[Python API] Remove pyngraph mark in ie python tests (#8013)
* [Python API] Remove pyngraph mark * move ngraph import from test functions
This commit is contained in:
parent
e3d5d4520f
commit
bfb092a6d6
@ -5,6 +5,8 @@ import os
|
|||||||
import pytest
|
import pytest
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
import ngraph as ng
|
||||||
|
|
||||||
|
|
||||||
def model_path(is_myriad=False):
|
def model_path(is_myriad=False):
|
||||||
path_to_repo = os.environ["MODELS_PATH"]
|
path_to_repo = os.environ["MODELS_PATH"]
|
||||||
@ -43,16 +45,12 @@ def device():
|
|||||||
|
|
||||||
def pytest_configure(config):
|
def pytest_configure(config):
|
||||||
# register an additional markers
|
# register an additional markers
|
||||||
config.addinivalue_line(
|
|
||||||
"markers", "ngraph_dependent_test"
|
|
||||||
)
|
|
||||||
config.addinivalue_line(
|
config.addinivalue_line(
|
||||||
"markers", "template_plugin"
|
"markers", "template_plugin"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def create_encoder(input_shape, levels = 4):
|
def create_encoder(input_shape, levels = 4):
|
||||||
import ngraph as ng
|
|
||||||
# input
|
# input
|
||||||
input_node = ng.parameter(input_shape, np.float32, name="data")
|
input_node = ng.parameter(input_shape, np.float32, name="data")
|
||||||
|
|
||||||
@ -86,7 +84,6 @@ def create_encoder(input_shape, levels = 4):
|
|||||||
|
|
||||||
|
|
||||||
def create_relu(input_shape):
|
def create_relu(input_shape):
|
||||||
import ngraph as ng
|
|
||||||
input_shape = ng.impl.PartialShape(input_shape)
|
input_shape = ng.impl.PartialShape(input_shape)
|
||||||
param = ng.parameter(input_shape, dtype=np.float32, name="data")
|
param = ng.parameter(input_shape, dtype=np.float32, name="data")
|
||||||
result = ng.relu(param, name="out")
|
result = ng.relu(param, name="out")
|
||||||
|
@ -7,7 +7,8 @@ import numpy as np
|
|||||||
import os
|
import os
|
||||||
|
|
||||||
from openvino.inference_engine import TensorDesc, Blob, IECore
|
from openvino.inference_engine import TensorDesc, Blob, IECore
|
||||||
from conftest import image_path
|
from conftest import image_path, create_encoder
|
||||||
|
import ngraph as ng
|
||||||
|
|
||||||
|
|
||||||
path_to_image = image_path()
|
path_to_image = image_path()
|
||||||
@ -100,7 +101,6 @@ def test_incompatible_input_precision():
|
|||||||
|
|
||||||
|
|
||||||
# issue 49903
|
# issue 49903
|
||||||
@pytest.mark.ngraph_dependent_test
|
|
||||||
@pytest.mark.skip(reason="Test will enable when CPU fix will be merge")
|
@pytest.mark.skip(reason="Test will enable when CPU fix will be merge")
|
||||||
@pytest.mark.skipif(os.environ.get("TEST_DEVICE", "CPU") != "CPU", reason="Device dependent test")
|
@pytest.mark.skipif(os.environ.get("TEST_DEVICE", "CPU") != "CPU", reason="Device dependent test")
|
||||||
def test_buffer_values_after_add_outputs(device):
|
def test_buffer_values_after_add_outputs(device):
|
||||||
@ -140,11 +140,8 @@ def test_cannot_set_shape_preallocated_memory():
|
|||||||
assert "Cannot call setShape for Blobs created on top of preallocated memory" in str(e.value)
|
assert "Cannot call setShape for Blobs created on top of preallocated memory" in str(e.value)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.ngraph_dependent_test
|
|
||||||
@pytest.mark.template_plugin
|
@pytest.mark.template_plugin
|
||||||
def test_blob_set_shape_after_async_infer():
|
def test_blob_set_shape_after_async_infer():
|
||||||
from conftest import create_encoder
