Implement LookupTableInsert shape inference (#2348)

* Implement LookupTableInsertV2 shape inference

It is needed if other nodes not beeing pruned in the graph
have a conditional dependence on LookupTableInsertV2 node.

Signed-off-by: Roman Kazantsev <roman.kazantsev@intel.com>

* Fix after core-review #1

Signed-off-by: Roman Kazantsev <roman.kazantsev@intel.com>

* Fix the code after review #2

Signed-off-by: Roman Kazantsev <roman.kazantsev@intel.com>

* Fix after code review #3
This commit is contained in:
Roman Kazantsev 2020-10-20 09:57:55 +03:00 committed by GitHub
parent 347e92cc82
commit c2394508c1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 170 additions and 0 deletions

View File

@ -390,6 +390,7 @@ extensions/front/tf/identity_ext.py
extensions/front/tf/identityN_to_identity.py
extensions/front/tf/InterpolateTransposes.py
extensions/front/tf/IteratorGetNext_ext.py
extensions/front/tf/LookupTableInsert_ext.py
extensions/front/tf/LoopCond_ext.py
extensions/front/tf/lrn_ext.py
extensions/front/tf/mask_rcnn_support.json
@ -630,6 +631,7 @@ extensions/ops/identity.py
extensions/ops/instance_normalization.py
extensions/ops/interp.py
extensions/ops/interpolate.py
extensions/ops/LookupTableInsert.py
extensions/ops/LSTM.py
extensions/ops/lstm_cell.py
extensions/ops/lstm_sequence.py

View File

@ -0,0 +1,38 @@
"""
Copyright (C) 2020 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from extensions.ops.LookupTableInsert import LookupTableInsert
from mo.front.extractor import FrontExtractorOp
class LookupTableInsertFrontExtractor(FrontExtractorOp):
op = 'LookupTableInsert'
enabled = True
@classmethod
def extract(cls, node):
LookupTableInsert.update_node_stat(node, {})
return cls.enabled
class LookupTableInsertV2FrontExtractor(FrontExtractorOp):
op = 'LookupTableInsertV2'
enabled = True
@classmethod
def extract(cls, node):
LookupTableInsert.update_node_stat(node, {})
return cls.enabled

View File

@ -0,0 +1,58 @@
"""
Copyright (C) 2020 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import numpy as np
from mo.front.common.partial_infer.utils import int64_array
from mo.graph.graph import Node, Graph
from mo.ops.op import Op
class LookupTableInsert(Op):
'''
This operation has only output control flow edges and no output data edges in some models.
And for these cases implementation of the shape inference is needed since the shape inference is executed
before control flow edges resolving. This operation has non-tensor output so the output shape is empty.
'''
enabled = False
op = 'LookupTableInsert'
def __init__(self, graph: Graph, attrs: dict):
mandatory_props = {
'type': None,
'op': self.op,
'infer': self.infer,
'in_ports_count': 3,
'out_ports_count': 1,
}
super().__init__(graph, mandatory_props, attrs)
@staticmethod
def infer(node: Node):
node_name = node.soft_get('name', node.id)
connected_in_ports = [port for port in node.in_ports().values() if not port.disconnected()]
assert len(connected_in_ports) == 3, \
"Incorrect number of inputs for {} node".format(node_name)
# check shapes of input tensors
keys_shape = node.in_port(1).data.get_shape()
values_shape = node.in_port(2).data.get_shape()
assert np.array_equal(keys_shape, values_shape), \
'Shapes of tensors with keys and values must be equal for {} node'.format(node_name)
# set output shape that must be empty
# since output is not a tensor
node.out_port(0).data.set_shape(int64_array([]))

View File

@ -0,0 +1,72 @@
"""
Copyright (C) 2020 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import unittest
import numpy as np
from extensions.ops.LookupTableInsert import LookupTableInsert
from mo.front.common.partial_infer.utils import int64_array
from mo.graph.graph import Node
from mo.utils.unittest.graph import build_graph
nodes_attributes = {'table': {'kind': 'op'},
'table_data': {'shape': None, 'value': None, 'kind': 'data'},
'keys': {'kind': 'op'},
'keys_data': {'shape': None, 'value': None, 'kind': 'data'},
'values': {'kind': 'op'},
'values_data': {'shape': None, 'value': None, 'kind': 'data'},
'lookuptableinsert_node': {'op': 'LookupTableInsert', 'kind': 'op'},
'output': {'shape': None, 'value': None, 'kind': 'data'}}
# graph 1
edges1 = [('table', 'table_data'),
('keys', 'keys_data'),
('values', 'values_data'),
('table_data', 'lookuptableinsert_node', {'in': 0}),
('keys_data', 'lookuptableinsert_node', {'in': 1}),
('values_data', 'lookuptableinsert_node', {'in': 2}),
('lookuptableinsert_node', 'output')]
# valid test case
inputs1 = {'table_data': {},
'keys_data': {'shape': int64_array([4])},
'values_data': {'shape': int64_array([4])}}
# invalid test case
inputs2 = {'table_data': {},
'keys_data': {'shape': int64_array([5, 2])},
'values_data': {'shape': int64_array([4])}}
class TestLookupTableInsert(unittest.TestCase):
def test_infer1(self):
graph = build_graph(nodes_attributes, edges1, inputs1)
lookuptableinsert_node = Node(graph, 'lookuptableinsert_node')
LookupTableInsert.infer(lookuptableinsert_node)
# prepare reference results
ref_output_shape = int64_array([])
# get the result
res_output_shape = graph.node['output']['shape']
self.assertTrue(np.array_equal(ref_output_shape, res_output_shape),
'shapes do not match expected: {} and given: {}'.format(ref_output_shape, res_output_shape))
def test_infer_invalid1(self):
graph = build_graph(nodes_attributes, edges1, inputs2)
lookuptableinsert_node = Node(graph, 'lookuptableinsert_node')
self.assertRaises(AssertionError, LookupTableInsert.infer, lookuptableinsert_node)