Provide ONNX external data mechanism to ReadNetwork (#2588)

* added unit test

* added python test

* using pword approach

* Added passing path to onnx reader

* support for wstring

* Added more tests

* Apply suggestions from code review

Co-authored-by: Michał Karzyński <4430709+postrational@users.noreply.github.com>

* fix build for Windows

* styles applied

* Fixed Windows tests

* styles applied

* fixed styles in tests

* review remarks

* cmake order

* Used target_compile_definitions instead of add_definitions

* Move ONNX_TEST_MODELS to other scope

Co-authored-by: Michał Karzyński <4430709+postrational@users.noreply.github.com>
This commit is contained in:
Mateusz Bencer 2020-10-14 11:30:53 +02:00 committed by GitHub
parent 9956639531
commit c0d71900fd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
18 changed files with 544 additions and 7 deletions

View File

@ -57,7 +57,8 @@ public:
* For IR format (*.bin): * For IR format (*.bin):
* * if path is empty, will try to read bin file with the same name as xml and * * if path is empty, will try to read bin file with the same name as xml and
* * if bin file with the same name was not found, will load IR without weights. * * if bin file with the same name was not found, will load IR without weights.
* ONNX models with data files are not supported * For ONNX format (*.onnx or *.prototxt):
* * binPath parameter is not used.
* @return CNNNetwork * @return CNNNetwork
*/ */
CNNNetwork ReadNetwork(const std::wstring& modelPath, const std::wstring& binPath = {}) const; CNNNetwork ReadNetwork(const std::wstring& modelPath, const std::wstring& binPath = {}) const;
@ -70,7 +71,8 @@ public:
* For IR format (*.bin): * For IR format (*.bin):
* * if path is empty, will try to read bin file with the same name as xml and * * if path is empty, will try to read bin file with the same name as xml and
* * if bin file with the same name was not found, will load IR without weights. * * if bin file with the same name was not found, will load IR without weights.
* ONNX models with data files are not supported * For ONNX format (*.onnx or *.prototxt):
* * binPath parameter is not used.
* @return CNNNetwork * @return CNNNetwork
*/ */
CNNNetwork ReadNetwork(const std::string& modelPath, const std::string& binPath = {}) const; CNNNetwork ReadNetwork(const std::string& modelPath, const std::string& binPath = {}) const;
@ -78,7 +80,10 @@ public:
* @brief Reads models from IR and ONNX formats * @brief Reads models from IR and ONNX formats
* @param model string with model in IR or ONNX format * @param model string with model in IR or ONNX format
* @param weights shared pointer to constant blob with weights * @param weights shared pointer to constant blob with weights
* ONNX models doesn't support models with data blobs. * Reading ONNX models doesn't support loading weights from data blobs.
* If you are using an ONNX model with external data files, please use the
* `InferenceEngine::Core::ReadNetwork(const std::string& model, const Blob::CPtr& weights) const`
* function overload which takes a filesystem path to the model.
* For ONNX case the second parameter should contain empty blob. * For ONNX case the second parameter should contain empty blob.
* @return CNNNetwork * @return CNNNetwork
*/ */

View File

@ -168,6 +168,10 @@ CNNNetwork details::ReadNetwork(const std::string& modelPath, const std::string&
#endif #endif
// Try to open model file // Try to open model file
std::ifstream modelStream(model_path, std::ios::binary); std::ifstream modelStream(model_path, std::ios::binary);
// save path in extensible array of stream
// notice: lifetime of path pointed by pword(0) is limited by current scope
const std::string path_to_save_in_stream = modelPath;
modelStream.pword(0) = const_cast<char*>(path_to_save_in_stream.c_str());
if (!modelStream.is_open()) if (!modelStream.is_open())
THROW_IE_EXCEPTION << "Model file " << modelPath << " cannot be opened!"; THROW_IE_EXCEPTION << "Model file " << modelPath << " cannot be opened!";

View File

@ -26,6 +26,9 @@ CNNNetwork ReadNetwork(const std::string& modelPath, const std::string& binPath,
* @param model string with IR * @param model string with IR
* @param weights shared pointer to constant blob with weights * @param weights shared pointer to constant blob with weights
* @param exts vector with extensions * @param exts vector with extensions
* @note Reading ONNX models doesn't support loading weights from data blobs.
If you are using an ONNX model with external data files, please use the
ReadNetwork function overload which takes a filesystem path to the model.
* @return CNNNetwork * @return CNNNetwork
*/ */
CNNNetwork ReadNetwork(const std::string& model, const Blob::CPtr& weights, const std::vector<IExtensionPtr>& exts); CNNNetwork ReadNetwork(const std::string& model, const Blob::CPtr& weights, const std::vector<IExtensionPtr>& exts);

