Reference implementations for Loop and TensorIterator ops (#2978)

* Loop op ngraph implementation, update IE IR Reader and ngraph to cnn converter

* refactoring SubGraphOp class

* type prop unit tests

* ngraph code style

* update comment

* single layer tests for Loop operation

* fix file name

* Add SpecialBodyPorts attribute in Loop op, update single layer tests

* first debug version

* more tests

* missing test file

* removed not needed shapes from test data

* move test data to new folder

* shape infer tests

* Added execution tests

* add several new tests cases, strict checks in Loop impl, temporary disable single layer tests

* ngraph codestyle, refactoring, clone_new_args test

* resolve review remarks

* fix build

* fix tests

* more execution tests

* add a new constructor of Loop op, resolve review remarks

* execution tests

* synchro with current version

* handle scalars and more tests

* scalar test enabled

* loop reference impl

* bug fixes in tests, onnx importer part and in the ref implementation of the Loop op

* applied remarks

* handle unsupported cases

* rewrite unit tests

* update INTERPRETER manifest

* is_termination_condition_always_true simplification

* [TEST] update python models tests

* review remarks

* added xfail to tiny_yolov3

* missing model test

* revert test data

* fixed numbers of failing tests

* fixed failed test description

* fix test message

* fix xfail test

* reference implementation for ngraph::function

* update loop reference implementation

* Refactor loop reference implementation

* ngraph codestyle

* Refactoring

* Submodule update

* Skip check for Reduce ops in mkl for scalar cases, support for yolov3

* fix ngraph reader tests

* revert ceiling op, renaming

* Add allias(Ceiling) for Ceil op in mkl

* delete xfails

* fix build

* single layer tests for tensor iterarator

* Refactor TensorIterator and Loop ref impls

* revert dynamic tensor creation, disable some dynamic test cases

* fix warning

* Resolve review remarks

* revert Predefined values in Loop tests

Co-authored-by: Mateusz Bencer <mateusz.bencer@intel.com>
This commit is contained in:
Ivan Tikhonov 2020-11-10 15:49:59 +03:00 committed by GitHub
parent b6e2cd692b
commit c309bb77d2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
49 changed files with 1199 additions and 65 deletions

View File

@ -20,6 +20,7 @@ MKLDNN_EXTENSION_NODE(MathImpl, Asinh);
MKLDNN_EXTENSION_NODE(MathImpl, Atan);
MKLDNN_EXTENSION_NODE(MathImpl, Atanh);
MKLDNN_EXTENSION_NODE(MathImpl, Ceil);
MKLDNN_EXTENSION_NODE(MathImpl, Ceiling);
MKLDNN_EXTENSION_NODE(MathImpl, Cos);
MKLDNN_EXTENSION_NODE(MathImpl, Cosh);
MKLDNN_EXTENSION_NODE(MathImpl, Erf);

View File

@ -68,6 +68,7 @@ public:
else if (math_func == "Atan") mathFunction = Math::Atan;
else if (math_func == "Atanh") mathFunction = Math::Atanh;
else if (math_func == "Ceil") mathFunction = Math::Ceil;
else if (math_func == "Ceiling") mathFunction = Math::Ceil;
else if (math_func == "Cos") mathFunction = Math::Cos;
else if (math_func == "Cosh") mathFunction = Math::Cosh;
else if (math_func == "Floor") mathFunction = Math::Floor;
@ -276,6 +277,7 @@ REG_FACTORY_FOR(MathImpl, Asinh);
REG_FACTORY_FOR(MathImpl, Atan);
REG_FACTORY_FOR(MathImpl, Atanh);
REG_FACTORY_FOR(MathImpl, Ceil);
REG_FACTORY_FOR(MathImpl, Ceiling);
REG_FACTORY_FOR(MathImpl, Cos);
REG_FACTORY_FOR(MathImpl, Cosh);
REG_FACTORY_FOR(MathImpl, Erf);

View File

@ -1264,7 +1264,10 @@ void MKLDNNReduceNode::getSupportedDescriptors() {
if (getParentEdgeAt(REDUCE_DATA)->getDims().ndims() != getChildEdgeAt(0)->getDims().ndims())
THROW_IE_EXCEPTION << "Reduce layer with name " << getName() << "gets incorrect number of input/output dimensions!";
} else {
if (getParentEdgeAt(REDUCE_DATA)->getDims().ndims() <= getChildEdgeAt(0)->getDims().ndims())
// In fact, after the Reduce operation, the shape must be a scalar if the previous one was 1d.
// But for now, 0d tensor (scalar) is emulated as 1d tensor. Skip checking in such cases.
bool is_emulated_0d_as_1d = getParentEdgeAt(REDUCE_DATA)->getDims().ndims() == 1 && getChildEdgeAt(0)->getDims().ndims() == 1;
if (getParentEdgeAt(REDUCE_DATA)->getDims().ndims() <= getChildEdgeAt(0)->getDims().ndims() && !is_emulated_0d_as_1d)
THROW_IE_EXCEPTION << "Reduce layer with name " << getName() << "gets incorrect number of input/output dimensions!";
}

View File

@ -1,4 +1,4 @@
// Copyright (C) 2019 Intel Corporation
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

View File

@ -1,4 +1,4 @@
// Copyright (C) 2019 Intel Corporation
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
@ -10,7 +10,7 @@
using namespace LayerTestsDefinitions;
namespace {
// without clip values increase rapidly, so use only seq_lenghts = 2
// output values increase rapidly without clip, so use only seq_lenghts = 2
std::vector<size_t> seq_lengths_zero_clip{2};
std::vector<size_t> seq_lengths_clip_non_zero{20};
std::vector<size_t> batch{1, 10};

View File

@ -1,4 +1,4 @@
// Copyright (C) 2019 Intel Corporation
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

View File

@ -1,4 +1,4 @@
// Copyright (C) 2019 Intel Corporation
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
@ -10,7 +10,7 @@
using namespace LayerTestsDefinitions;
namespace {
// without clip values increase rapidly, so use only seq_lenghts = 2
// output values increase rapidly without clip, so use only seq_lenghts = 2
std::vector<size_t> seq_lengths_zero_clip{2};
std::vector<size_t> seq_lengths_clip_non_zero{20};
std::vector<size_t> batch{1, 10};

View File

@ -27,6 +27,12 @@ const std::vector<std::vector<size_t>> inputShapes = {
std::vector<size_t>{3, 5, 7, 9},
};
const std::vector<std::vector<size_t>> inputShapesOneAxis = {
std::vector<size_t>{10, 20, 30, 40},
std::vector<size_t>{3, 5, 7, 9},
std::vector<size_t>{10},
};
const std::vector<std::vector<int>> axes = {
{0},
{1},
@ -71,7 +77,7 @@ const auto paramsOneAxis = testing::Combine(
testing::Values(InferenceEngine::Precision::UNSPECIFIED),
testing::Values(InferenceEngine::Precision::UNSPECIFIED),
testing::Values(InferenceEngine::Layout::ANY),
testing::ValuesIn(inputShapes),
testing::ValuesIn(inputShapesOneAxis),
testing::Values(CommonTestUtils::DEVICE_CPU)
);

View File

@ -1,4 +1,4 @@
// Copyright (C) 2019 Intel Corporation
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

View File

@ -1,4 +1,4 @@
// Copyright (C) 2019 Intel Corporation
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
@ -10,7 +10,7 @@
using namespace LayerTestsDefinitions;
namespace {
// without clip values increase rapidly, so use only seq_lenghts = 2
// output values increase rapidly without clip, so use only seq_lenghts = 2
std::vector<size_t> seq_lengths_zero_clip{2};
std::vector<size_t> seq_lengths_clip_non_zero{20};
std::vector<size_t> batch{1, 10};

