[PyOV] Update imports in py api tests (#21252)
* [PyOV] Update imports in py api tests * update year and back test_compression_4bit.py * missed import
This commit is contained in:
parent
b7edd5df69
commit
ccfe58cf84
@ -2,7 +2,7 @@
|
||||
# Copyright (C) 2018-2023 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
from openvino.runtime import OVAny
|
||||
from openvino import OVAny
|
||||
import pytest
|
||||
|
||||
|
||||
|
@ -11,16 +11,17 @@ import openvino.runtime as ov
|
||||
|
||||
from openvino import (
|
||||
Model,
|
||||
Layout,
|
||||
PartialShape,
|
||||
Shape,
|
||||
Strides,
|
||||
Tensor,
|
||||
Type,
|
||||
OVAny,
|
||||
layout_helpers,
|
||||
)
|
||||
|
||||
from openvino.runtime.op import Parameter
|
||||
from openvino.runtime import Strides, AxisVector, Coordinate, CoordinateDiff
|
||||
from openvino.runtime.op import Parameter, Constant
|
||||
from openvino.runtime import AxisVector, Coordinate, CoordinateDiff
|
||||
from openvino._pyopenvino import DescriptorTensor
|
||||
|
||||
from openvino.runtime.utils.types import get_element_type
|
||||
@ -36,8 +37,8 @@ def test_graph_function_api():
|
||||
assert parameter_a.element_type == Type.f32
|
||||
assert parameter_b.element_type == Type.f32
|
||||
assert parameter_a.partial_shape == PartialShape([2, 2])
|
||||
parameter_a.layout = ov.Layout("NC")
|
||||
assert parameter_a.layout == ov.Layout("NC")
|
||||
parameter_a.layout = Layout("NC")
|
||||
assert parameter_a.layout == Layout("NC")
|
||||
function = Model(model, [parameter_a, parameter_b, parameter_c], "TestModel")
|
||||
|
||||
function.get_parameters()[1].set_partial_shape(PartialShape([3, 4, 5]))
|
||||
@ -62,8 +63,8 @@ def test_graph_function_api():
|
||||
assert len(results) == 1
|
||||
assert results[0].get_output_element_type(0) == Type.f32
|
||||
assert results[0].get_output_partial_shape(0) == PartialShape([2, 2])
|
||||
results[0].layout = ov.Layout("NC")
|
||||
assert results[0].layout.to_string() == ov.Layout("NC")
|
||||
results[0].layout = Layout("NC")
|
||||
assert results[0].layout.to_string() == Layout("NC")
|
||||
assert function.get_friendly_name() == "TestModel"
|
||||
|
||||
|
||||
@ -259,7 +260,7 @@ def test_constant_get_data_unsigned_integer(data_type):
|
||||
],
|
||||
)
|
||||
def test_constant_from_empty_array(shared_flag, init_value):
|
||||
const = ov.op.Constant(init_value, shared_memory=shared_flag)
|
||||
const = Constant(init_value, shared_memory=shared_flag)
|
||||
assert tuple(const.shape) == init_value.shape
|
||||
assert const.get_element_type().to_dtype() == init_value.dtype
|
||||
assert const.get_byte_size() == init_value.nbytes
|
||||
@ -310,8 +311,8 @@ def test_clone_model():
|
||||
shape = [2, 2]
|
||||
parameter_a = ops.parameter(shape, dtype=np.float32, name="A")
|
||||
parameter_b = ops.parameter(shape, dtype=np.float32, name="B")
|
||||
model_original = ov.Model(parameter_a + parameter_b, [parameter_a, parameter_b])
|
||||
assert isinstance(model_original, ov.Model)
|
||||
model_original = Model(parameter_a + parameter_b, [parameter_a, parameter_b])
|
||||
assert isinstance(model_original, Model)
|
||||
|
||||
# Make copies of it
|