|
|
||||||
import ngraph as ng
|
|
||||||
function = create_encoder([1, 4, 20, 20])
|
function = create_encoder([1, 4, 20, 20])
|
||||||
net = ng.function_to_cnn(function)
|
net = ng.function_to_cnn(function)
|
||||||
net.reshape({"data": [(1, 5), 4, 20, 20]})
|
net.reshape({"data": [(1, 5), 4, 20, 20]})
|
||||||
|
@ -4,7 +4,8 @@
|
|||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
from openvino.inference_engine import CDataPtr, IECore
|
from openvino.inference_engine import CDataPtr, IECore
|
||||||
from conftest import model_path
|
from conftest import model_path, create_relu
|
||||||
|
import ngraph as ng
|
||||||
|
|
||||||
|
|
||||||
test_net_xml, test_net_bin = model_path()
|
test_net_xml, test_net_bin = model_path()
|
||||||
@ -58,11 +59,8 @@ def test_initialized(device):
|
|||||||
assert exec_net.outputs['fc_out'].initialized, "Incorrect value for initialized property for layer 'fc_out"
|
assert exec_net.outputs['fc_out'].initialized, "Incorrect value for initialized property for layer 'fc_out"
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.ngraph_dependent_test
|
|
||||||
@pytest.mark.template_plugin
|
@pytest.mark.template_plugin
|
||||||
def test_is_dynamic():
|
def test_is_dynamic():
|
||||||
from conftest import create_relu
|
|
||||||
import ngraph as ng
|
|
||||||
function = create_relu([-1, 3, 20, 20])
|
function = create_relu([-1, 3, 20, 20])
|
||||||
net = ng.function_to_cnn(function)
|
net = ng.function_to_cnn(function)
|
||||||
ie = IECore()
|
ie = IECore()
|
||||||
|
@ -4,7 +4,8 @@
|
|||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
from openvino.inference_engine import IECore, DataPtr
|
from openvino.inference_engine import IECore, DataPtr
|
||||||
from conftest import model_path
|
from conftest import model_path, create_relu
|
||||||
|
import ngraph as ng
|
||||||
|
|
||||||
|
|
||||||
test_net_xml, test_net_bin = model_path()
|
test_net_xml, test_net_bin = model_path()
|
||||||
@ -45,11 +46,8 @@ def test_initialized():
|
|||||||
assert layer_out_data().initialized, "Incorrect value for initialized property for layer 'fc_out'"
|
assert layer_out_data().initialized, "Incorrect value for initialized property for layer 'fc_out'"
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.ngraph_dependent_test
|
|
||||||
@pytest.mark.template_plugin
|
@pytest.mark.template_plugin
|
||||||
def test_is_dynamic():
|
def test_is_dynamic():
|
||||||
from conftest import create_relu
|
|
||||||
import ngraph as ng
|
|
||||||
function = create_relu([-1, 3, 20, 20])
|
function = create_relu([-1, 3, 20, 20])
|
||||||
net = ng.function_to_cnn(function)
|
net = ng.function_to_cnn(function)
|
||||||
assert net.input_info["data"].input_data.is_dynamic
|
assert net.input_info["data"].input_data.is_dynamic
|
||||||
|
@ -11,6 +11,7 @@ from queue import Queue
|
|||||||
|
|
||||||
from openvino.inference_engine import IENetwork, IECore, ExecutableNetwork
|
from openvino.inference_engine import IENetwork, IECore, ExecutableNetwork
|
||||||
from conftest import model_path, plugins_path, model_onnx_path
|
from conftest import model_path, plugins_path, model_onnx_path
|
||||||
|
import ngraph as ng
|
||||||
|
|
||||||
|
|
||||||
test_net_xml, test_net_bin = model_path()
|
test_net_xml, test_net_bin = model_path()
|
||||||
@ -61,9 +62,7 @@ def test_load_network_wrong_device():
|
|||||||
assert 'Device with "BLA" name is not registered in the InferenceEngine' in str(e.value)
|