View File

@ -0,0 +1,58 @@
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include <vector>
#include <ngraph/op/util/attr_types.hpp>
#include "single_layer_tests/tensor_iterator.hpp"
#include "common_test_utils/test_constants.hpp"
using namespace LayerTestsDefinitions;
namespace {
// output values increase rapidly without clip, so use only seq_lenghts = 2
std::vector<bool> should_decompose = {true, false};
std::vector<size_t> seq_lengths_zero_clip{2};
std::vector<size_t> seq_lengths_clip_non_zero{20};
std::vector<size_t> batch{1, 10};
std::vector<size_t> hidden_size{1, 10};
std::vector<size_t> input_size{10};
std::vector<ngraph::helpers::TensorIteratorBody> body_type
= {ngraph::helpers::TensorIteratorBody::LSTM, ngraph::helpers::TensorIteratorBody::RNN,
ngraph::helpers::TensorIteratorBody::GRU};
std::vector<float> clip{0.f};
std::vector<float> clip_non_zeros{0.7f};
std::vector<ngraph::op::RecurrentSequenceDirection> direction = {ngraph::op::RecurrentSequenceDirection::FORWARD,
ngraph::op::RecurrentSequenceDirection::REVERSE};
std::vector<InferenceEngine::Precision> netPrecisions = {InferenceEngine::Precision::FP32,
InferenceEngine::Precision::FP16};
INSTANTIATE_TEST_CASE_P(smoke_TensorIteratorCommon, TensorIteratorTest,
::testing::Combine(
::testing::ValuesIn(should_decompose),
::testing::ValuesIn(seq_lengths_zero_clip),
::testing::ValuesIn(batch),
::testing::ValuesIn(hidden_size),
::testing::ValuesIn(input_size),
::testing::ValuesIn(clip),
::testing::ValuesIn(body_type),
::testing::ValuesIn(direction),
::testing::ValuesIn(netPrecisions),
::testing::Values(CommonTestUtils::DEVICE_CPU)),
TensorIteratorTest::getTestCaseName);
INSTANTIATE_TEST_CASE_P(smoke_TensorIteratorCommonClip, TensorIteratorTest,
::testing::Combine(
::testing::ValuesIn(should_decompose),
::testing::ValuesIn(seq_lengths_clip_non_zero),
::testing::ValuesIn(batch),
::testing::ValuesIn(hidden_size),
::testing::ValuesIn(input_size),
::testing::ValuesIn(clip_non_zeros),
::testing::ValuesIn(body_type),
::testing::ValuesIn(direction),
::testing::ValuesIn(netPrecisions),
::testing::Values(CommonTestUtils::DEVICE_CPU)),
TensorIteratorTest::getTestCaseName);
} // namespace

View File

@ -1,4 +1,4 @@
// Copyright (C) 2019 Intel Corporation
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

View File

@ -1,4 +1,4 @@
// Copyright (C) 2019 Intel Corporation
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

View File

@ -61,7 +61,7 @@ class StaticShapeLoopTest : public testing::WithParamInterface<StaticShapeLoopPa
public:
static std::string getTestCaseName(const testing::TestParamInfo<StaticShapeLoopParams> &obj);
InferenceEngine::Blob::Ptr GenerateInput(const InferenceEngine::InputInfo &info) const override;
std::vector<std::vector<std::uint8_t>> CalculateRefs() override;
std::vector<std::vector<std::uint8_t>> PredefinedRefs();
private:
bool static_iter_num; // trip count provided by constant node
@ -100,7 +100,7 @@ protected:
return LayerTestsCommon::GenerateInput(info);
}
std::vector<std::vector<std::uint8_t>> CalculateRefs() override {
std::vector<std::vector<std::uint8_t>> PredefinedRefs() {
if (outputGens.empty())
return LayerTestsCommon::CalculateRefs();

View File

@ -1,4 +1,4 @@
// Copyright (C) 2019 Intel Corporation
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

View File

@ -1,4 +1,4 @@
// Copyright (C) 2019 Intel Corporation
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

View File

@ -1,4 +1,4 @@
// Copyright (C) 2019 Intel Corporation
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

View File

@ -1,4 +1,4 @@
// Copyright (C) 2019 Intel Corporation
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

View File

@ -0,0 +1,39 @@
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#pragma once
#include <tuple>
#include <string>
#include <vector>
#include <memory>
#include <ngraph/op/util/attr_types.hpp>
#include "functional_test_utils/layer_test_utils.hpp"
#include "ngraph_functions/builders.hpp"
#include "ngraph_functions/utils/ngraph_helpers.hpp"
namespace LayerTestsDefinitions {
using TensorIteratorParams = typename std::tuple<
bool, // using unroll tensor iterator transformation
size_t, // seq_lengths
size_t, // batch
size_t, // hidden size
size_t, // input size
float, // clip
ngraph::helpers::TensorIteratorBody, // body type
ngraph::op::RecurrentSequenceDirection, // direction
InferenceEngine::Precision, // Network precision
std::string>; // Device name
class TensorIteratorTest : public testing::WithParamInterface<TensorIteratorParams>,
virtual public LayerTestsUtils::LayerTestsCommon {
public:
static std::string getTestCaseName(const testing::TestParamInfo<TensorIteratorParams> &obj);
protected:
void SetUp() override;
};
} // namespace LayerTestsDefinitions

View File

@ -1,4 +1,4 @@
// Copyright (C) 2019 Intel Corporation
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
@ -36,6 +36,10 @@ std::string GRUCellTest::getTestCaseName(const testing::TestParamInfo<GRUCellPar
std::string targetDevice;
std::tie(should_decompose, batch, hidden_size, input_size, activations, clip,
linear_before_reset, netPrecision, targetDevice) = obj.param;
inputShapes = {
{{batch, input_size}, {batch, hidden_size}, {3 * hidden_size, input_size},
{3 * hidden_size, hidden_size}, {(linear_before_reset? 4 : 3) * hidden_size}},
};
std::ostringstream result;
result << "decomposition" << should_decompose << "_";
result << "batch=" << batch << "_";

View File

@ -1,4 +1,4 @@
// Copyright (C) 2019 Intel Corporation
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
@ -42,7 +42,7 @@ namespace LayerTestsDefinitions {
{3 * hidden_size, hidden_size}, {(linear_before_reset ? 4 : 3) * hidden_size}},
};
std::ostringstream result;
result << "seq_lenghts" << seq_lenghts << "_";
result << "seq_lenghts=" << seq_lenghts << "_";
result << "batch=" << batch << "_";
result << "hidden_size=" << hidden_size << "_";
result << "input_size=" << input_size << "_";

View File

@ -53,7 +53,6 @@ namespace LayerTestsDefinitions {
void LoopTest::SetUp() {
SKIP_IF_CURRENT_TEST_IS_DISABLED()
SetRefMode(LayerTestsUtils::IE);
bool execute_first_iteration;
bool is_body_condition_const;
bool body_condition; // works only if is_body_condition_const ==
@ -161,8 +160,6 @@ namespace LayerTestsDefinitions {
void StaticShapeLoopTest::SetUp() {
SKIP_IF_CURRENT_TEST_IS_DISABLED()
SetRefMode(LayerTestsUtils::IE);
auto args_papck = std::tie(static_iter_num, max_iter_num, dynamic_exit, axis);
std::tie(
static_continue_cond,
@ -261,7 +258,7 @@ namespace LayerTestsDefinitions {
}
// Predefined ref output
std::vector<std::vector<std::uint8_t>> StaticShapeLoopTest::CalculateRefs() {
std::vector<std::vector<std::uint8_t>> StaticShapeLoopTest::PredefinedRefs() {
bool auto_concat_out = (axis != -1);
const auto n_iter = actual_n_iter();
@ -293,6 +290,23 @@ namespace LayerTestsDefinitions {
Run();
}
TEST_P(StaticShapeLoopTest, CompareWithPredefinedRefs) {
SKIP_IF_CURRENT_TEST_IS_DISABLED()
LoadNetwork();
Infer();
auto expectedOutputs = PredefinedRefs(); // use predefined refs instead of CalculateRefs function
const auto& actualOutputs = GetOutputs();
if (expectedOutputs.empty()) {
return;
}
IE_ASSERT(actualOutputs.size() == expectedOutputs.size())
<< "nGraph interpreter has " << expectedOutputs.size() << " outputs, while IE " << actualOutputs.size();
Compare(expectedOutputs, actualOutputs);
}
TEST_P(TrivialLoopTest, PassThroughBody) {
SKIP_IF_CURRENT_TEST_IS_DISABLED()
InferenceEngine::Precision iePrc;

