diff --git a/docs/ops/activation/Sigmoid_1.md b/docs/ops/activation/Sigmoid_1.md
index f4a70faaff0..f14e58e53b3 100644
--- a/docs/ops/activation/Sigmoid_1.md
+++ b/docs/ops/activation/Sigmoid_1.md
@@ -6,7 +6,17 @@
**Short description**: Sigmoid element-wise activation function.
-**Attributes**: operations has no attributes.
+**Detailed description**: [Reference](https://deepai.org/machine-learning-glossary-and-terms/sigmoid-function)
+
+**Attributes**: *Sigmoid* operation has no attributes.
+
+**Mathematical Formulation**
+
+ For each element from the input tensor calculates corresponding
+ element in the output tensor with the following formula:
+ \f[
+ sigmoid( x ) = \frac{1}{1+e^{-x}}
+ \f]
**Inputs**:
@@ -16,10 +26,22 @@
* **1**: Result of Sigmoid function applied to the input tensor *x*. Floating point tensor with shape and type matching the input tensor. Required.
-**Mathematical Formulation**
+**Example**
- For each element from the input tensor calculates corresponding
- element in the output tensor with the following formula:
- \f[
- sigmoid( x ) = \frac{1}{1+e^{-x}}
- \f]
\ No newline at end of file
+```xml
+
+
+
+ 256
+ 56
+
+
+
+
+
+```
\ No newline at end of file
diff --git a/ngraph/core/reference/include/ngraph/runtime/reference/sigmoid.hpp b/ngraph/core/reference/include/ngraph/runtime/reference/sigmoid.hpp
index 5c10b5fb9e9..d9f60a290cb 100644
--- a/ngraph/core/reference/include/ngraph/runtime/reference/sigmoid.hpp
+++ b/ngraph/core/reference/include/ngraph/runtime/reference/sigmoid.hpp
@@ -35,19 +35,6 @@ namespace ngraph
out[i] = 1 / (1 + exp_value);
}
}
-
- template
- void sigmoid_backprop(const T* arg, const T* delta_arg, T* out, size_t count)
- {
- T exp_value;
- T func_x;
- for (size_t i = 0; i < count; i++)
- {
- exp_value = std::exp(-arg[i]);
- func_x = 1 / (1 + exp_value);
- out[i] = delta_arg[i] * func_x * (1 - func_x);
- }
- }
}
}
}