assert 'Device with "BLA" name is not registered in the InferenceEngine' in str(e.value)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.ngraph_dependent_test
|
|
||||||
def test_query_network(device):
|
def test_query_network(device):
|
||||||
import ngraph as ng
|
|
||||||
ie = IECore()
|
ie = IECore()
|
||||||
net = ie.read_network(model=test_net_xml, weights=test_net_bin)
|
net = ie.read_network(model=test_net_xml, weights=test_net_bin)
|
||||||
query_res = ie.query_network(net, device)
|
query_res = ie.query_network(net, device)
|
||||||
|
@ -3,10 +3,10 @@
|
|||||||
|
|
||||||
import os
|
import os
|
||||||
import pytest
|
import pytest
|
||||||
import warnings
|
|
||||||
|
|
||||||
|
import ngraph as ng
|
||||||
from openvino.inference_engine import IECore, IENetwork, DataPtr, InputInfoPtr, PreProcessInfo
|
from openvino.inference_engine import IECore, IENetwork, DataPtr, InputInfoPtr, PreProcessInfo
|
||||||
from conftest import model_path
|
from conftest import model_path, create_relu
|
||||||
|
|
||||||
|
|
||||||
test_net_xml, test_net_bin = model_path()
|
test_net_xml, test_net_bin = model_path()
|
||||||
@ -134,9 +134,7 @@ def test_batch_size_after_reshape():
|
|||||||
assert net.input_info['data'].input_data.shape == [8, 3, 32, 32]
|
assert net.input_info['data'].input_data.shape == [8, 3, 32, 32]
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.ngraph_dependent_test
|
|
||||||
def test_serialize():
|
def test_serialize():
|
||||||
import ngraph as ng
|
|
||||||
ie = IECore()
|
ie = IECore()
|
||||||
net = ie.read_network(model=test_net_xml, weights=test_net_bin)
|
net = ie.read_network(model=test_net_xml, weights=test_net_bin)
|
||||||
net.serialize("./serialized_net.xml", "./serialized_net.bin")
|
net.serialize("./serialized_net.xml", "./serialized_net.bin")
|
||||||
@ -159,15 +157,12 @@ def test_reshape():
|
|||||||
assert net.input_info["data"].input_data.shape == [2, 3, 32, 32]
|
assert net.input_info["data"].input_data.shape == [2, 3, 32, 32]
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.ngraph_dependent_test
|
|
||||||
@pytest.mark.parametrize("shape, p_shape", [
|
@pytest.mark.parametrize("shape, p_shape", [
|
||||||
([1, 3, 22, 22], [1, 3, -1, 25]),
|
([1, 3, 22, 22], [1, 3, -1, 25]),
|
||||||
([1, 3, 22, 22], [-1, -1, -1, -1]),
|
([1, 3, 22, 22], [-1, -1, -1, -1]),
|
||||||
([1, 3, -1, 25], [1, 3, 22, -1])
|
([1, 3, -1, 25], [1, 3, 22, -1])
|
||||||
])
|
])
|
||||||
def test_reshape_with_partial_shape(device, shape, p_shape):
|
def test_reshape_with_partial_shape(device, shape, p_shape):
|
||||||
from conftest import create_relu
|
|
||||||
import ngraph as ng
|
|
||||||
function = create_relu(shape)
|
function = create_relu(shape)
|
||||||
net = ng.function_to_cnn(function)
|
net = ng.function_to_cnn(function)
|
||||||
net.reshape({"data": p_shape})
|
net.reshape({"data": p_shape})
|
||||||
@ -183,10 +178,7 @@ def test_reshape_with_partial_shape(device, shape, p_shape):
|
|||||||
assert function.get_results()[0].get_output_partial_shape(0) == p_shape
|
assert function.get_results()[0].get_output_partial_shape(0) == p_shape
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.ngraph_dependent_test
|
def test_incorrect_reshape():
|
||||||
def test_incorrect_reshape(device):
|
|
||||||
from conftest import create_relu
|
|
||||||
import ngraph as ng
|
|
||||||
function = create_relu([1, 3, 22, 22])
|
function = create_relu([1, 3, 22, 22])
|
||||||
net = ng.function_to_cnn(function)
|
net = ng.function_to_cnn(function)
|
||||||
with pytest.raises(ValueError) as e:
|
with pytest.raises(ValueError) as e:
|
||||||
@ -226,6 +218,7 @@ def test_multi_out_data():
|
|||||||
assert net.outputs["fc_out"].name == "fc_out" and net.outputs["fc_out"].shape == [1, 10]
|
assert net.outputs["fc_out"].name == "fc_out" and net.outputs["fc_out"].shape == [1, 10]
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
def test_tensor_names():
|
def test_tensor_names():
|
||||||
model = """
|
model = """
|
||||||
<net name="Network" version="10">
|
<net name="Network" version="10">
|
||||||
@ -284,11 +277,8 @@ def test_tensor_names():
|
|||||||
assert net.get_ov_name_for_tensor("input") == "in1"
|
assert net.get_ov_name_for_tensor("input") == "in1"
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.ngraph_dependent_test
|
|
||||||
@pytest.mark.template_plugin
|
@pytest.mark.template_plugin
|
||||||
def test_create_two_exec_net():
|
def test_create_two_exec_net():
|
||||||
from conftest import create_relu
|
|
||||||
import ngraph as ng
|
|
||||||
function = create_relu([ng.Dimension(0,5), ng.Dimension(4), ng.Dimension(20), ng.Dimension(20)])
|
function = create_relu([ng.Dimension(0,5), ng.Dimension(4), ng.Dimension(20), ng.Dimension(20)])
|
||||||
net = ng.function_to_cnn(function)
|
net = ng.function_to_cnn(function)
|
||||||
ie_core = IECore()
|
ie_core = IECore()
|
||||||
|
@ -4,13 +4,14 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import os
|
import os
|
||||||
import pytest
|
import pytest
|
||||||
import warnings
|
|
||||||
import threading
|
import threading
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
import time
|
import time
|
||||||
|
|
||||||
from openvino.inference_engine import ie_api as ie
|
from openvino.inference_engine import ie_api as ie
|
||||||
from conftest import model_path, image_path
|
from conftest import model_path, image_path, create_encoder
|
||||||
|
import ngraph as ng
|
||||||
|
from ngraph.impl import Function, Type
|
||||||
|
|
||||||
is_myriad = os.environ.get("TEST_DEVICE") == "MYRIAD"
|
is_myriad = os.environ.get("TEST_DEVICE") == "MYRIAD"
|
||||||
test_net_xml, test_net_bin = model_path(is_myriad)
|
test_net_xml, test_net_bin = model_path(is_myriad)
|
||||||
@ -18,8 +19,6 @@ path_to_img = image_path()
|
|||||||
|
|
||||||
|
|
||||||
def create_function_with_memory(input_shape, data_type):
|
def create_function_with_memory(input_shape, data_type):
|
||||||
from ngraph.impl import Function, Type
|
|
||||||
import ngraph as ng
|
|
||||||
input_data = ng.parameter(input_shape, name="input_data", dtype=data_type)
|
input_data = ng.parameter(input_shape, name="input_data", dtype=data_type)
|
||||||
rv = ng.read_value(input_data, "var_id_667")
|
rv = ng.read_value(input_data, "var_id_667")
|
||||||
add = ng.add(rv, input_data, name="MemoryAdd")
|
add = ng.add(rv, input_data, name="MemoryAdd")
|
||||||
@ -380,7 +379,6 @@ def test_async_infer_wait_while_callback_will_not_finish(device):
|
|||||||
assert callback_status['finished'] == True
|
assert callback_status['finished'] == True
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.ngraph_dependent_test
|
|
||||||
def test_get_perf_counts(device):
|
def test_get_perf_counts(device):
|
||||||
ie_core = ie.IECore()
|
ie_core = ie.IECore()
|
||||||
net = ie_core.read_network(test_net_xml, test_net_bin)
|
net = ie_core.read_network(test_net_xml, test_net_bin)
|
||||||
@ -391,7 +389,6 @@ def test_get_perf_counts(device):
|
|||||||
request.infer({'data': img})
|
request.infer({'data': img})
|
||||||