View File

@ -1,4 +1,4 @@
// Copyright (C) 2019 Intel Corporation
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

View File

@ -1,4 +1,4 @@
// Copyright (C) 2019 Intel Corporation
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
@ -41,7 +41,7 @@ namespace LayerTestsDefinitions {
{4 * hidden_size, hidden_size}, {4 * hidden_size}},
};
std::ostringstream result;
result << "seq_lenghts" << seq_lenghts << "_";
result << "seq_lenghts=" << seq_lenghts << "_";
result << "batch=" << batch << "_";
result << "hidden_size=" << hidden_size << "_";
result << "input_size=" << input_size << "_";

View File

@ -1,4 +1,4 @@
// Copyright (C) 2019 Intel Corporation
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

View File

@ -1,4 +1,4 @@
// Copyright (C) 2019 Intel Corporation
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
@ -41,7 +41,7 @@ namespace LayerTestsDefinitions {
{hidden_size, hidden_size}, {hidden_size}},
};
std::ostringstream result;
result << "seq_lenghts" << seq_lenghts << "_";
result << "seq_lenghts=" << seq_lenghts << "_";
result << "batch=" << batch << "_";
result << "hidden_size=" << hidden_size << "_";
result << "input_size=" << input_size << "_";

View File

@ -0,0 +1,226 @@
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include <tuple>
#include <string>
#include <vector>
#include <memory>
#include <functional>
#include "ie_core.hpp"
#include "common_test_utils/common_utils.hpp"
#include "functional_test_utils/blob_utils.hpp"
#include "functional_test_utils/precision_utils.hpp"
#include "functional_test_utils/plugin_cache.hpp"
#include "functional_test_utils/skip_tests_config.hpp"
#include "single_layer_tests/tensor_iterator.hpp"
#include <transformations/control_flow/unroll_tensor_iterator.hpp>
namespace LayerTestsDefinitions {
std::string TensorIteratorTest::getTestCaseName(const testing::TestParamInfo<TensorIteratorParams> &obj) {
bool should_decompose;
size_t seq_lenghts;
size_t batch;
size_t hidden_size;
size_t input_size;
ngraph::helpers::TensorIteratorBody ti_body;
float clip;
ngraph::op::RecurrentSequenceDirection direction;
InferenceEngine::Precision netPrecision;
std::string targetDevice;
std::tie(should_decompose, seq_lenghts, batch, hidden_size, input_size, clip, ti_body, direction, netPrecision,
targetDevice) = obj.param;
std::vector<std::vector<size_t>> inputShapes = {};
switch (ti_body) {
case ngraph::helpers::TensorIteratorBody::LSTM:
inputShapes = {
{{batch, input_size}, {batch, hidden_size}, {batch, hidden_size}, {4 * hidden_size, input_size},
{4 * hidden_size, hidden_size}, {4 * hidden_size}},
};
break;
case ngraph::helpers::TensorIteratorBody::GRU:
inputShapes = {
{{batch, input_size}, {batch, hidden_size}, {3 * hidden_size, input_size},
{3 * hidden_size, hidden_size}, {3 * hidden_size}},
};
break;
case ngraph::helpers::TensorIteratorBody::RNN:
inputShapes = {{batch, input_size}, {batch, hidden_size},
{hidden_size, input_size}, {hidden_size, hidden_size}, {hidden_size}};
break;
}
std::ostringstream result;
result << "unrolling=" << should_decompose << "_";
result << "seq_lenghts=" << seq_lenghts << "_";
result << "batch=" << batch << "_";
result << "hidden_size=" << hidden_size << "_";
result << "input_size=" << input_size << "_";
result << "IS=" << CommonTestUtils::vec2str(inputShapes) << "_";
result << "TensorIteratorBody=" << ti_body << "_";
result << "direction=" << direction << "_";
result << "clip=" << clip << "_";
result << "netPRC=" << netPrecision.name() << "_";
result << "targetDevice=" << targetDevice << "_";
return result.str();
}
void TensorIteratorTest::SetUp() {
size_t seq_lenghts;
bool should_decompose;
size_t batch;
size_t hidden_size;
size_t input_size;
ngraph::helpers::TensorIteratorBody ti_body;
float clip;
ngraph::op::RecurrentSequenceDirection direction;
InferenceEngine::Precision netPrecision;
std::tie(should_decompose, seq_lenghts, batch, hidden_size, input_size, clip, ti_body, direction, netPrecision,
targetDevice) = this->GetParam();
std::vector<std::vector<size_t>> inputShapes;
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
auto tensor_iterator = std::make_shared<ngraph::opset5::TensorIterator>();
// Each case consist of 3 steps:
// 1. Create TensorIterator body.
// 2. Set PortMap
// 3. Create outer function
auto axis = std::make_shared<ngraph::opset5::Constant>(ngraph::element::i64, ngraph::Shape{1}, std::vector<int64_t>{1});
switch (ti_body) {
case ngraph::helpers::TensorIteratorBody::LSTM: {
inputShapes = {
{{batch, seq_lenghts, input_size}, {batch, hidden_size}, {batch, hidden_size}, {4 * hidden_size, input_size},
{4 * hidden_size, hidden_size}, {4 * hidden_size}},
};
auto outer_params = ngraph::builder::makeParams(ngPrc, {inputShapes[0], inputShapes[1], inputShapes[2]});
// 1. Create TensorIterator body.
inputShapes[0][1] = 1; // sliced dimension
auto body_params = ngraph::builder::makeParams(ngPrc, {inputShapes[0], inputShapes[1], inputShapes[2]});
auto squeeze = std::make_shared<ngraph::opset5::Squeeze>(body_params[0], axis);
std::vector<ngraph::Shape> WRB = {inputShapes[3], inputShapes[4], inputShapes[5]};
ngraph::OutputVector out_vector = {squeeze, body_params[1], body_params[2]};
auto lstm_cell = ngraph::builder::makeLSTM(out_vector, WRB, hidden_size, {"sigmoid", "tanh", "tanh"}, {}, {}, clip);
auto unsqueeze = std::make_shared<ngraph::opset5::Unsqueeze>(lstm_cell->output(0), axis);
ngraph::ResultVector results{std::make_shared<ngraph::opset1::Result>(unsqueeze),
std::make_shared<ngraph::opset1::Result>(lstm_cell->output(0)),
std::make_shared<ngraph::opset1::Result>(lstm_cell->output(1))};
auto body = std::make_shared<ngraph::Function>(results, body_params, "lstm_cell");
tensor_iterator->set_function(body);
// 2. Set PortMap
if (direction == ngraph::op::RecurrentSequenceDirection::FORWARD) {
tensor_iterator->set_sliced_input(body_params[0], outer_params[0], 0, 1, 1, -1, 1);
tensor_iterator->get_concatenated_slices(results[0], 0, 1, 1, -1, 1);
} else if (direction == ngraph::op::RecurrentSequenceDirection::REVERSE) {
tensor_iterator->set_sliced_input(body_params[0], outer_params[0], -1, -1, 1, 0, 1);
tensor_iterator->get_concatenated_slices(results[0], -1, -1, 1, 0, 1);
} else {
NGRAPH_CHECK(false, "Bidirectional case is not supported.");
}
tensor_iterator->set_invariant_input(body_params[1], outer_params[1]);
tensor_iterator->set_invariant_input(body_params[2], outer_params[2]);
tensor_iterator->get_iter_value(results[1]);
tensor_iterator->get_iter_value(results[2]);
// 3. Outer function
function = std::make_shared<ngraph::Function>(ngraph::OutputVector{tensor_iterator->output(0), tensor_iterator->output(1),
tensor_iterator->output(2)}, outer_params);
break;
}
case ngraph::helpers::TensorIteratorBody::GRU: {
inputShapes = {
{{batch, seq_lenghts, input_size}, {batch, hidden_size}, {3 * hidden_size, input_size},
{3 * hidden_size, hidden_size}, {3 * hidden_size}},
};
auto outer_params = ngraph::builder::makeParams(ngPrc, {inputShapes[0], inputShapes[1]});
// 1. Create TensorIterator body.
inputShapes[0][1] = 1; // sliced dimension
auto body_params = ngraph::builder::makeParams(ngPrc, {inputShapes[0], inputShapes[1]});
std::vector<ngraph::Shape> WRB = {inputShapes[2], inputShapes[3], inputShapes[4]};
auto squeeze = std::make_shared<ngraph::opset5::Squeeze>(body_params[0], axis);
ngraph::OutputVector out_vector = {squeeze, body_params[1]};
auto gru_cell = ngraph::builder::makeGRU(out_vector, WRB, hidden_size, {"sigmoid", "tanh"},
{}, {}, clip, false);
auto unsqueeze = std::make_shared<ngraph::opset5::Unsqueeze>(gru_cell->output(0), axis);
ngraph::ResultVector results{std::make_shared<ngraph::opset1::Result>(gru_cell->output(0)),
std::make_shared<ngraph::opset1::Result>(unsqueeze)};
auto body = std::make_shared<ngraph::Function>(results, body_params, "gru_cell");
tensor_iterator->set_function(body);
// 2. Set PortMap
if (direction == ngraph::op::RecurrentSequenceDirection::FORWARD) {
tensor_iterator->set_sliced_input(body_params[0], outer_params[0], 0, 1, 1, -1, 1);
tensor_iterator->get_concatenated_slices(results[1], 0, 1, 1, -1, 1);
} else if (direction == ngraph::op::RecurrentSequenceDirection::REVERSE) {
tensor_iterator->set_sliced_input(body_params[0], outer_params[0], -1, -1, 1, 0, 1);
tensor_iterator->get_concatenated_slices(results[1], -1, -1, 1, 0, 1);
} else {
NGRAPH_CHECK(false, "Bidirectional case is not supported.");
}
tensor_iterator->set_invariant_input(body_params[1], outer_params[1]);
tensor_iterator->get_iter_value(results[0]);
// 3. Outer function
function = std::make_shared<ngraph::Function>(ngraph::OutputVector{tensor_iterator->output(0), tensor_iterator->output(1)}, outer_params);
break;
}
case ngraph::helpers::TensorIteratorBody::RNN: {
inputShapes = {{batch, seq_lenghts, input_size},
{batch, hidden_size},
{hidden_size, input_size},
{hidden_size, hidden_size},
{hidden_size}};
auto outer_params = ngraph::builder::makeParams(ngPrc, {inputShapes[0], inputShapes[1]});
// 1. Create TensorIterator body.
inputShapes[0][1] = 1; // sliced dimension
auto body_params = ngraph::builder::makeParams(ngPrc, {inputShapes[0], inputShapes[1]});
std::vector<ngraph::Shape> WRB = {inputShapes[2], inputShapes[3], inputShapes[4]};
auto squeeze = std::make_shared<ngraph::opset5::Squeeze>(body_params[0], axis);
ngraph::OutputVector out_vector = {squeeze, body_params[1]};
auto rnn_cell = ngraph::builder::makeRNN(out_vector, WRB, hidden_size, {"tanh"}, {}, {}, clip);
auto unsqueeze = std::make_shared<ngraph::opset5::Unsqueeze>(rnn_cell->output(0), axis);
ngraph::ResultVector results{std::make_shared<ngraph::opset1::Result>(rnn_cell),
std::make_shared<ngraph::opset1::Result>(unsqueeze)};
auto body = std::make_shared<ngraph::Function>(results, body_params, "rnn_cell");
tensor_iterator->set_function(body);
// 2. Set PortMap
if (direction == ngraph::op::RecurrentSequenceDirection::FORWARD) {
tensor_iterator->set_sliced_input(body_params[0], outer_params[0], 0, 1, 1, -1, 1);
tensor_iterator->get_concatenated_slices(results[1], 0, 1, 1, -1, 1);
} else if (direction == ngraph::op::RecurrentSequenceDirection::REVERSE) {
tensor_iterator->set_sliced_input(body_params[0], outer_params[0], -1, -1, 1, 0, 1);
tensor_iterator->get_concatenated_slices(results[1], -1, -1, 1, 0, 1);
} else {
NGRAPH_CHECK(false, "Bidirectional case is not supported.");
}
tensor_iterator->set_invariant_input(body_params[1], outer_params[1]);
tensor_iterator->get_iter_value(results[0]);
// 3. Outer function
function = std::make_shared<ngraph::Function>(ngraph::OutputVector{tensor_iterator->output(0), tensor_iterator->output(1)}, outer_params);
break;
}
}
if (should_decompose) {
ngraph::pass::Manager m;
m.register_pass<ngraph::pass::UnrollTensorIterator>();
m.run_passes(function);
}
}
TEST_P(TensorIteratorTest, CompareWithRefs) {
Run();
};
} // namespace LayerTestsDefinitions