View File

@ -21,8 +21,18 @@ bool ONNXReader::supportModel(std::istream& model) const {
return !((header.find("<net ") != std::string::npos) || (header.find("<Net ") != std::string::npos)); return !((header.find("<net ") != std::string::npos) || (header.find("<Net ") != std::string::npos));
} }
namespace {
std::string readPathFromStream(std::istream& stream) {
if (stream.pword(0) == nullptr) {
return {};
}
// read saved path from extensible array
return std::string{static_cast<char*>(stream.pword(0))};
}
}
CNNNetwork ONNXReader::read(std::istream& model, const std::vector<IExtensionPtr>& exts) const { CNNNetwork ONNXReader::read(std::istream& model, const std::vector<IExtensionPtr>& exts) const {
return CNNNetwork(ngraph::onnx_import::import_onnx_model(model)); return CNNNetwork(ngraph::onnx_import::import_onnx_model(model, readPathFromStream(model)));
} }
INFERENCE_PLUGIN_API(StatusCode) InferenceEngine::CreateReader(IReader*& reader, ResponseDesc *resp) noexcept { INFERENCE_PLUGIN_API(StatusCode) InferenceEngine::CreateReader(IReader*& reader, ResponseDesc *resp) noexcept {

View File

@ -52,6 +52,8 @@ if(TARGET inference_engine_onnx_reader)
add_dependencies(${TARGET_NAME} inference_engine_onnx_reader) add_dependencies(${TARGET_NAME} inference_engine_onnx_reader)
endif() endif()
target_compile_definitions(${TARGET_NAME} PRIVATE ONNX_TEST_MODELS="${CMAKE_CURRENT_SOURCE_DIR}/onnx_reader/models/")
include(CMakeParseArguments) include(CMakeParseArguments)
# #

View File

@ -0,0 +1,97 @@
ir_version: 3
producer_name: "nGraph ONNX Importer"
graph {
node {
input: "A"
input: "B"
output: "X"
name: "add_node1"
op_type: "Add"
}
node {
input: "X"
input: "C"
output: "Y"
name: "add_node2"
op_type: "Add"
}
name: "test_graph"
initializer {
dims: 2
dims: 2
data_type: 1
name: "A"
external_data {
key: "location",
value: "data/tensor.data"
}
data_location: 1
}
input {
name: "A"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 2
}
}
}
}
}
input {
name: "B"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 2
}
}
}
}
}
input {
name: "C"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 2
}
}
}
}
}
output {
name: "Y"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 2
}
}
}
}
}
}
opset_import {
version: 4
}

View File

@ -0,0 +1,97 @@
ir_version: 3
producer_name: "nGraph ONNX Importer"
graph {
node {
input: "A"
input: "B"
output: "X"
name: "multiply_node_1"
op_type: "Mul"
}
node {
input: "X"
input: "C"
output: "Y"
name: "multiply_node_2"
op_type: "Mul"
}
name: "test_graph"
initializer {
dims: 2
dims: 2
data_type: 1
name: "A"
external_data {
key: "location",
value: "../data/tensor.data"
}
data_location: 1
}
input {
name: "A"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 2
}
}
}
}
}
input {
name: "B"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 2
}
}
}
}
}
input {
name: "C"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 2
}
}
}
}
}
output {
name: "Y"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 2
}
}
}
}
}
}
opset_import {
version: 4
}

