[TF FE] Correct ArgMinMax translators and add tests (#21364)
* [TF FE] Correct ArgMinMax translators and add tests Signed-off-by: Kazantsev, Roman <roman.kazantsev@intel.com> * Update tests/layer_tests/tensorflow_tests/test_tf_ArgMinMax.py --------- Signed-off-by: Kazantsev, Roman <roman.kazantsev@intel.com>
This commit is contained in:
parent
b3a13af9ef
commit
cb5377fb1d
@ -34,8 +34,9 @@ OutputVector translate_arg_min_max(const NodeContext& node, std::string mode) {
|
||||
|
||||
// compute indices of max/min values using TopK
|
||||
auto k = make_shared<v0::Constant>(element::i64, Shape{}, 1);
|
||||
// TODO: define sort attribute for TensorFlow case
|
||||
auto top_k = std::make_shared<v11::TopK>(input, k, axis, mode, "none", output_type);
|
||||
auto top_k_mode = (mode == "max" ? v11::TopK::Mode::MAX : v11::TopK::Mode::MIN);
|
||||
auto sort_type = v11::TopK::SortType::SORT_VALUES;
|
||||
auto top_k = make_shared<v11::TopK>(input, k, axis, top_k_mode, sort_type, output_type, true);
|
||||
|
||||
auto axis_to_remove = make_shared<v0::Constant>(element::i64, Shape{1}, vector<int64_t>({axis}));
|
||||
auto res = make_shared<v0::Squeeze>(top_k->output(1), axis_to_remove);
|
||||
|
@ -3,44 +3,33 @@
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import tensorflow as tf
|
||||
from common.tf_layer_test_class import CommonTFLayerTest
|
||||
|
||||
|
||||
# Testing operation ArgMin, ArgMax (Initial Implementation)
|
||||
# Documentation: https://www.tensorflow.org/api_docs/python/tf/raw_ops/ArgMin
|
||||
# https://www.tensorflow.org/api_docs/python/tf/raw_ops/ArgMax
|
||||
|
||||
class TestArgMinMax(CommonTFLayerTest):
|
||||
# input_shape - should be an array
|
||||
# dimension - dimension to be used, for vector should be 0
|
||||
# op_type - type of testing operation
|
||||
# ir_version - common parameter
|
||||
# use_new_frontend - common parameter
|
||||
def create_argminmax_placeholder_const_net(self, input_shape, dimension, op_type, ir_version, use_new_frontend):
|
||||
"""
|
||||
Tensorflow net IR net
|
||||
|
||||
Placeholder->op_type => Placeholder->TopK->Squeeze
|
||||
/ / /
|
||||
Const-------/ Const-------/-----/
|
||||
|
||||
"""
|
||||
|
||||
import tensorflow as tf
|
||||
def _prepare_input(self, inputs_info):
|
||||
assert 'input' in inputs_info
|
||||
input_shape = inputs_info['input']
|
||||
inputs_data = {}
|
||||
rng = np.random.default_rng()
|
||||
inputs_data['input'] = rng.integers(-8, 8, input_shape).astype(self.input_type)
|
||||
return inputs_data
|
||||
|
||||
def create_argmin_max_net(self, input_shape, dimension, input_type, output_type, op_type):
|
||||
self.input_type = input_type
|
||||
tf.compat.v1.reset_default_graph()
|
||||
|
||||
# Create the graph and model
|
||||
with tf.compat.v1.Session() as sess:
|
||||
op_type_to_tf = {
|
||||
'ArgMax': tf.raw_ops.ArgMax,
|
||||
'ArgMin': tf.raw_ops.ArgMin,
|
||||
}
|
||||
tf_input_shape = input_shape.copy()
|
||||
tf_input = tf.compat.v1.placeholder(tf.float32, tf_input_shape, 'Input')
|
||||
tf_input = tf.compat.v1.placeholder(input_type, input_shape, 'input')
|
||||
tf_dimension = tf.constant(dimension)
|
||||
|
||||
op_type_to_tf[op_type](input = tf_input, dimension = tf_dimension)
|
||||
op_type(input=tf_input, dimension=tf_dimension, output_type=output_type)
|
||||
|
||||
tf.compat.v1.global_variables_initializer()
|
||||
tf_net = sess.graph_def
|
||||
@ -50,21 +39,20 @@ class TestArgMinMax(CommonTFLayerTest):
|
||||
return tf_net, ref_net
|
||||
|
||||
test_data = [
|
||||
dict(input_shape=[5], dimension=0), #Simple test of vector
|
||||
pytest.param(
|
||||
dict(input_shape=[2, 3], dimension=1), #Simple test
|
||||
marks=pytest.mark.precommit_tf_fe),
|
||||
dict(input_shape=[2, 3, 3, 4], dimension=2), #Simple test with possible nchw/nhcw
|
||||
dict(input_shape=[20], dimension=0),
|
||||
dict(input_shape=[20, 30], dimension=1),
|
||||
dict(input_shape=[2, 30, 3, 4], dimension=2),
|
||||
]
|
||||
|
||||
@pytest.mark.parametrize("params", test_data)
|
||||
@pytest.mark.parametrize("op_type", ['ArgMin', 'ArgMax'])
|
||||
@pytest.mark.precommit
|
||||
@pytest.mark.parametrize("input_type", [np.float32, np.int32])
|
||||
@pytest.mark.parametrize("output_type", [tf.int32, tf.int64])
|
||||
@pytest.mark.parametrize("op_type", [tf.raw_ops.ArgMax, tf.raw_ops.ArgMin])
|
||||
@pytest.mark.precommit_tf_fe
|
||||
@pytest.mark.nightly
|
||||
def test_argminmax_placeholder_const(self, params, op_type, ie_device, precision, ir_version, temp_dir,
|
||||
use_new_frontend, use_old_api):
|
||||
self._test(*self.create_argminmax_placeholder_const_net(**params, op_type=op_type,
|
||||
ir_version=ir_version,
|
||||
use_new_frontend=use_new_frontend),
|
||||
def test_argmin_max_net(self, params, input_type, output_type, op_type, ie_device, precision, ir_version, temp_dir,
|
||||
use_new_frontend, use_old_api):
|
||||
self._test(*self.create_argmin_max_net(**params, input_type=input_type,
|
||||
output_type=output_type, op_type=op_type),
|
||||
ie_device, precision, ir_version, temp_dir=temp_dir,
|
||||
use_new_frontend=use_new_frontend, use_old_api=use_old_api)
|
||||
|
Loading…
Reference in New Issue
Block a user