View File

@ -182,6 +182,13 @@ enum class PadMode {
SYMMETRIC,
};
enum class TensorIteratorBody {
RNN,
GRU,
LSTM,
// CNN todo: implement
};
std::ostream &operator<<(std::ostream &os, const ReductionType &m);
std::ostream &operator<<(std::ostream &os, const PadMode &m);
@ -258,5 +265,7 @@ std::ostream& operator<<(std::ostream & os, ngraph::op::v4::Interpolate::Nearest
std::ostream& operator<<(std::ostream & os, ngraph::op::v4::Interpolate::ShapeCalcMode type);
std::ostream& operator<<(std::ostream & os, TensorIteratorBody type);
} // namespace helpers
} // namespace ngraph

View File

@ -729,5 +729,21 @@ std::ostream& operator<<(std::ostream & os, ngraph::op::v4::Interpolate::ShapeCa
return os;
}
std::ostream& operator<<(std::ostream & os, TensorIteratorBody type) {
switch (type) {
case TensorIteratorBody::LSTM:
os << "LSTM";
break;
case TensorIteratorBody::RNN:
os << "RNN";
break;
case TensorIteratorBody::GRU:
os << "GRU";
break;
default:
throw std::runtime_error("NOT_SUPPORTED_OP_TYPE");
}
return os;
}
} // namespace helpers
} // namespace ngraph

View File

@ -96,6 +96,9 @@ namespace ngraph
std::shared_ptr<Node>
clone_with_new_inputs(const OutputVector& new_args) const override;
bool evaluate(const HostTensorVector& outputs,
const HostTensorVector& inputs) const override;
private:
SpecialBodyPorts m_special_body_ports;
int64_t m_num_iterations = -1; // -1 means infinity

View File

@ -341,6 +341,10 @@ namespace ngraph
std::vector<std::shared_ptr<op::util::SubGraphOp::OutputDescription>>
m_output_descriptions;
};
using InputDescriptionPtr = std::shared_ptr<util::SubGraphOp::InputDescription>;
using OutputDescriptionPtr = std::shared_ptr<util::SubGraphOp::OutputDescription>;
using InputDescriptionVector = std::vector<InputDescriptionPtr>;
using OutputDescriptionVector = std::vector<OutputDescriptionPtr>;
}
}
template class NGRAPH_API FactoryRegistry<op::util::SubGraphOp::InputDescription>;

View File

@ -0,0 +1,35 @@
//*****************************************************************************
// Copyright 2020 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <cmath>
#include <cstddef>
#include <vector>
#include "ngraph/function.hpp"
namespace ngraph
{
namespace runtime
{
namespace reference
{
void function(const std::shared_ptr<Function>& function,
const HostTensorVector& inputs,
HostTensorVector& outputs);
}
}
}