||||
with pytest.deprecated_call():
|
||||
@ -319,9 +320,9 @@ def test_clone_model():
|
||||
model_copy2 = model_original.clone()
|
||||
model_copy3 = deepcopy(model_original)
|
||||
|
||||
assert isinstance(model_copy1, ov.Model)
|
||||
assert isinstance(model_copy2, ov.Model)
|
||||
assert isinstance(model_copy3, ov.Model)
|
||||
assert isinstance(model_copy1, Model)
|
||||
assert isinstance(model_copy2, Model)
|
||||
assert isinstance(model_copy3, Model)
|
||||
|
||||
# Make changes to the copied models' inputs
|
||||
model_copy1.reshape({"A": [3, 3], "B": [3, 3]})
|
||||
@ -669,21 +670,21 @@ def test_get_and_set_layout():
|
||||
|
||||
model = Model(parameter_a + parameter_b, [parameter_a, parameter_b])
|
||||
|
||||
assert layout_helpers.get_layout(model.input(0)) == ov.Layout()
|
||||
assert layout_helpers.get_layout(model.input(1)) == ov.Layout()
|
||||
assert layout_helpers.get_layout(model.input(0)) == Layout()
|
||||
assert layout_helpers.get_layout(model.input(1)) == Layout()
|
||||
|
||||
layout_helpers.set_layout(model.input(0), ov.Layout("CH"))
|
||||
layout_helpers.set_layout(model.input(1), ov.Layout("HW"))
|
||||
layout_helpers.set_layout(model.input(0), Layout("CH"))
|
||||
layout_helpers.set_layout(model.input(1), Layout("HW"))
|
||||
|
||||
assert layout_helpers.get_layout(model.input(0)) == ov.Layout("CH")
|
||||
assert layout_helpers.get_layout(model.input(1)) == ov.Layout("HW")
|
||||
assert layout_helpers.get_layout(model.input(0)) == Layout("CH")
|
||||
assert layout_helpers.get_layout(model.input(1)) == Layout("HW")
|
||||
|
||||
|
||||
def test_layout():
|
||||
layout = ov.Layout("NCWH")
|
||||
layout2 = ov.Layout("NCWH")
|
||||
scalar = ov.Layout.scalar()
|
||||
scalar2 = ov.Layout.scalar()
|
||||
layout = Layout("NCWH")
|
||||
layout2 = Layout("NCWH")
|
||||
scalar = Layout.scalar()
|
||||
scalar2 = Layout.scalar()
|
||||
|
||||
assert layout == layout2
|
||||
assert layout != scalar
|
||||
@ -708,8 +709,8 @@ def test_layout():
|
||||
assert layout.get_index_by_name("W") == 2
|
||||
assert layout.get_index_by_name("H") == 3
|
||||
|
||||
layout = ov.Layout("NC?")
|
||||
layout2 = ov.Layout("N")
|
||||
layout = Layout("NC?")
|
||||
layout2 = Layout("N")
|
||||
assert layout != layout2
|
||||
assert str(layout) != str(layout2)
|
||||
assert layout.has_name("N")
|
||||
@ -720,7 +721,7 @@ def test_layout():
|
||||
assert layout.get_index_by_name("N") == 0
|
||||
assert layout.get_index_by_name("C") == 1
|
||||
|
||||
layout = ov.Layout("N...C")
|
||||
layout = Layout("N...C")
|
||||
assert layout.has_name("N")
|
||||
assert not (layout.has_name("W"))
|
||||
assert not (layout.has_name("H"))
|
||||
@ -728,19 +729,19 @@ def test_layout():
|
||||
assert layout.has_name("C")
|
||||
assert layout.get_index_by_name("C") == -1
|
||||
|
||||
layout = ov.Layout()
|
||||
layout = Layout()
|
||||
assert not (layout.has_name("W"))
|
||||
assert not (layout.has_name("H"))
|
||||
assert not (layout.has_name("D"))
|
||||
assert not (layout.has_name("C"))
|
||||
|
||||
layout = ov.Layout("N...C")
|
||||
layout = Layout("N...C")
|
||||
assert layout == "N...C"
|
||||
assert layout != "NC?"