pc = request.get_perf_counts()
|
pc = request.get_perf_counts()
|
||||||
assert pc['29']["status"] == "EXECUTED"
|
assert pc['29']["status"] == "EXECUTED"
|
||||||
assert pc['29']["layer_type"] == "FullyConnected"
|
|
||||||
del exec_net
|
del exec_net
|
||||||
del ie_core
|
del ie_core
|
||||||
del net
|
del net
|
||||||
@ -529,7 +526,6 @@ def test_resize_algorithm_work(device):
|
|||||||
assert np.allclose(res_1, res_2, atol=1e-2, rtol=1e-2)
|
assert np.allclose(res_1, res_2, atol=1e-2, rtol=1e-2)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.ngraph_dependent_test
|
|
||||||
@pytest.mark.parametrize("mode", ["set_init_memory_state", "reset_memory_state", "normal"])
|
@pytest.mark.parametrize("mode", ["set_init_memory_state", "reset_memory_state", "normal"])
|
||||||
@pytest.mark.parametrize("data_type", ["FP32", "FP16", "I32"])
|
@pytest.mark.parametrize("data_type", ["FP32", "FP16", "I32"])
|
||||||
@pytest.mark.parametrize("input_shape", [[10], [10, 10], [10, 10, 10], [2, 10, 10, 10]])
|
@pytest.mark.parametrize("input_shape", [[10], [10, 10], [10, 10, 10], [2, 10, 10, 10]])
|
||||||
@ -584,7 +580,6 @@ def test_query_state_write_buffer(device, input_shape, data_type, mode):
|
|||||||
"Expected values: {} \n Actual values: {} \n".format(expected_res, res)
|
"Expected values: {} \n Actual values: {} \n".format(expected_res, res)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.ngraph_dependent_test
|
|
||||||
@pytest.mark.template_plugin
|
@pytest.mark.template_plugin
|
||||||
@pytest.mark.parametrize("shape, p_shape, ref_shape", [
|
@pytest.mark.parametrize("shape, p_shape, ref_shape", [
|
||||||
([1, 4, 20, 20], [-1, 4, 20, 20], [5, 4, 20, 20]),
|
([1, 4, 20, 20], [-1, 4, 20, 20], [5, 4, 20, 20]),
|
||||||
@ -593,8 +588,6 @@ def test_query_state_write_buffer(device, input_shape, data_type, mode):
|
|||||||
([1, 4, 20, 20], [(3,5), 4, 20, 20], [6, 4, 20, 20]),
|
([1, 4, 20, 20], [(3,5), 4, 20, 20], [6, 4, 20, 20]),
|
||||||
])
|
])
|
||||||
def test_infer_dynamic_network_with_set_shape(shape, p_shape, ref_shape):
|
def test_infer_dynamic_network_with_set_shape(shape, p_shape, ref_shape):
|
||||||
from conftest import create_encoder
|
|
||||||
import ngraph as ng
|
|
||||||
function = create_encoder(shape)
|
function = create_encoder(shape)
|
||||||
net = ng.function_to_cnn(function)
|
net = ng.function_to_cnn(function)
|
||||||
net.reshape({"data": p_shape})
|
net.reshape({"data": p_shape})
|
||||||
@ -611,7 +604,6 @@ def test_infer_dynamic_network_with_set_shape(shape, p_shape, ref_shape):
|
|||||||
assert request.output_blobs['out'].tensor_desc.dims == ref_shape
|
assert request.output_blobs['out'].tensor_desc.dims == ref_shape
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.ngraph_dependent_test
|
|
||||||
@pytest.mark.template_plugin
|
@pytest.mark.template_plugin
|
||||||
@pytest.mark.parametrize("shape, p_shape, ref_shape", [
|
@pytest.mark.parametrize("shape, p_shape, ref_shape", [
|
||||||
([1, 4, 20, 20], [-1, 4, 20, 20], [5, 4, 20, 20]),
|
([1, 4, 20, 20], [-1, 4, 20, 20], [5, 4, 20, 20]),
|
||||||
@ -620,8 +612,6 @@ def test_infer_dynamic_network_with_set_shape(shape, p_shape, ref_shape):
|
|||||||
([1, 4, 20, 20], [(3,5), 4, 20, 20], [6, 4, 20, 20]),
|
([1, 4, 20, 20], [(3,5), 4, 20, 20], [6, 4, 20, 20]),
|
||||||
])
|
])
|
||||||
def test_infer_dynamic_network_without_set_shape(shape, p_shape, ref_shape):
|
def test_infer_dynamic_network_without_set_shape(shape, p_shape, ref_shape):
|
||||||
from conftest import create_encoder