View File

@ -0,0 +1,36 @@
//*****************************************************************************
// Copyright 2020 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and`
// limitations under the License.
//*****************************************************************************
#pragma once
#include <cmath>
#include <ngraph/opsets/opset5.hpp>
namespace ngraph
{
namespace runtime
{
namespace reference
{
void loop(const std::shared_ptr<Function>& body,
const op::util::OutputDescriptionVector& out_descs,
const op::util::InputDescriptionVector& input_descs,
const opset5::Loop::SpecialBodyPorts& special_ports,
const HostTensorVector& out,
const HostTensorVector& args);
}
}
}

View File

@ -0,0 +1,41 @@
//*****************************************************************************
// Copyright 2020 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and`
// limitations under the License.
//*****************************************************************************
#pragma once
#include <cmath>
#include <ngraph/opsets/opset5.hpp>
namespace ngraph
{
namespace runtime
{
namespace reference
{
using custom_evaluate_function =
std::function<void(const std::shared_ptr<ngraph::Function>& function,
const HostTensorVector& inputs,
HostTensorVector& outputs)>;
void tensor_iterator(uint64_t num_iterations,
const std::shared_ptr<Function>& body,
const op::util::OutputDescriptionVector& out_descs,
const op::util::InputDescriptionVector& input_descs,
const HostTensorVector& out,
const HostTensorVector& args,
const custom_evaluate_function& evaluate = nullptr);
}
}
}

View File

@ -0,0 +1,147 @@
//*****************************************************************************
// Copyright 2020 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <cstring>
#include "ngraph/opsets/opset5.hpp"
#include "ngraph/runtime/reference/function.hpp"
#include "ngraph/runtime/host_tensor.hpp"
#include "ngraph/runtime/reference/concat.hpp"
#include "ngraph/runtime/tensor.hpp"
namespace ngraph
{
namespace runtime
{
namespace reference
{
static bool call(const HostTensorVector& func_outputs,
const HostTensorVector& func_inputs,
const std::shared_ptr<ngraph::Function>& function)
{
// map function params -> HostTensor
std::unordered_map<descriptor::Tensor*, std::shared_ptr<HostTensor>> tensor_map;
size_t input_count = 0;
for (const auto& param : function->get_parameters())
{
for (size_t i = 0; i < param->get_output_size(); ++i)
{
descriptor::Tensor* tensor = &param->output(i).get_tensor();
tensor_map.insert({tensor, func_inputs[input_count++]});
}
}
// map function outputs -> HostTensor
for (size_t output_count = 0; output_count < function->get_results().size();
++output_count)
{
auto output = function->get_results()[output_count];
descriptor::Tensor* tensor = &output->get_output_tensor(0);
tensor_map.insert({tensor, func_outputs[output_count]});
}
// for each ordered op in the graph
for (const auto& op : function->get_ordered_ops())
{
if (op::is_parameter(op))
{
continue;
}
// get op inputs from map
std::vector<std::shared_ptr<HostTensor>> op_inputs;
for (auto input : op->inputs())
{
descriptor::Tensor* tensor = &input.get_tensor();
op_inputs.push_back(tensor_map.at(tensor));
}
// get op outputs from map or create
std::vector<std::shared_ptr<HostTensor>> op_outputs;
for (size_t i = 0; i < op->get_output_size(); ++i)
{
descriptor::Tensor* tensor = &op->output(i).get_tensor();
std::shared_ptr<HostTensor> host_tensor;
auto it = tensor_map.find(tensor);
if (it == tensor_map.end())
{
host_tensor = std::make_shared<HostTensor>(op->output(i));
tensor_map.insert({tensor, host_tensor});
}
else
{
host_tensor = it->second;
}
op_outputs.push_back(host_tensor);
}
op->validate_and_infer_types();
if (!op->evaluate(op_outputs, op_inputs))
{
throw ngraph_error("Evaluate function is not implemented.");
}
}
return true;
}
void function(const std::shared_ptr<ngraph::Function>& function,
const HostTensorVector& inputs,
HostTensorVector& outputs)
{
const auto& parameters = function->get_parameters();
const auto& parametersNumber = parameters.size();
const auto& inputsNumber = inputs.size();
NGRAPH_CHECK(parametersNumber == inputsNumber,
"Got function (",
function->get_friendly_name(),
") with ",
parametersNumber,
" parameters, but ",
inputsNumber,
" input blobs");
for (const auto& parameter : parameters)
{
const auto& parameterIndex = function->get_parameter_index(parameter);
const auto& parameterShape = parameter->get_shape();
const auto& parameterType = parameter->get_element_type();
const auto& parameterSize = shape_size(parameterShape) * parameterType.size();
const auto& input = inputs[parameterIndex];
const auto& inputSize = input->get_size_in_bytes();
NGRAPH_CHECK(parameterSize == inputSize,
"Got parameter (",
parameter->get_friendly_name(),
") of size ",
parameterSize,
" bytes, but corresponding input with index ",
parameterIndex,
" has ",
inputSize,
" bytes");
}
const auto& results = function->get_results();
outputs.reserve(results.size());
for (size_t i = 0; i < results.size(); ++i)
{
outputs.push_back(std::make_shared<HostTensor>());
}
call(outputs, inputs, function);
}
}
}
}