|
||||
|
||||
|
||||
def test_layout_helpers():
|
||||
layout = ov.Layout("NCHWD")
|
||||
layout = Layout("NCHWD")
|
||||
assert (layout_helpers.has_batch(layout))
|
||||
assert (layout_helpers.has_channels(layout))
|
||||
assert (layout_helpers.has_depth(layout))
|
||||
@ -753,7 +754,7 @@ def test_layout_helpers():
|
||||
assert layout_helpers.width_idx(layout) == 3
|
||||
assert layout_helpers.depth_idx(layout) == 4
|
||||
|
||||
layout = ov.Layout("N...C")
|
||||
layout = Layout("N...C")
|
||||
assert (layout_helpers.has_batch(layout))
|
||||
assert (layout_helpers.has_channels(layout))
|
||||
assert not (layout_helpers.has_depth(layout))
|
||||
@ -772,7 +773,7 @@ def test_layout_helpers():
|
||||
with pytest.raises(RuntimeError):
|
||||
layout_helpers.depth_idx(layout)
|
||||
|
||||
layout = ov.Layout("NC?")
|
||||
layout = Layout("NC?")
|
||||
assert (layout_helpers.has_batch(layout))
|
||||
assert (layout_helpers.has_channels(layout))
|
||||
assert not (layout_helpers.has_depth(layout))
|
||||
|
@ -4,9 +4,8 @@
|
||||
|
||||
import numpy as np
|
||||
|
||||
import openvino.runtime as ov
|
||||
import openvino.runtime.opset13 as ops
|
||||
from openvino.runtime import Type
|
||||
from openvino import Type
|
||||
from openvino.runtime.op import Constant
|
||||
from openvino.helpers import pack_data, unpack_data
|
||||
|
||||
@ -39,18 +38,18 @@ class DataGetter(Enum):
|
||||
@pytest.mark.parametrize(
|
||||
("dst_dtype"),
|
||||
[
|
||||
(ov.Type.f32),
|
||||
(ov.Type.f64),
|
||||
(ov.Type.f16),
|
||||
(ov.Type.i8),
|
||||
(ov.Type.u8),
|
||||
(ov.Type.i32),
|
||||
(ov.Type.u32),
|
||||
(ov.Type.i16),
|
||||
(ov.Type.u16),
|
||||
(ov.Type.i64),
|
||||
(ov.Type.u64),
|
||||
(ov.Type.boolean),
|
||||
(Type.f32),
|
||||
(Type.f64),
|
||||
(Type.f16),
|
||||
(Type.i8),
|
||||
(Type.u8),
|
||||
(Type.i32),
|
||||
(Type.u32),
|
||||
(Type.i16),
|
||||
(Type.u16),
|
||||
(Type.i64),
|
||||
(Type.u64),
|
||||
(Type.boolean),
|
||||
(np.float16),
|
||||
(np.float32),
|
||||
(np.float64),
|
||||
@ -92,7 +91,7 @@ def test_init_with_array(src_dtype, dst_dtype, shared_flag, data_getter):
|
||||
# Check shape and element type of Constant class
|
||||
assert isinstance(ov_const, Constant)
|
||||
assert np.all(tuple(ov_const.shape) == data.shape)
|
||||
# Additionally check if Constant type matches dst_type if ov.Type was passed:
|
||||
# Additionally check if Constant type matches dst_type if Type was passed:
|
||||
if isinstance(dst_dtype, Type):
|
||||
assert ov_const.get_element_type() == dst_dtype
|
||||
# Convert to dtype if OpenVINO Type
|
||||
@ -139,18 +138,18 @@ def test_init_with_array(src_dtype, dst_dtype, shared_flag, data_getter):
|
||||
@pytest.mark.parametrize(
|
||||
("dst_dtype"),
|
||||
[
|
||||
(ov.Type.f32),
|
||||
(ov.Type.f64),
|
||||
(ov.Type.f16),
|
||||
(ov.Type.i8),
|
||||
(ov.Type.u8),
|
||||
(ov.Type.i32),
|
||||
(ov.Type.u32),
|
||||
(ov.Type.i16),
|
||||
(ov.Type.u16),
|
||||
(ov.Type.i64),
|
||||
(ov.Type.u64),
|
||||
(ov.Type.boolean),
|
||||
(Type.f32),
|
||||
(Type.f64),
|
||||
(Type.f16),
|
||||
(Type.i8),
|
||||
(Type.u8),
|
||||
(Type.i32),
|
||||
(Type.u32),
|
||||
(Type.i16),
|
||||
(Type.u16),
|
||||
(Type.i64),
|
||||
(Type.u64),
|
||||
(Type.boolean),
|
||||
(np.float16),
|
||||
(np.float32),
|
||||
(np.float64),
|
||||
