if (val_size == 0) {
values_data[i] = static_cast<DST_T>(0); values_data[i] = static_cast<T>(0);
} else if (static_cast<int64_t>(i) < val_size) { } else if (static_cast<int64_t>(i) < val_size) {
auto val_i = static_cast<SRC_T>(0); auto val_i = static_cast<T>(0);
switch (values->get_element_type()) { switch (values->get_element_type()) {
// TODO: there are more element types to support here // TODO: there are more element types to support here
case boolean: case boolean:
@ -113,34 +113,13 @@ void extract_compressed_tensor_content(const ::tensorflow::TensorProto& tensor_p
case f64: case f64:
val_i = tensor_proto.double_val()[i]; val_i = tensor_proto.double_val()[i];
break; break;
case u8:
val_i = tensor_proto.int_val()[i];
break;
case u16:
val_i = tensor_proto.int_val()[i];
break;
case u64:
val_i = tensor_proto.uint64_val()[i];
break;
case i8:
val_i = tensor_proto.int_val()[i];
break;
case bf16:
val_i = bfloat16::from_bits(tensor_proto.half_val()[i]);
break;
case u32:
val_i = tensor_proto.uint32_val()[i];
break;
case i16:
val_i = tensor_proto.int_val()[i];
break;
default: default:
FRONT_END_THROW("Encountered unknown element type " + values->get_element_type().get_type_name()); FRONT_END_THROW("Encountered unknown element type " + values->get_element_type().get_type_name());
} }
values_data[i] = static_cast<DST_T>(val_i); values_data[i] = val_i;
val_lastsaved = val_i; val_lastsaved = val_i;
} else { } else {
values_data[i] = static_cast<DST_T>(val_lastsaved); values_data[i] = val_lastsaved;
} }
} }
} }
@ -171,18 +150,16 @@ bool CfMarkerType::is_copyable() const {
} }
Type get_ov_type(const ::tensorflow::DataType& type) { Type get_ov_type(const ::tensorflow::DataType& type) {
using ::tensorflow::DataType; static const map<::tensorflow::DataType, Type> type_map{{::tensorflow::DataType::DT_BOOL, boolean},
{::tensorflow::DataType::DT_INT16, i16},
static map<DataType, Type> type_map{ {::tensorflow::DataType::DT_INT32, i32},
{DataType::DT_FLOAT, f32}, {DataType::DT_DOUBLE, f64}, {DataType::DT_INT32, i32}, {::tensorflow::DataType::DT_INT64, i64},
{DataType::DT_UINT8, u8}, {DataType::DT_INT16, i16}, {DataType::DT_INT8, i8}, {::tensorflow::DataType::DT_HALF, f16},
{DataType::DT_INT64, i64}, {DataType::DT_BOOL, boolean}, {DataType::DT_BFLOAT16, bf16}, {::tensorflow::DataType::DT_FLOAT, f32},
{DataType::DT_UINT16, u16}, {DataType::DT_HALF, f16}, {DataType::DT_UINT32, u32}, {::tensorflow::DataType::DT_DOUBLE, f64},
{DataType::DT_UINT64, u64}, {DataType::DT_FLOAT_REF, f32}, {DataType::DT_DOUBLE_REF, f64}, {::tensorflow::DataType::DT_UINT8, u8},
{DataType::DT_INT32_REF, i32}, {DataType::DT_UINT8_REF, u8}, {DataType::DT_INT16_REF, i16}, {::tensorflow::DataType::DT_INT8, i8},
{DataType::DT_INT8_REF, i8}, {DataType::DT_INT64_REF, i64}, {DataType::DT_BOOL_REF, boolean}, {::tensorflow::DataType::DT_BFLOAT16, bf16}};
{DataType::DT_BFLOAT16_REF, bf16}, {DataType::DT_UINT16_REF, u16}, {DataType::DT_HALF_REF, f16},
{DataType::DT_UINT32_REF, u32}, {DataType::DT_UINT64_REF, u64}};
auto it = type_map.find(type); auto it = type_map.find(type);
// for all unsupported types return dynamic type // for all unsupported types return dynamic type
@ -214,49 +191,36 @@ Any unpack_tensor_proto(const ::tensorflow::TensorProto& tensor_proto,
} }
return data; return data;
} }
