Add reshaping of dynamic network in python tests (#1850)
This commit is contained in:
parent
d871a0e05f
commit
c19cd4765b
@ -92,7 +92,7 @@ void CNNNetworkNGraphImpl::createDataForResult(const ::ngraph::Output<::ngraph::
|
||||
}
|
||||
for (const auto& dim : dims) {
|
||||
if (!dim)
|
||||
THROW_IE_EXCEPTION << outName << " has zero dimension that is not allowable";
|
||||
THROW_IE_EXCEPTION << outName << " has zero dimension which is not allowed";
|
||||
}
|
||||
|
||||
if (ptr) {
|
||||
|
@ -124,6 +124,15 @@ def get_ndarray(data: NumericData) -> np.ndarray:
|
||||
return np.array(data)
|
||||
|
||||
|
||||
def get_shape(data: NumericData) -> TensorShape:
|
||||
"""Return a shape of NumericData."""
|
||||
if type(data) == np.ndarray:
|
||||
return data.shape # type: ignore
|
||||
elif type(data) == list:
|
||||
return [len(data)] # type: ignore
|
||||
return []
|
||||
|
||||
|
||||
def make_constant_node(value: NumericData, dtype: NumericType = None) -> Constant:
|
||||
"""Return an ngraph Constant node with the specified value."""
|
||||
ndarray = get_ndarray(value)
|
||||
|
@ -21,8 +21,8 @@ import numpy as np
|
||||
from openvino.inference_engine import IECore, IENetwork
|
||||
|
||||
from ngraph.exceptions import UserInputError
|
||||
from ngraph.impl import Function, Node
|
||||
from ngraph.utils.types import NumericData
|
||||
from ngraph.impl import Function, Node, PartialShape
|
||||
from ngraph.utils.types import NumericData, get_shape
|
||||
import tests
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
@ -76,15 +76,11 @@ class Computation(object):
|
||||
"""nGraph callable computation object."""
|
||||
|
||||
def __init__(self, runtime: Runtime, ng_function: Function) -> None:
|
||||
ie = runtime.backend
|
||||
self.runtime = runtime
|
||||
self.function = ng_function
|
||||
self.parameters = ng_function.get_parameters()
|
||||
self.results = ng_function.get_results()
|
||||
|
||||
capsule = Function.to_capsule(ng_function)
|
||||
cnn_network = IENetwork(capsule)
|
||||
self.executable_network = ie.load_network(cnn_network, self.runtime.backend_name)
|
||||
self.network_cache = {}
|
||||
|
||||
def __repr__(self) -> str:
|
||||
params_string = ", ".join([param.name for param in self.parameters])
|
||||
@ -93,6 +89,19 @@ class Computation(object):
|
||||
def __call__(self, *input_values: NumericData) -> List[NumericData]:
|
||||
"""Run computation on input values and return result."""
|
||||
input_values = [np.array(input_value) for input_value in input_values]
|
||||
input_shapes = [get_shape(input_value) for input_value in input_values]
|
||||
|
||||
if self.network_cache.get(str(input_shapes)) is None:
|
||||
capsule = Function.to_capsule(self.function)
|
||||
cnn_network = IENetwork(capsule)
|
||||
if self.function.is_dynamic():
|
||||
param_names = [param.friendly_name for param in self.parameters]
|
||||
cnn_network.reshape(dict(zip(param_names, input_shapes)))
|
||||
self.network_cache[str(input_shapes)] = cnn_network
|
||||
else:
|
||||
cnn_network = self.network_cache[str(input_shapes)]
|
||||
|
||||
executable_network = self.runtime.backend.load_network(cnn_network, self.runtime.backend_name)
|
||||
|
||||
# Input validation
|
||||
if len(input_values) != len(self.parameters):
|
||||
@ -100,14 +109,16 @@ class Computation(object):
|
||||
"Expected %s parameters, received %s.", len(self.parameters), len(input_values)
|
||||
)
|
||||
for parameter, input in zip(self.parameters, input_values):
|
||||
parameter_shape = parameter.get_output_shape(0)
|
||||
if len(input.shape) > 0 and list(parameter_shape) != list(input.shape):
|
||||
parameter_shape = parameter.get_output_partial_shape(0)
|
||||
input_shape = PartialShape(input.shape)
|
||||
if len(input.shape) > 0 and not parameter_shape.compatible(input_shape):
|
||||
raise UserInputError(
|
||||
"Provided tensor's shape: %s does not match the expected: %s.",
|
||||
list(input.shape),
|
||||
list(parameter_shape),
|
||||
input_shape,
|
||||
parameter_shape,
|
||||
)
|
||||
|
||||
request = self.executable_network.requests[0]
|
||||
request = executable_network.requests[0]
|
||||
|
||||
request.infer(dict(zip(request._inputs_list, input_values)))
|
||||
return [blob.buffer for blob in request.output_blobs.values()]
|
||||
|
Loading…
Reference in New Issue
Block a user