@ -187,7 +186,7 @@ def test_init_with_scalar(init_value, src_dtype, dst_dtype, shared_flag, data_ge
|
||||
# Check shape and element type of Constant class
|
||||
assert isinstance(ov_const, Constant)
|
||||
assert np.all(list(ov_const.shape) == [])
|
||||
# Additionally check if Constant type matches dst_type if ov.Type was passed:
|
||||
# Additionally check if Constant type matches dst_type if Type was passed:
|
||||
if isinstance(dst_dtype, Type):
|
||||
assert ov_const.get_element_type() == dst_dtype
|
||||
# Convert to dtype if OpenVINO Type
|
||||
@ -263,10 +262,10 @@ def test_init_bf16(src_dtype, shared_flag, data_getter):
|
||||
@pytest.mark.parametrize(
|
||||
("low", "high", "ov_type", "src_dtype"),
|
||||
[
|
||||
(0, 2, ov.Type.u1, np.uint8),
|
||||
(0, 16, ov.Type.u4, np.uint8),
|
||||
(-8, 7, ov.Type.i4, np.int8),
|
||||
(0, 16, ov.Type.nf4, np.uint8),
|
||||
(0, 2, Type.u1, np.uint8),
|
||||
(0, 16, Type.u4, np.uint8),
|
||||
(-8, 7, Type.i4, np.int8),
|
||||
(0, 16, Type.nf4, np.uint8),
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
|
@ -7,10 +7,9 @@ import copy
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from openvino import Model, PartialShape, Shape
|
||||
from openvino import Dimension, Model, PartialShape, Shape
|
||||
|
||||
import openvino.runtime.opset8 as ov
|
||||
from openvino.runtime import Dimension
|
||||
|
||||
|
||||
def test_dimension():
|
||||
|
@ -5,7 +5,7 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from openvino.runtime import PartialShape, Dimension, Model
|
||||
from openvino import PartialShape, Dimension, Model, Type
|
||||
from openvino.runtime.exceptions import UserInputError
|
||||
from openvino.runtime.utils.types import make_constant_node
|
||||
|
||||
@ -13,7 +13,6 @@ import openvino.runtime.opset1 as ov_opset1
|
||||
import openvino.runtime.opset5 as ov_opset5
|
||||
import openvino.runtime.opset10 as ov_opset10
|
||||
import openvino.runtime.opset11 as ov
|
||||
from openvino.runtime import Type
|
||||
|
||||
np_types = [np.float32, np.int32]
|
||||
integral_np_types = [
|
||||
|
@ -5,7 +5,7 @@
|
||||
import numpy as np
|
||||
|
||||
import openvino.runtime.opset8 as ov
|
||||
from openvino.runtime import Type
|
||||
from openvino import Type
|
||||
|
||||
|
||||
def test_ctc_loss_props():
|
||||
|
@ -5,7 +5,7 @@
|
||||
import numpy as np
|
||||
|
||||
import openvino.runtime.opset8 as ov
|
||||
from openvino.runtime import Type, Shape
|
||||
from openvino import Type, Shape
|
||||
|
||||
|
||||
def test_reverse_sequence():
|
||||
|
@ -2,7 +2,7 @@
|
||||
# Copyright (C) 2018-2023 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
from openvino.runtime import Type
|
||||
from openvino import Type
|
||||
import openvino.runtime.opset10 as ov
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
@ -6,7 +6,7 @@ import numpy as np
|
||||
import pytest
|
||||
|
||||
import openvino.runtime.opset13 as ops
|
||||
from openvino.runtime import PartialShape, Type
|
||||
from openvino import PartialShape, Type
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
|
@ -2,7 +2,7 @@
|
||||
# Copyright (C) 2018-2023 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
from openvino.runtime import Type
|
||||
from openvino import Type
|
||||
import openvino.runtime.opset8 as ov