View File

@ -0,0 +1,227 @@
//*****************************************************************************
// Copyright 2020 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include "runtime/reference/loop.hpp"
#include "runtime/reference/concat.hpp"
#include "runtime/reference/function.hpp"
namespace ngraph
{
namespace runtime
{
namespace reference
{
void loop(const std::shared_ptr<Function>& func,
const op::util::OutputDescriptionVector& out_descs,
const op::util::InputDescriptionVector& input_descs,
const opset5::Loop::SpecialBodyPorts& special_ports,
const HostTensorVector& out,
const HostTensorVector& args)
{
const auto& cur_iter_idx = special_ports.current_iteration_input_idx;
auto val =
std::find_if(input_descs.begin(),
input_descs.end(),
[&cur_iter_idx](const op::util::InputDescriptionPtr& in_desc) {
return in_desc->m_body_parameter_index == cur_iter_idx;
});
bool cur_iter_initial_value_exist = val != input_descs.end();
bool cur_iter_back_edge_exist = false;
// If current_iteration_input is exist and initial value is not provided, we
// should allocate input_descs.size() + 1 inputs and set default value (0) for
// current_iteration input.
int64_t inputs_count =
input_descs.size() + (cur_iter_idx >= 0 ? !cur_iter_initial_value_exist : 0);
HostTensorVector inputs_to_body;
for (int64_t i = 0; i < inputs_count; ++i)
inputs_to_body.push_back(
std::make_shared<HostTensor>(element::dynamic, PartialShape::dynamic()));
if (cur_iter_idx >= 0 && !cur_iter_initial_value_exist)
{
const auto& cur_iter = func->get_parameters().at(cur_iter_idx);
if (cur_iter->get_partial_shape().is_dynamic())
{
cur_iter->set_partial_shape(Shape{1});
cur_iter->validate_and_infer_types();
}
auto init = std::make_shared<opset5::Constant>(
func->get_parameters().at(cur_iter_idx)->get_element_type(),
func->get_parameters().at(cur_iter_idx)->get_shape(),
0);
inputs_to_body.at(cur_iter_idx)->initialize(init);
// reinterpret_cast<int64_t*>(inputs_to_body.at(cur_iter_idx).data())[0] = 0;
}
// Port map processing: inputs and back edges
struct BackEdge
{
uint64_t param_idx;
uint64_t result_idx;
};
std::vector<BackEdge> back_edges;
for (const auto& desc : input_descs)
{
inputs_to_body[desc->m_body_parameter_index] = args[desc->m_input_index];
if (const auto& merged_desc =
std::dynamic_pointer_cast<opset5::Loop::MergedInputDescription>(desc))
{
back_edges.push_back(
{merged_desc->m_body_parameter_index, merged_desc->m_body_value_index});
cur_iter_back_edge_exist |=
merged_desc->m_body_parameter_index == cur_iter_idx;
}
}
// Get TripCount
int64_t trip_count = 0;
if (args[0]->get_element_type() == ngraph::element::i32)
{
auto* trip_count_p = args[0]->get_data_ptr<int32_t>();
trip_count = trip_count_p[0];
}
else if (args[0]->get_element_type() == ngraph::element::i64)
{
auto* trip_count_p = args[0]->get_data_ptr<int64_t>();
trip_count = trip_count_p[0];
}
else
{
NGRAPH_CHECK(
false,
"Unsupported element type for trip_count input. Expected int32 or int64.");
}
NGRAPH_CHECK(trip_count != 0, "Zero count of iteration not supported");
// Loop iterations
auto exec_condition = args[1]->get_data_ptr<bool>();
if (exec_condition[0])
{
// Find all ConcatOutputDescription
std::vector<std::shared_ptr<opset5::Loop::ConcatOutputDescription>>
concat_outputs;
for (const auto& desc : out_descs)
{
if (const auto& concat_desc =
std::dynamic_pointer_cast<opset5::Loop::ConcatOutputDescription>(
desc))
{
concat_outputs.push_back(concat_desc);
}
}
// Allocate vectors for store output values
std::vector<HostTensorVector> values_to_concat(concat_outputs.size());
HostTensorVector body_outputs;
// Negative value means infinity count of iterations
trip_count = trip_count >= 0 ? trip_count : std::numeric_limits<int64_t>::max();
for (int64_t cur_iter = 0; cur_iter < trip_count; ++cur_iter)
{
// Evaluate body
body_outputs.clear();
reference::function(func, inputs_to_body, body_outputs);
// Store values for later concatenation
for (size_t i = 0; i < values_to_concat.size(); ++i)
{
values_to_concat[i].push_back(
body_outputs[concat_outputs[i]->m_body_value_index]);
}
// Check execution condition
bool body_exec_condition;
body_outputs[special_ports.body_condition_output_idx]->read(
&body_exec_condition, sizeof(bool));
if (!body_exec_condition)
break;
// If there are no rules for calculating the current iteration, just
// increment it.
if (cur_iter_idx >= 0 && !cur_iter_back_edge_exist)
{
const auto& cur_iter_param = func->get_parameters().at(cur_iter_idx);
int64_t iter_num = cur_iter + 1;
if (cur_iter_param->get_element_type() == element::i64)
inputs_to_body.at(cur_iter_idx)
->write(&iter_num, cur_iter_param->get_element_type().size());
else if (cur_iter_param->get_element_type() == element::i32)
{
int32_t iter_num_i32 = static_cast<int32_t>(iter_num);
inputs_to_body.at(cur_iter_idx)
->write(&iter_num_i32,
cur_iter_param->get_element_type().size());
}
else
NGRAPH_CHECK(false,
"Unsupported element type for current iteration "
"input. Expected int32 or int64.");
}
// Back-edge processing
for (auto& back_edge : back_edges)
{
inputs_to_body[back_edge.param_idx] =
body_outputs[back_edge.result_idx];
}
}
for (const auto& desc : out_descs)
{
if (const auto& body_desc =
std::dynamic_pointer_cast<opset5::Loop::BodyOutputDescription>(
desc))
{
out[body_desc->m_output_index]->write(
body_outputs[body_desc->m_body_value_index]->get_data_ptr(),
body_outputs[body_desc->m_body_value_index]->get_size_in_bytes());
}
}
// Concatenate and copy all values stored in values_to_concat vector to outputs
for (size_t i = 0; i < concat_outputs.size(); ++i)
{
const auto& concat_desc = concat_outputs[i];
auto shape =
func->get_results().at(concat_desc->m_body_value_index)->get_shape();
std::vector<Shape> shapes_to_concat(values_to_concat[i].size(), shape);
shape.at(concat_desc->m_axis) = values_to_concat[i].size();
out[concat_desc->m_output_index]->set_shape(shape);
std::vector<const char*> pointers_on_values;
pointers_on_values.reserve(values_to_concat[i].size());
for (const auto& vec : values_to_concat[i])
{
pointers_on_values.push_back(vec->get_data_ptr<char>());
}
reference::concat(
pointers_on_values,
out[concat_desc->m_output_index]->get_data_ptr<char>(),
shapes_to_concat,
shape,
concat_desc->m_axis,
out[concat_desc->m_output_index]->get_element_type().size());
}
}
else
{
NGRAPH_CHECK(
false,
"ExecutionCondition is false. Zero count of iteration not supported.");
}
}
}
}
}

View File

@ -0,0 +1,181 @@
//*****************************************************************************
// Copyright 2020 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include "runtime/reference/tensor_iterator.hpp"
#include "runtime/reference/concat.hpp"
#include "runtime/reference/function.hpp"
#include "runtime/reference/split.hpp"
namespace ngraph
{
namespace runtime
{
namespace reference
{
void tensor_iterator(uint64_t num_iterations,
const std::shared_ptr<Function>& func,
const op::util::OutputDescriptionVector& out_descs,
const op::util::InputDescriptionVector& input_descs,
const HostTensorVector& out,
const HostTensorVector& args,
const custom_evaluate_function& evaluate)
{
HostTensorVector inputs_to_body;
for (int64_t i = 0; i < input_descs.size(); ++i)
inputs_to_body.push_back(
std::make_shared<HostTensor>(element::dynamic, PartialShape::dynamic()));
// Port map processing: inputs and back edges
struct BackEdge
{
uint64_t param_idx;
uint64_t result_idx;
};
std::vector<BackEdge> back_edges;
for (const auto& desc : input_descs)
{
inputs_to_body[desc->m_body_parameter_index] = args[desc->m_input_index];
if (const auto& merged_desc =
std::dynamic_pointer_cast<opset5::Loop::MergedInputDescription>(desc))
{
back_edges.push_back(
{merged_desc->m_body_parameter_index, merged_desc->m_body_value_index});
}
}
// Find all ConcatOutputDescription
std::vector<std::shared_ptr<opset5::TensorIterator::ConcatOutputDescription>>
concat_outputs;
for (const auto& desc : out_descs)
{
if (const auto& concat_desc = std::dynamic_pointer_cast<
opset5::TensorIterator::ConcatOutputDescription>(desc))
{
concat_outputs.push_back(concat_desc);
}
}
// Slicing
std::vector<std::shared_ptr<opset5::TensorIterator::SliceInputDescription>>
slice_inputs;
std::vector<HostTensorVector> sliced_values;
int slice_in_idx = 0;
for (const auto& desc : input_descs)
{
if (const auto& slice_desc = std::dynamic_pointer_cast<
opset5::TensorIterator::SliceInputDescription>(desc))
{
const auto el_size =
args[slice_desc->m_input_index]->get_element_type().size();
slice_inputs.push_back(slice_desc);
auto shape = args[slice_desc->m_input_index]->get_shape();
shape.at(slice_desc->m_axis) = 1;
sliced_values.emplace_back(HostTensorVector());
for (int i = 0; i < num_iterations; ++i)
{
sliced_values.back().emplace_back(std::make_shared<HostTensor>(
args[slice_desc->m_input_index]->get_element_type(), shape));
}
std::vector<char*> pointers_to_data(num_iterations);
for (size_t j = 0; j < pointers_to_data.size(); ++j)
{
pointers_to_data[j] =
sliced_values[slice_in_idx][j]->get_data_ptr<char>();
}
reference::split(args[slice_desc->m_input_index]->get_data_ptr<char>(),
args[slice_desc->m_input_index]->get_shape(),
el_size,
slice_desc->m_axis,
num_iterations,
pointers_to_data.data());
slice_in_idx++;
}
}
// Allocate vectors for store output values
std::vector<HostTensorVector> values_to_concat(concat_outputs.size());
HostTensorVector body_outputs;
for (int64_t cur_iter = 0; cur_iter < num_iterations; ++cur_iter)
{
// Copy new values for sliced inputs
for (size_t i = 0; i < slice_inputs.size(); ++i)
{
inputs_to_body[slice_inputs[i]->m_body_parameter_index] =
sliced_values[i][cur_iter];
}
// Evaluate body
if (!evaluate)
{
reference::function(func, inputs_to_body, body_outputs);
}
else
{
evaluate(func, inputs_to_body, body_outputs);
}
// Store values for later concatenation
for (size_t i = 0; i < values_to_concat.size(); ++i)
{
values_to_concat[i].push_back(
body_outputs[concat_outputs[i]->m_body_value_index]);
}
// Back-edge processing
for (auto& back_edge : back_edges)
{
inputs_to_body[back_edge.param_idx] = body_outputs[back_edge.result_idx];
}
}
for (const auto& desc : out_descs)
{
if (const auto& body_desc = std::dynamic_pointer_cast<
opset5::TensorIterator::BodyOutputDescription>(desc))
{
// Copy output values from the last iteration
out[body_desc->m_output_index]->write(
body_outputs[body_desc->m_body_value_index]->get_data_ptr(),
body_outputs[body_desc->m_body_value_index]->get_size_in_bytes());
}
}
// Concatenate and copy all values stored in values_to_concat vector to outputs
for (size_t i = 0; i < concat_outputs.size(); ++i)
{
const auto& concat_desc = concat_outputs[i];
auto shape =
func->get_results().at(concat_desc->m_body_value_index)->get_shape();
std::vector<Shape> shapes_to_concat(values_to_concat[i].size(), shape);
shape.at(concat_desc->m_axis) = values_to_concat[i].size();
out[concat_desc->m_output_index]->set_shape(shape);
std::vector<const char*> pointers_on_values;
pointers_on_values.reserve(values_to_concat[i].size());
for (const auto& vec : values_to_concat[i])
{
pointers_on_values.push_back(vec->get_data_ptr<char>());
}
reference::concat(pointers_on_values,
out[concat_desc->m_output_index]->get_data_ptr<char>(),
shapes_to_concat,
shape,
concat_desc->m_axis,
out[concat_desc->m_output_index]->get_element_type().size());
}
}
}
}
}