View File

@ -0,0 +1,112 @@
// Copyright (C) 2018-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include <gtest/gtest.h>
#include <set>
#include <string>
#include <fstream>
#include <algorithm>
#include <ie_blob.h>
#include <ie_core.hpp>
#include <file_utils.h>
#include <streambuf>
#include <ngraph/ngraph.hpp>
TEST(ONNX_Reader_Tests, ImportModelWithExternalDataFromFile) {
InferenceEngine::Core ie;
auto cnnNetwork = ie.ReadNetwork(std::string(ONNX_TEST_MODELS) + "onnx_external_data.prototxt", "");
auto function = cnnNetwork.getFunction();
int count_additions = 0;
int count_constants = 0;
int count_parameters = 0;
std::shared_ptr<ngraph::Node> external_data_node;
for (auto op : function->get_ops()) {
const auto op_type = std::string(op->get_type_name());
count_additions += (op_type == "Add" ? 1 : 0);
count_parameters += (op_type == "Parameter" ? 1 : 0);
if (op_type == "Constant") {
count_constants += 1;
external_data_node = op;
}
}
ASSERT_EQ(function->get_output_size(), 1);
ASSERT_EQ(std::string(function->get_output_op(0)->get_type_name()), "Result");
ASSERT_EQ(function->get_output_element_type(0), ngraph::element::f32);
ASSERT_EQ(function->get_output_shape(0), ngraph::Shape({2, 2}));
ASSERT_EQ(count_additions, 2);
ASSERT_EQ(count_constants, 1);
ASSERT_EQ(count_parameters, 2);
const auto external_data_node_const = ngraph::as_type_ptr<ngraph::op::Constant>(external_data_node);
ASSERT_TRUE(external_data_node_const->get_vector<float>() == (std::vector<float>{1, 2, 3, 4}));
}
TEST(ONNX_Reader_Tests, ImportModelWithExternalDataFromStringException) {
InferenceEngine::Core ie;
const auto path = std::string(ONNX_TEST_MODELS) + "onnx_external_data.prototxt";
InferenceEngine::Blob::CPtr weights; //not used
std::ifstream stream(path, std::ios::binary);
std::string modelAsString((std::istreambuf_iterator<char>(stream)), std::istreambuf_iterator<char>());
stream.close();
try {
auto cnnNetwork = ie.ReadNetwork(modelAsString, weights);
}
catch(const ngraph::ngraph_error& e) {
EXPECT_PRED_FORMAT2(
testing::IsSubstring,
std::string("invalid external data:"),
e.what());
EXPECT_PRED_FORMAT2(
testing::IsSubstring,
std::string("data/tensor.data, offset: 0, data_lenght: 0, sha1_digest: 0)"),
e.what());
}
catch(...) {
FAIL() << "Reading network failed for unexpected reason";
}
}
#if defined(ENABLE_UNICODE_PATH_SUPPORT) && defined(_WIN32)
TEST(ONNX_Reader_Tests, ImportModelWithExternalDataFromWstringNamedFile) {
InferenceEngine::Core ie;
std::string win_dir_path = ONNX_TEST_MODELS;
std::replace(win_dir_path.begin(), win_dir_path.end(), '/', '\\');
const std::wstring unicode_win_dir_path = FileUtils::multiByteCharToWString(win_dir_path.c_str());
const std::wstring path = unicode_win_dir_path + L"АБВГДЕЁЖЗИЙ\\ひらがな日本語.prototxt";
auto cnnNetwork = ie.ReadNetwork(path, L"");
auto function = cnnNetwork.getFunction();
int count_multiply = 0;
int count_constants = 0;
int count_parameters = 0;
std::shared_ptr<ngraph::Node> external_data_node;
for (auto op : function->get_ops()) {
const auto op_type = std::string(op->get_type_name());
count_multiply += (op_type == "Multiply" ? 1 : 0);
count_parameters += (op_type == "Parameter" ? 1 : 0);
if (op_type == "Constant") {
count_constants += 1;
external_data_node = op;
}
}
ASSERT_EQ(function->get_output_size(), 1);
ASSERT_EQ(std::string(function->get_output_op(0)->get_type_name()), "Result");
ASSERT_EQ(function->get_output_element_type(0), ngraph::element::f32);
ASSERT_EQ(function->get_output_shape(0), ngraph::Shape({2, 2}));
ASSERT_EQ(count_multiply, 2);
ASSERT_EQ(count_constants, 1);
ASSERT_EQ(count_parameters, 2);
const auto external_data_node_const = ngraph::as_type_ptr<ngraph::op::Constant>(external_data_node);
ASSERT_TRUE(external_data_node_const->get_vector<float>() == (std::vector<float>{1, 2, 3, 4}));
}
#endif