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
@ -2,7 +2,7 @@
|
||||
# Copyright (C) 2018-2023 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
from openvino.runtime import Type
|
||||
from openvino import Type
|
||||
import openvino.runtime.opset8 as ov
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
@ -4,7 +4,7 @@
|
||||
|
||||
import numpy as np
|
||||
import openvino.runtime.opset8 as ov
|
||||
from openvino.runtime import Model
|
||||
from openvino import Model
|
||||
|
||||
from openvino.runtime.op.util import InvariantInputDescription, BodyOutputDescription
|
||||
|
||||
|
@ -4,7 +4,7 @@
|
||||
|
||||
import numpy as np
|
||||
import openvino.runtime.opset8 as ov
|
||||
from openvino.runtime import Shape, Type
|
||||
from openvino import Shape, Type
|
||||
|
||||
|
||||
def test_log_softmax():
|
||||
|
@ -4,7 +4,7 @@
|
||||
|
||||
import numpy as np
|
||||
import openvino.runtime.opset8 as ov
|
||||
from openvino.runtime import Model, Shape
|
||||
from openvino import Model, Shape
|
||||
|
||||
from openvino.runtime.op.util import (
|
||||
InvariantInputDescription,
|
||||
|
@ -9,7 +9,7 @@ import numpy as np
|
||||
import pytest
|
||||
|
||||
import openvino.runtime.opset10 as ops
|
||||
from openvino.runtime import Core, Model
|
||||
from openvino import Core, Model
|
||||
from openvino.runtime.passes import Manager, Serialize, ConstantFolding, Version
|
||||
|
||||
from tests.test_graph.util import count_ops_of_type
|
||||
|
@ -6,7 +6,7 @@ import numpy as np
|
||||
import pytest
|
||||
|
||||
import openvino.runtime.opset13 as ops
|
||||
from openvino.runtime import PartialShape, Dimension, Type
|
||||
from openvino import PartialShape, Type
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
|
@ -5,12 +5,10 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from openvino.runtime import PartialShape, Dimension, Model
|
||||
from openvino.runtime.exceptions import UserInputError
|
||||
from openvino.runtime.utils.types import make_constant_node
|
||||
|
||||
import openvino.runtime.opset13 as ov_opset13
|
||||
from openvino.runtime import Type
|
||||
|
||||
from openvino import PartialShape, Dimension, Type
|
||||
from openvino.runtime.utils.types import make_constant_node
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
|
@ -5,7 +5,7 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
from sys import platform
|
||||
from openvino.runtime import compile_model, Model
|
||||
from openvino import compile_model, Model
|
||||
import openvino.runtime.opset8 as ov
|
||||
from openvino.runtime.exceptions import UserInputError
|
||||
from openvino.runtime.utils.node_factory import NodeFactory
|
||||
|
@ -4,7 +4,7 @@
|
||||
|
||||
import numpy as np
|
||||
|
||||
from openvino.runtime import Type
|
||||
from openvino import Type
|
||||
import openvino.runtime.opset13 as ov
|
||||
|
||||
|
||||
|
@ -8,7 +8,8 @@ import pytest
|
||||
from contextlib import nullcontext as does_not_raise
|
||||
|
||||
import openvino.runtime.opset8 as ov
|
||||
from openvino.runtime import AxisSet, Shape, Type
|
||||
from openvino import Shape, Type
|
||||
from openvino.runtime import AxisSet
|
||||
from openvino.runtime.op import Constant, Parameter
|
||||
|
||||
@pytest.mark.parametrize(("ov_op", "expected_ov_str", "expected_type"), [
|
||||
|