View File

@ -15,11 +15,14 @@
//*****************************************************************************
#include "ngraph/op/loop.hpp"
#include "itt.hpp"
#include "ngraph/factory.hpp"
#include "ngraph/graph_util.hpp"
#include "ngraph/opsets/opset5.hpp"
#include "ngraph/specialize_function.hpp"
#include "ngraph/runtime/reference/loop.hpp"
using namespace std;
using namespace ngraph;
@ -380,3 +383,11 @@ Output<Node> op::v5::Loop::get_concatenated_slices(const Output<Node>& value,
"{-1}");
return SubGraphOp::get_concatenated_slices(value, start, stride, part_size, end, axis);
}
bool op::v5::Loop::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
{
OV_ITT_SCOPED_TASK(itt::domains::nGraphOp, "op::v5::Loop::evaluate");
runtime::reference::loop(
m_body, m_output_descriptions, m_input_descriptions, m_special_body_ports, outputs, inputs);
return true;
}

View File

@ -143,7 +143,8 @@ namespace ngraph
const auto concat_axis_const =
ngraph::op::Constant::create(ngraph::element::i64, {1}, {concat_axis});
// provide scalar handing for scan outputs
for (int i = loop_carried_dependencies.size() + 1; i < body_outputs.size(); ++i)
for (size_t i = loop_carried_dependencies.size() + 1; i < body_outputs.size();
++i)
{
auto body_output_shape = body_outputs[i].get_partial_shape();
if (body_output_shape.is_static() &&

View File

@ -98,8 +98,6 @@ xfail_issue_36478 = xfail_test(reason="RuntimeError: [NOT_IMPLEMENTED] Input ima
"not supported yet...")
xfail_issue_36480 = xfail_test(reason="RuntimeError: [NOT_FOUND] Unsupported property dummy_option "
"by CPU plugin")
xfail_issue_36483 = xfail_test(reason="RuntimeError: Unsupported primitive of type: "
"Ceiling name: <value>")
xfail_issue_36485 = xfail_test(reason="RuntimeError: Check 'm_group >= 1' failed at "
"/openvino/ngraph/core/src/op/shuffle_channels.cpp:77:")
xfail_issue_36486 = xfail_test(reason="RuntimeError: HardSigmoid operation should be converted "

View File

@ -20,7 +20,7 @@ import ngraph as ng
from ngraph.impl import AxisSet, Function, Shape, Type
from ngraph.impl.op import Constant, Parameter
from tests.runtime import get_runtime
from tests import xfail_issue_36483, xfail_issue_34323
from tests import xfail_issue_34323
def binary_op(op_str, a, b):
@ -370,7 +370,6 @@ def test_atanh():
unary_op_exec(op_str, input_list)
@xfail_issue_36483
def test_ceiling():
input_list = [0.5, 0, 0.4, 0.5]
op_str = "Ceiling"

View File

@ -19,7 +19,7 @@ import pytest
import ngraph as ng
from ngraph.impl import Shape, Type
from tests.test_ngraph.util import run_op_node
from tests import xfail_issue_35929, xfail_issue_36483
from tests import xfail_issue_35929
@xfail_issue_35929
@ -67,8 +67,8 @@ def test_unary_op_array(ng_api_fn, numpy_fn, range_start, range_end):
pytest.param(ng.acos, np.arccos, np.float32(-0.5)),
pytest.param(ng.asin, np.arcsin, np.float32(-0.5)),
pytest.param(ng.atan, np.arctan, np.float32(-0.5)),
pytest.param(ng.ceiling, np.ceil, np.float32(1.5), marks=xfail_issue_36483),
pytest.param(ng.ceil, np.ceil, np.float32(1.5), marks=xfail_issue_36483),
pytest.param(ng.ceiling, np.ceil, np.float32(1.5)),
pytest.param(ng.ceil, np.ceil, np.float32(1.5)),
pytest.param(ng.cos, np.cos, np.float32(np.pi / 4.0)),
pytest.param(ng.cosh, np.cosh, np.float32(np.pi / 4.0)),
pytest.param(ng.exp, np.exp, np.float32(1.5)),

View File

@ -38,7 +38,6 @@ from tests import (BACKEND_NAME,
xfail_issue_33616,
xfail_issue_38086,
xfail_issue_38087,
xfail_issue_36483,
xfail_issue_34323,
xfail_issue_35915,
xfail_issue_34310,
@ -205,9 +204,6 @@ tests_expected_to_fail = [
"OnnxBackendNodeModelTest.test_quantizelinear_cpu"),
(xfail_issue_38087,
"OnnxBackendNodeModelTest.test_convtranspose_1d_cpu"),
(xfail_issue_36483,
"OnnxBackendNodeModelTest.test_ceil_cpu",
"OnnxBackendNodeModelTest.test_ceil_example_cpu"),
(xfail_issue_34323,
"OnnxBackendNodeModelTest.test_constant_cpu",
"OnnxBackendNodeModelTest.test_eyelike_populate_off_main_diagonal_cpu",

View File

@ -53,6 +53,13 @@ shared_ptr<runtime::Tensor>
return make_shared<runtime::HostTensor>(type, shape);
}
shared_ptr<runtime::Tensor>
runtime::interpreter::INTBackend::create_dynamic_tensor(const element::Type& type,
const PartialShape& pshape)
{
return make_shared<runtime::HostTensor>(type, pshape);
}
shared_ptr<runtime::Tensor> runtime::interpreter::INTBackend::create_tensor(
const element::Type& type, const Shape& shape, void* memory_pointer)
{

View File

@ -56,6 +56,8 @@ public:
create_tensor(const element::Type& type, const Shape& shape, void* memory_pointer) override;
std::shared_ptr<Tensor> create_tensor(const element::Type& type, const Shape& shape) override;
std::shared_ptr<Tensor> create_dynamic_tensor(const element::Type& type,
const PartialShape& shape) override;
std::shared_ptr<Executable> compile(std::shared_ptr<Function> function,
bool enable_performance_data = false) override;