Tensor res(ov_type, pshape.get_shape()); Tensor res(ov_type, pshape.get_shape());
auto tensor_content = tensor_proto.tensor_content(); auto tensor_content = tensor_proto.tensor_content();
if (!tensor_content.empty() && tensor_proto.has_tensor_shape()) { if (!tensor_content.empty() && tensor_proto.has_tensor_shape()) {
switch (ov_type) { switch (ov_type) {
case f32:
extract_tensor_content<float>(tensor_content, &res);
break;
case u8: case u8:
extract_tensor_content<uint8_t>(tensor_content, &res); extract_tensor_content<uint8_t>(tensor_content, &res);
break; break;
case i64:
extract_tensor_content<int64_t>(tensor_content, &res);
break;
case u16:
extract_tensor_content<uint16_t>(tensor_content, &res);
break;
case u64:
extract_tensor_content<uint64_t>(tensor_content, &res);
break;
case i32:
extract_tensor_content<int32_t>(tensor_content, &res);
break;
case i8: case i8:
extract_tensor_content<int8_t>(tensor_content, &res); extract_tensor_content<int8_t>(tensor_content, &res);
break; break;
case bf16: case i16:
extract_tensor_content<bfloat16>(tensor_content, &res); extract_tensor_content<int16_t>(tensor_content, &res);
break; break;
case u32: case i32:
extract_tensor_content<uint32_t>(tensor_content, &res); extract_tensor_content<int32_t>(tensor_content, &res);
break;
case i64:
extract_tensor_content<int64_t>(tensor_content, &res);
break;
case f16:
extract_tensor_content<float16>(tensor_content, &res);
break;
case f32:
extract_tensor_content<float>(tensor_content, &res);
break; break;
case f64: case f64:
extract_tensor_content<double>(tensor_content, &res); extract_tensor_content<double>(tensor_content, &res);
break; break;
case i16: case bf16:
extract_tensor_content<int16_t>(tensor_content, &res); extract_tensor_content<bfloat16>(tensor_content, &res);
break;
case boolean:
extract_tensor_content<bool>(tensor_content, &res);
break;
case f16:
extract_tensor_content<float16>(tensor_content, &res);
break; break;
default: default:
FRONT_END_THROW("Encountered unknown element type " + ov_type.get_type_name()); FRONT_END_THROW("Encountered unknown element type " + ov_type.get_type_name());
@ -264,58 +228,30 @@ Any unpack_tensor_proto(const ::tensorflow::TensorProto& tensor_proto,
} else { } else {
int64_t val_size = 0; int64_t val_size = 0;
switch (ov_type) { switch (ov_type) {
case f32: case boolean:
val_size = tensor_proto.float_val_size(); val_size = tensor_proto.bool_val_size();
extract_compressed_tensor_content<float>(tensor_proto, val_size, &res); extract_compressed_tensor_content<bool>(tensor_proto, val_size, &res);
break;
case u8:
val_size = tensor_proto.int_val_size();
extract_compressed_tensor_content<int32_t, uint8_t>(tensor_proto, val_size, &res);
break;
case i64:
val_size = tensor_proto.int64_val_size();
extract_compressed_tensor_content<int64_t>(tensor_proto, val_size, &res);
break;
case u16:
val_size = tensor_proto.int_val_size();
extract_compressed_tensor_content<uint16_t, int32_t>(tensor_proto, val_size, &res);
break;
case u64:
val_size = tensor_proto.uint64_val_size();
extract_compressed_tensor_content<uint64_t>(tensor_proto, val_size, &res);
break; break;
case i32: case i32:
val_size = tensor_proto.int_val_size(); val_size = tensor_proto.int_val_size();
extract_compressed_tensor_content<int32_t>(tensor_proto, val_size, &res); extract_compressed_tensor_content<int32_t>(tensor_proto, val_size, &res);