@ -7,7 +7,7 @@ import operator
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from openvino.runtime import Type
|
||||
from openvino import Type
|
||||
import openvino.runtime.opset13 as ov
|
||||
|
||||
|
||||
|
@ -5,8 +5,8 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import openvino.runtime as ov_runtime
|
||||
import openvino.runtime.opset8 as ov
|
||||
from openvino import Type
|
||||
|
||||
|
||||
def test_elu_operator_with_scalar_and_array():
|
||||
@ -131,7 +131,7 @@ def test_squared_difference_operator():
|
||||
model = ov.squared_difference(parameter_x1, parameter_x2)
|
||||
assert model.get_type_name() == "SquaredDifference"
|
||||
assert model.get_output_size() == 1
|
||||
assert model.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert model.get_output_element_type(0) == Type.f32
|
||||
assert list(model.get_output_shape(0)) == [1, 2, 3, 4]
|
||||
|
||||
|
||||
@ -144,7 +144,7 @@ def test_shuffle_channels_operator():
|
||||
model = ov.shuffle_channels(parameter, axis, groups)
|
||||
assert model.get_type_name() == "ShuffleChannels"
|
||||
assert model.get_output_size() == 1
|
||||
assert model.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert model.get_output_element_type(0) == Type.f32
|
||||
assert list(model.get_output_shape(0)) == [1, 15, 2, 2]
|
||||
|
||||
|
||||
@ -156,7 +156,7 @@ def test_unsqueeze():
|
||||
model = ov.unsqueeze(parameter_data, axes)
|
||||
assert model.get_type_name() == "Unsqueeze"
|
||||
assert model.get_output_size() == 1
|
||||
assert model.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert model.get_output_element_type(0) == Type.f32
|
||||
assert list(model.get_output_shape(0)) == [1, 3, 4, 5, 1]
|
||||
|
||||
|
||||
@ -168,7 +168,7 @@ def test_grn_operator():
|
||||
model = ov.grn(parameter_data, bias)
|
||||
assert model.get_type_name() == "GRN"
|
||||
assert model.get_output_size() == 1
|
||||
assert model.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert model.get_output_element_type(0) == Type.f32
|
||||
assert list(model.get_output_shape(0)) == [1, 2, 3, 4]
|
||||
|
||||
|
||||
@ -184,7 +184,7 @@ def test_prelu_operator():
|
||||
expected = np.clip(data_value, 0, np.inf) + np.clip(data_value, -np.inf, 0) * slope_value
|
||||
assert model.get_type_name() == "PRelu"
|
||||
assert model.get_output_size() == 1
|
||||
assert model.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert model.get_output_element_type(0) == Type.f32
|
||||
assert list(model.get_output_shape(0)) == list(expected.shape)
|
||||
|
||||
|
||||
@ -197,7 +197,7 @@ def test_selu_operator():
|
||||
model = ov.selu(parameter_data, alpha, lambda_value)
|
||||
assert model.get_type_name() == "Selu"
|
||||
assert model.get_output_size() == 1
|
||||
assert model.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert model.get_output_element_type(0) == Type.f32
|
||||
assert list(model.get_output_shape(0)) == [4, 2, 3, 1]
|
||||
|
||||
|
||||
@ -210,7 +210,7 @@ def test_hard_sigmoid_operator():
|
||||
model = ov.hard_sigmoid(parameter_data, parameter_alpha, parameter_beta)
|
||||
assert model.get_type_name() == "HardSigmoid"
|
||||
assert model.get_output_size() == 1
|
||||
assert model.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert model.get_output_element_type(0) == Type.f32
|
||||