View File

@ -63,5 +63,19 @@ namespace ngraph
std::function<void(const std::string& file, bool is_dir)> func, std::function<void(const std::string& file, bool is_dir)> func,
bool recurse = false, bool recurse = false,
bool include_links = false); bool include_links = false);
/// \brief Change Linux-style path ('/') to Windows-style ('\\')
/// \param path The path to change file separator
NGRAPH_API void convert_path_win_style(std::string& path);
/// \brief Conversion from wide character string to a single-byte chain.
/// \param wstr A wide-char string
/// \return A multi-byte string
NGRAPH_API std::string wstring_to_string(const std::wstring& wstr);
/// \brief Conversion from single-byte chain to wide character string.
/// \param str A null-terminated string
/// \return A wide-char string
NGRAPH_API std::wstring multi_byte_char_to_wstring(const char* str);
} }
} }

View File

@ -30,3 +30,14 @@
#else #else
#define NGRAPH_API NGRAPH_HELPER_DLL_IMPORT #define NGRAPH_API NGRAPH_HELPER_DLL_IMPORT
#endif // ngraph_EXPORTS #endif // ngraph_EXPORTS
#ifndef ENABLE_UNICODE_PATH_SUPPORT
#ifdef _WIN32
#if defined __INTEL_COMPILER || defined _MSC_VER
#define ENABLE_UNICODE_PATH_SUPPORT
#endif
#elif defined(__GNUC__) && (__GNUC__ > 5 || (__GNUC__ == 5 && __GNUC_MINOR__ > 2)) || \
defined(__clang__)
#define ENABLE_UNICODE_PATH_SUPPORT
#endif
#endif

View File

@ -23,6 +23,7 @@
#include <sys/time.h> #include <sys/time.h>
#include <unistd.h> #include <unistd.h>
#endif #endif
#include <algorithm>
#include <fcntl.h> #include <fcntl.h>
#include <fstream> #include <fstream>
#include <iostream> #include <iostream>
@ -43,6 +44,10 @@
#else #else
#define RMDIR(a) rmdir(a) #define RMDIR(a) rmdir(a)
#define RMFILE(a) remove(a) #define RMFILE(a) remove(a)
#ifdef ENABLE_UNICODE_PATH_SUPPORT
#include <codecvt>
#include <locale>
#endif
#endif #endif
using namespace std; using namespace std;
@ -77,10 +82,19 @@ string file_util::get_file_ext(const string& s)
string file_util::get_directory(const string& s) string file_util::get_directory(const string& s)
{ {
string rc = s; string rc = s;
// Linux-style separator
auto pos = s.find_last_of('/'); auto pos = s.find_last_of('/');
if (pos != string::npos) if (pos != string::npos)
{ {
rc = s.substr(0, pos); rc = s.substr(0, pos);
return rc;
}
// Windows-style separator
pos = s.find_last_of('\\');
if (pos != string::npos)
{
rc = s.substr(0, pos);
return rc;
} }
return rc; return rc;
} }
@ -240,3 +254,42 @@ void file_util::iterate_files(const string& path,
func(f, true); func(f, true);
} }
} }
NGRAPH_API void file_util::convert_path_win_style(std::string& path)
{
std::replace(path.begin(), path.end(), '/', '\\');
}
#ifdef ENABLE_UNICODE_PATH_SUPPORT
std::string file_util::wstring_to_string(const std::wstring& wstr)
{
#ifdef _WIN32
int size_needed =
WideCharToMultiByte(CP_UTF8, 0, &wstr[0], (int)wstr.size(), NULL, 0, NULL, NULL); // NOLINT
std::string strTo(size_needed, 0);
WideCharToMultiByte(
CP_UTF8, 0, &wstr[0], (int)wstr.size(), &strTo[0], size_needed, NULL, NULL); // NOLINT
return strTo;
#else
std::wstring_convert<std::codecvt_utf8<wchar_t>> wstring_decoder;
return wstring_decoder.to_bytes(wstr);
#endif
}
std::wstring file_util::multi_byte_char_to_wstring(const char* str)
{
#ifdef _WIN32
int strSize = static_cast<int>(std::strlen(str));
int size_needed = MultiByteToWideChar(CP_UTF8, 0, str, strSize, NULL, 0);
std::wstring wstrTo(size_needed, 0);
MultiByteToWideChar(CP_UTF8, 0, str, strSize, &wstrTo[0], size_needed);
return wstrTo;
#else
std::wstring_convert<std::codecvt_utf8<wchar_t>> wstring_encoder;
std::wstring result = wstring_encoder.from_bytes(str);
return result;
#endif
}
#endif // ENABLE_UNICODE_PATH_SUPPORT