|
|
||||||
import ngraph as ng
|
|
||||||
function = create_encoder(shape)
|
function = create_encoder(shape)
|
||||||
net = ng.function_to_cnn(function)
|
net = ng.function_to_cnn(function)
|
||||||
net.reshape({"data": p_shape})
|
net.reshape({"data": p_shape})
|
||||||
@ -637,7 +627,6 @@ def test_infer_dynamic_network_without_set_shape(shape, p_shape, ref_shape):
|
|||||||
assert request.output_blobs['out'].tensor_desc.dims == ref_shape
|
assert request.output_blobs['out'].tensor_desc.dims == ref_shape
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.ngraph_dependent_test
|
|
||||||
@pytest.mark.template_plugin
|
@pytest.mark.template_plugin
|
||||||
@pytest.mark.parametrize("shape, p_shape, ref_shape", [
|
@pytest.mark.parametrize("shape, p_shape, ref_shape", [
|
||||||
([1, 4, 20, 20], [-1, 4, 20, 20], [5, 4, 20, 20]),
|
([1, 4, 20, 20], [-1, 4, 20, 20], [5, 4, 20, 20]),
|
||||||
@ -646,8 +635,6 @@ def test_infer_dynamic_network_without_set_shape(shape, p_shape, ref_shape):
|
|||||||
([1, 4, 20, 20], [(3,5), 4, 20, 20], [6, 4, 20, 20]),
|
([1, 4, 20, 20], [(3,5), 4, 20, 20], [6, 4, 20, 20]),
|
||||||
])
|
])
|
||||||
def test_infer_dynamic_network_with_set_blob(shape, p_shape, ref_shape):
|
def test_infer_dynamic_network_with_set_blob(shape, p_shape, ref_shape):
|
||||||
from conftest import create_encoder
|
|
||||||
import ngraph as ng
|
|
||||||
function = create_encoder(shape)
|
function = create_encoder(shape)
|
||||||
net = ng.function_to_cnn(function)
|
net = ng.function_to_cnn(function)
|
||||||
net.reshape({"data": p_shape})
|
net.reshape({"data": p_shape})
|
||||||
@ -667,11 +654,8 @@ def test_infer_dynamic_network_with_set_blob(shape, p_shape, ref_shape):
|
|||||||
assert request.output_blobs["out"].tensor_desc.dims == ref_shape
|
assert request.output_blobs["out"].tensor_desc.dims == ref_shape
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.ngraph_dependent_test
|
|
||||||
@pytest.mark.template_plugin
|
@pytest.mark.template_plugin
|
||||||
def test_infer_dynamic_network_twice():
|
def test_infer_dynamic_network_twice():
|
||||||
from conftest import create_encoder
|
|
||||||
import ngraph as ng
|
|
||||||
shape, p_shape = [1, 4, 20, 20], [(0,5), 4, 20, 20]
|
shape, p_shape = [1, 4, 20, 20], [(0,5), 4, 20, 20]
|
||||||
ref_shape1, ref_shape2 = [2, 4, 20, 20], [3, 4, 20, 20]
|
ref_shape1, ref_shape2 = [2, 4, 20, 20], [3, 4, 20, 20]
|
||||||
function = create_encoder(shape)
|
function = create_encoder(shape)
|
||||||
@ -689,11 +673,8 @@ def test_infer_dynamic_network_twice():
|
|||||||
assert request.output_blobs['out'].tensor_desc.dims == ref_shape2
|
assert request.output_blobs['out'].tensor_desc.dims == ref_shape2
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.ngraph_dependent_test
|
|
||||||
@pytest.mark.template_plugin
|
@pytest.mark.template_plugin
|
||||||
def test_infer_dynamic_network_with_set_blob_twice():
|
def test_infer_dynamic_network_with_set_blob_twice():
|
||||||
from conftest import create_encoder
|
|
||||||
import ngraph as ng
|
|
||||||
shape, p_shape = [1, 4, 20, 20], [(0,5), 4, 20, 20]
|
shape, p_shape = [1, 4, 20, 20], [(0,5), 4, 20, 20]
|
||||||
ref_shape1, ref_shape2 = [2, 4, 20, 20], [3, 4, 20, 20]
|
ref_shape1, ref_shape2 = [2, 4, 20, 20], [3, 4, 20, 20]
|
||||||
function = create_encoder(shape)
|
function = create_encoder(shape)
|
||||||
@ -719,15 +700,12 @@ def test_infer_dynamic_network_with_set_blob_twice():
|
|||||||
assert request.output_blobs['out'].tensor_desc.dims == ref_shape2