break; break;
case i8: case i64:
val_size = tensor_proto.int_val_size(); val_size = tensor_proto.int64_val_size();
extract_compressed_tensor_content<int32_t, int8_t>(tensor_proto, val_size, &res); extract_compressed_tensor_content<int64_t>(tensor_proto, val_size, &res);
break; break;
case bf16: case f16:
val_size = tensor_proto.half_val_size(); val_size = tensor_proto.half_val_size();
extract_compressed_tensor_content<int32_t, bfloat16>(tensor_proto, val_size, &res); extract_compressed_tensor_content<float16>(tensor_proto, val_size, &res);
break; break;
case u32: case f32:
val_size = tensor_proto.uint32_val_size(); val_size = tensor_proto.float_val_size();
extract_compressed_tensor_content<uint32_t>(tensor_proto, val_size, &res); extract_compressed_tensor_content<float>(tensor_proto, val_size, &res);
break; break;
case f64: case f64:
val_size = tensor_proto.double_val_size(); val_size = tensor_proto.double_val_size();
extract_compressed_tensor_content<double>(tensor_proto, val_size, &res); extract_compressed_tensor_content<double>(tensor_proto, val_size, &res);
break; break;
case i16:
val_size = tensor_proto.int_val_size();
extract_compressed_tensor_content<int32_t, int16_t>(tensor_proto, val_size, &res);
break;
case boolean:
val_size = tensor_proto.bool_val_size();
extract_compressed_tensor_content<bool>(tensor_proto, val_size, &res);
break;
case f16:
val_size = tensor_proto.half_val_size();
extract_compressed_tensor_content<int32_t, float16>(tensor_proto, val_size, &res);
break;
default: default:
FRONT_END_THROW("Encountered unknown element type " + ov_type.get_type_name()); FRONT_END_THROW("Encountered unknown element type " + ov_type.get_type_name());
} }

View File

@ -1,51 +0,0 @@
# Copyright (C) 2018-2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import tensorflow as tf
from common.tf_layer_test_class import CommonTFLayerTest
rng = np.random.default_rng()
class TestAddTypes(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
assert 'x' in inputs_info, "Test error: inputs_info must contain `x`"
x_shape = inputs_info['x']
inputs_data = {}
if np.issubdtype(self.input_type, np.signedinteger):
inputs_data['x'] = rng.integers(-8, 8, x_shape).astype(self.input_type)
else:
inputs_data['x'] = rng.integers(0, 8, x_shape).astype(self.input_type)
return inputs_data
def create_add_types_net(self, const_shape, input_type):
self.input_type = input_type
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
x = tf.compat.v1.placeholder(input_type, [], 'x')
if np.issubdtype(self.input_type, np.signedinteger):
const_value = rng.integers(-8, 8, const_shape).astype(self.input_type)
else:
const_value = rng.integers(0, 8, const_shape).astype(self.input_type)
const_input = tf.constant(const_value, dtype=input_type)
tf.raw_ops.Add(x=x, y=const_input)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None
@pytest.mark.parametrize("const_shape", [[], [2], [3, 4], [3, 2, 1, 4]])
@pytest.mark.parametrize("input_type", [np.int8, np.uint8, np.int16,
np.int32, np.int64,
np.float16, np.float32, np.float64])
@pytest.mark.precommit_tf_fe
@pytest.mark.nightly
def test_add_types(self, const_shape, input_type, ie_device, precision, ir_version, temp_dir,
use_new_frontend, use_old_api):
self._test(*self.create_add_types_net(const_shape, input_type),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)