View File

@ -33,7 +33,8 @@ namespace ngraph
/// \brief Load external data from tensor passed to constructor /// \brief Load external data from tensor passed to constructor
/// ///
/// \note If read data from external file fails, /// \note If read data from external file fails,
/// the invalid_external_data is thrown /// \note If reading data from external files fails,
/// the invalid_external_data exception is thrown.
/// ///
/// \return External binary data loaded into a std::string /// \return External binary data loaded into a std::string
std::string load_external_data() const; std::string load_external_data() const;

View File

@ -119,9 +119,13 @@ namespace ngraph
{ {
const auto external_data_relative_path = const auto external_data_relative_path =
initializer_tensor.external_data(location_key_value_index).value(); initializer_tensor.external_data(location_key_value_index).value();
const auto external_data_full_path = auto external_data_full_path =
file_util::path_join(model_dir_path, external_data_relative_path); file_util::path_join(model_dir_path, external_data_relative_path);
#if defined(ENABLE_UNICODE_PATH_SUPPORT) && defined(_WIN32)
file_util::convert_path_win_style(external_data_full_path);
#endif
// Set full paths to the external file // Set full paths to the external file
initializer_tensor.mutable_external_data(location_key_value_index) initializer_tensor.mutable_external_data(location_key_value_index)
->set_value(external_data_full_path); ->set_value(external_data_full_path);

View File

@ -17,6 +17,7 @@
#include <fstream> #include <fstream>
#include <sstream> #include <sstream>
#include "ngraph/file_util.hpp"
#include "ngraph/log.hpp" #include "ngraph/log.hpp"
#include "onnx_import/exceptions.hpp" #include "onnx_import/exceptions.hpp"
#include "tensor_external_data.hpp" #include "tensor_external_data.hpp"
@ -44,7 +45,12 @@ namespace ngraph
std::string TensorExternalData::load_external_data() const std::string TensorExternalData::load_external_data() const
{ {
std::ifstream external_data_stream(m_data_location, #if defined(ENABLE_UNICODE_PATH_SUPPORT) && defined(_WIN32)
std::wstring path = file_util::multi_byte_char_to_wstring(m_data_location.c_str());
#else
std::string path = m_data_location;
#endif
std::ifstream external_data_stream(path,
std::ios::binary | std::ios::in | std::ios::ate); std::ios::binary | std::ios::in | std::ios::ate);
if (external_data_stream.fail()) if (external_data_stream.fail())
throw error::invalid_external_data{*this}; throw error::invalid_external_data{*this};

Binary file not shown.

View File

@ -0,0 +1,77 @@
ir_version: 3
producer_name: "nGraph ONNX Importer"
graph {
node {
input: "data_a"
input: "data_b"
input: "data_c"
output: "result"
op_type: "Mean"
}
name: "test_mean_example"
initializer {
dims: 3
data_type: 1
name: "data_c"
external_data {
key: "location",
value: "data/tensor.data"
}
data_location: 1
}
input {
name: "data_a"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 3
}
}
}
}
}
input {
name: "data_b"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 3
}
}
}
}
}
input {
name: "data_c"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 3
}
}
}
}
}
output {
name: "result"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 3
}
}
}
}
}
}
opset_import {
version: 8
}

View File

@ -0,0 +1,41 @@
# ******************************************************************************
# Copyright 2017-2020 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
import os
import numpy as np
import ngraph as ng
from openvino.inference_engine import IECore
from tests.runtime import get_runtime
def test_import_onnx_with_external_data():
model_path = os.path.join(os.path.dirname(__file__), "models/external_data.prototxt")
ie = IECore()
ie_network = ie.read_network(model=model_path)
ng_function = ng.function_from_cnn(ie_network)
dtype = np.float32
value_a = np.array([1.0, 3.0, 5.0], dtype=dtype)
value_b = np.array([3.0, 5.0, 1.0], dtype=dtype)
# third input [5.0, 1.0, 3.0] read from external file
runtime = get_runtime()
computation = runtime.computation(ng_function)
result = computation(value_a, value_b)
assert np.allclose(result, np.array([3.0, 3.0, 3.0], dtype=dtype))