View File

@ -284,7 +284,7 @@ bool runtime::interpreter::INTExecutable::call(const vector<shared_ptr<runtime::
// convert inputs to HostTensor
vector<shared_ptr<HostTensor>> func_inputs;
for (auto tensor : inputs)
for (const auto& tensor : inputs)
{
auto host_tensor = static_pointer_cast<runtime::HostTensor>(tensor);
func_inputs.push_back(host_tensor);
@ -296,7 +296,7 @@ bool runtime::interpreter::INTExecutable::call(const vector<shared_ptr<runtime::
// convert outputs to HostTensor
vector<shared_ptr<HostTensor>> func_outputs;
for (auto tensor : outputs)
for (const auto& tensor : outputs)
{
auto host_tensor = static_pointer_cast<runtime::HostTensor>(tensor);
func_outputs.push_back(host_tensor);
@ -305,7 +305,7 @@ bool runtime::interpreter::INTExecutable::call(const vector<shared_ptr<runtime::
// map function params -> HostTensor
unordered_map<descriptor::Tensor*, shared_ptr<HostTensor>> tensor_map;
size_t input_count = 0;
for (auto param : get_parameters())
for (const auto& param : get_parameters())
{
for (size_t i = 0; i < param->get_output_size(); ++i)
{
@ -327,7 +327,7 @@ bool runtime::interpreter::INTExecutable::call(const vector<shared_ptr<runtime::
}
// for each ordered op in the graph
for (auto op : m_nodes)
for (const auto& op : m_nodes)
{
event::Duration d2(op->description(), "Interpreter");
if (op::is_parameter(op))
@ -387,7 +387,7 @@ bool runtime::interpreter::INTExecutable::call(const vector<shared_ptr<runtime::
}
if (!op->evaluate(op_outputs, op_inputs))
{
generate_calls(type, *op.get(), op_outputs, op_inputs);
generate_calls(type, *op, op_outputs, op_inputs);
}
if (m_performance_counters_enabled)
{

View File

@ -98,6 +98,7 @@
#include "ngraph/runtime/reference/sum.hpp"
#include "ngraph/runtime/reference/tan.hpp"
#include "ngraph/runtime/reference/tanh.hpp"
#include "ngraph/runtime/reference/tensor_iterator.hpp"
#include "ngraph/runtime/reference/topk.hpp"
#include "ngraph/runtime/tensor.hpp"
#include "op/avg_pool.hpp"
@ -1235,6 +1236,81 @@ protected:
args[0]->get_data_ptr<const T>(), out[0]->get_data_ptr<T>(), element_count);
break;
}
case OP_TYPEID::TensorIterator:
{
auto ti = dynamic_cast<const op::v0::TensorIterator&>(node);
reference::custom_evaluate_function evaluate =
[](const std::shared_ptr<ngraph::Function>& function,
const HostTensorVector& inputs,
HostTensorVector& outputs) -> void {
const auto& parameters = function->get_parameters();
const auto& parametersNumber = parameters.size();
const auto& inputsNumber = inputs.size();
NGRAPH_CHECK(parametersNumber == inputsNumber,
"Got function (",
function->get_friendly_name(),
") with ",
parametersNumber,
" parameters, but ",
inputsNumber,
" input blobs");
auto inputTensors = std::vector<std::shared_ptr<runtime::Tensor>>{};
for (const auto& parameter : parameters)
{
const auto& parameterIndex = function->get_parameter_index(parameter);
const auto& parameterShape = parameter->get_shape();
const auto& parameterType = parameter->get_element_type();
const auto& parameterSize = shape_size(parameterShape) * parameterType.size();
const auto& input = inputs[parameterIndex];
const auto& inputSize = input->get_size_in_bytes();
NGRAPH_CHECK(parameterSize == inputSize,
"Got parameter (",
parameter->get_friendly_name(),
") of size ",
parameterSize,
" bytes, but corresponding input with index ",
parameterIndex,
" has ",
inputSize,
" bytes");
auto tensor =
std::make_shared<runtime::HostTensor>(parameterType, parameterShape);
tensor->write(input->get_data_ptr(), parameterSize);
inputTensors.push_back(tensor);
}
const auto& results = function->get_results();
std::vector<std::shared_ptr<ngraph::runtime::Tensor>> outputTensors;
outputTensors.reserve(results.size());
for (size_t i = 0; i < results.size(); ++i)
{
outputTensors.push_back(std::make_shared<HostTensor>());
}
runtime::Backend::set_backend_shared_library_search_directory("");
auto backend = runtime::Backend::create("INTERPRETER");
auto handle = backend->compile(function);
handle->call_with_validate(outputTensors, inputTensors);
outputs.reserve(outputTensors.size());
for (const auto& tensor : outputTensors)
{
auto host_tensor = static_pointer_cast<runtime::HostTensor>(tensor);
outputs.push_back(host_tensor);
}
};
reference::tensor_iterator(ti.get_num_iterations(),
ti.get_function(),
ti.get_output_descriptions(),
ti.get_input_descriptions(),
out,
args,
evaluate);
break;
}
case OP_TYPEID::DetectionOutput_v0:
{
const op::DetectionOutput* detOut = static_cast<const op::DetectionOutput*>(&node);
@ -1378,7 +1454,6 @@ protected:
case OP_TYPEID::ShuffleChannels:
case OP_TYPEID::SpaceToDepth:
case OP_TYPEID::SquaredDifference:
case OP_TYPEID::TensorIterator:
case OP_TYPEID::Tile:
case OP_TYPEID::UnknownOp:
throw unsupported_op("Unsupported op '" + node.description() + "'");
@ -1397,6 +1472,7 @@ protected:
case OP_TYPEID::LogicalAnd_v1:
case OP_TYPEID::LogicalOr_v1:
case OP_TYPEID::LogicalXor_v1:
case OP_TYPEID::Loop_v5:
case OP_TYPEID::MatMul:
case OP_TYPEID::Maximum:
case OP_TYPEID::Minimum:

View File

@ -59,11 +59,12 @@ NGRAPH_OP(LSTMCell, op::v4)
#define ID_SUFFIX(NAME) NAME##_v5
NGRAPH_OP(GatherND, op::v5)
NGRAPH_OP(LSTMSequence, op::v5)
NGRAPH_OP(GRUSequence, op::v5)
NGRAPH_OP(RNNSequence, op::v5)
NGRAPH_OP(BatchNormInference, op::v5)
NGRAPH_OP(Round, op::v5)
NGRAPH_OP(LogSoftmax, op::v5)
NGRAPH_OP(Loop, op::v5)
NGRAPH_OP(LSTMSequence, op::v5)
NGRAPH_OP(NonMaxSuppression, op::v5)
NGRAPH_OP(RNNSequence, op::v5)
NGRAPH_OP(Round, op::v5)
#undef ID_SUFFIX

View File

@ -133,9 +133,6 @@ onnx_controlflow_loop_2d_no_identity_termination_cond
onnx_controlflow_loop_2d_const_no_identity_termination_cond
onnx_controlflow_loop_2d_both_cond_and_trip_count_as_inputs
#dynamic trip count
onnx_controlflow_loop_2d_trip_count_dynamic
# Input body shape is changed during Loop iterations
# Exception is throw during Loop shape inference
# Is it expected?
@ -144,13 +141,7 @@ onnx_controlflow_loop_concat_values
# Infinitive Loop is not supported
onnx_controlflow_loop_infinite
# Loop is not supported yet by INTERPRETER backend
onnx_controlflow_loop_2d_add
onnx_controlflow_loop_2d_no_identity_termination_cond_false
onnx_controlflow_loop_add_initializer_from_parent_scope
onnx_controlflow_loop_add_node_from_parent_scope
onnx_controlflow_loop_add_value_the_same_node_from_parent_and_subgraph
onnx_controlflow_loop_scalars
onnx_controlflow_loop_2d_add_const_cond
# Dynamic shape support?
onnx_controlflow_loop_2d_trip_count_dynamic
onnx_controlflow_loop_no_variadic_inputs_and_outputs
onnx_controlflow_loop_power
onnx_controlflow_loop_power