|
assert request.output_blobs['out'].tensor_desc.dims == ref_shape2
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.ngraph_dependent_test
|
|
||||||
@pytest.mark.template_plugin
|
@pytest.mark.template_plugin
|
||||||
@pytest.mark.parametrize("shapes", [
|
@pytest.mark.parametrize("shapes", [
|
||||||
([3, 4, 20, 20], [3, 4, 20, 20], [3, 4, 20, 20]),
|
([3, 4, 20, 20], [3, 4, 20, 20], [3, 4, 20, 20]),
|
||||||
([3, 4, 20, 20], [3, 4, 28, 28], [3, 4, 45, 45]),
|
([3, 4, 20, 20], [3, 4, 28, 28], [3, 4, 45, 45]),
|
||||||
])
|
])
|
||||||
def test_async_infer_dynamic_network_3_requests(shapes):
|
def test_async_infer_dynamic_network_3_requests(shapes):
|
||||||
from conftest import create_encoder
|
|
||||||
import ngraph as ng
|
|
||||||
function = create_encoder([3, 4, 20, 20])
|
function = create_encoder([3, 4, 20, 20])
|
||||||
net = ng.function_to_cnn(function)
|
net = ng.function_to_cnn(function)
|
||||||
net.reshape({"data": [3, 4, (20, 50), (20, 50)]})
|
net.reshape({"data": [3, 4, (20, 50), (20, 50)]})
|
||||||
@ -742,11 +720,8 @@ def test_async_infer_dynamic_network_3_requests(shapes):
|
|||||||
assert request.output_blobs['out'].tensor_desc.dims == shapes[i]
|
assert request.output_blobs['out'].tensor_desc.dims == shapes[i]
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.ngraph_dependent_test
|
|
||||||
@pytest.mark.template_plugin
|
@pytest.mark.template_plugin
|
||||||
def test_set_blob_with_incorrect_name():
|
def test_set_blob_with_incorrect_name():
|
||||||
from conftest import create_encoder
|
|
||||||
import ngraph as ng
|
|
||||||
function = create_encoder([4, 4, 20, 20])
|
function = create_encoder([4, 4, 20, 20])
|
||||||
net = ng.function_to_cnn(function)
|
net = ng.function_to_cnn(function)
|
||||||
ie_core = ie.IECore()
|
ie_core = ie.IECore()
|
||||||
@ -760,11 +735,8 @@ def test_set_blob_with_incorrect_name():
|
|||||||
assert f"Failed to find input or output with name: 'incorrect_name'" in str(e.value)
|
assert f"Failed to find input or output with name: 'incorrect_name'" in str(e.value)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.ngraph_dependent_test
|
|
||||||
@pytest.mark.template_plugin
|
@pytest.mark.template_plugin
|
||||||
def test_set_blob_with_incorrect_size():
|
def test_set_blob_with_incorrect_size():
|
||||||
from conftest import create_encoder
|
|
||||||
import ngraph as ng
|
|
||||||
function = create_encoder([4, 4, 20, 20])
|
function = create_encoder([4, 4, 20, 20])
|
||||||
net = ng.function_to_cnn(function)
|
net = ng.function_to_cnn(function)
|
||||||
ie_core = ie.IECore()
|
ie_core = ie.IECore()
|
||||||
@ -782,11 +754,8 @@ def test_set_blob_with_incorrect_size():
|
|||||||
assert f"Output blob size is not equal network output size" in str(e.value)
|
assert f"Output blob size is not equal network output size" in str(e.value)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.ngraph_dependent_test
|
|
||||||
@pytest.mark.template_plugin
|
@pytest.mark.template_plugin
|
||||||
def test_set_blob_after_async_infer():
|
def test_set_blob_after_async_infer():
|
||||||
from conftest import create_encoder
|
|
||||||
import ngraph as ng
|
|
||||||
function = create_encoder([1, 4, 20, 20])
|
function = create_encoder([1, 4, 20, 20])
|
||||||
net = ng.function_to_cnn(function)
|
net = ng.function_to_cnn(function)
|
||||||
net.reshape({"data": [(0, 5), 4, 20, 20]})
|
net.reshape({"data": [(0, 5), 4, 20, 20]})
|
||||||
|
Loading…
Reference in New Issue
Block a user