assert list(model.get_output_shape(0)) == [3]
|
||||
|
||||
|
||||
@ -225,7 +225,7 @@ def test_mvn_operator():
|
||||
model = ov.mvn(parameter_data, axes, normalize_variance, eps, eps_mode)
|
||||
assert model.get_type_name() == "MVN"
|
||||
assert model.get_output_size() == 1
|
||||
assert model.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert model.get_output_element_type(0) == Type.f32
|
||||
assert list(model.get_output_shape(0)) == [3, 3, 3, 1]
|
||||
|
||||
|
||||
@ -240,7 +240,7 @@ def test_space_to_depth_operator():
|
||||
model = ov.space_to_depth(parameter_data, mode, block_size)
|
||||
assert model.get_type_name() == "SpaceToDepth"
|
||||
assert model.get_output_size() == 1
|
||||
assert model.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert model.get_output_element_type(0) == Type.f32
|
||||
assert list(model.get_output_shape(0)) == [1, 8, 2, 2]
|
||||
|
||||
batch_size = 2
|
||||
@ -278,7 +278,7 @@ def test_space_to_depth_operator():
|
||||
)
|
||||
assert model.get_type_name() == "SpaceToDepth"
|
||||
assert model.get_output_size() == 1
|
||||
assert model.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert model.get_output_element_type(0) == Type.f32
|
||||
assert list(model.get_output_shape(0)) == [batch_size, hidden_size]
|
||||
|
||||
|
||||
@ -297,7 +297,7 @@ def test_group_convolution_operator():
|
||||
model = ov.group_convolution(parameter_data, parameter_filters, strides, pads_begin, pads_end, dilations)
|
||||
assert model.get_type_name() == "GroupConvolution"
|
||||
assert model.get_output_size() == 1
|
||||
assert model.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert model.get_output_element_type(0) == Type.f32
|
||||
assert list(model.get_output_shape(0)) == [1, 2, 2, 2]
|
||||
|
||||
|
||||
@ -317,7 +317,7 @@ def test_group_convolution_backprop_data():
|
||||
|
||||
assert model.get_type_name() == "GroupConvolutionBackpropData"
|
||||
assert model.get_output_size() == 1
|
||||
assert model.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert model.get_output_element_type(0) == Type.f32
|
||||
assert list(model.get_output_shape(0)) == [1, 1, 6, 6]
|
||||
|
||||
|
||||
@ -336,5 +336,5 @@ def test_group_convolution_backprop_data_output_shape():
|
||||
|
||||
assert model.get_type_name() == "GroupConvolutionBackpropData"
|
||||
assert model.get_output_size() == 1
|
||||
assert model.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert model.get_output_element_type(0) == Type.f32
|
||||
assert list(model.get_output_shape(0)) == [1, 1, 1, 14]
|
||||
|
@ -2,11 +2,11 @@
|
||||
# Copyright (C) 2018-2023 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import openvino.runtime as ov_runtime
|
||||
import openvino.runtime.opset8 as ov
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from openvino import Type
|
||||
from openvino.runtime.utils.types import get_element_type
|
||||
|
||||
|
||||
@ -30,7 +30,7 @@ def test_constant_from_bool(val_type, value, output_shape):
|
||||
node = ov.constant(value, val_type)
|
||||
assert node.get_type_name() == "Constant"
|
||||
assert node.get_output_size() == 1
|
||||
assert node.get_output_element_type(0) == ov_runtime.Type.boolean
|
||||
assert node.get_output_element_type(0) == Type.boolean
|
||||
assert list(node.get_output_shape(0)) == output_shape
|
||||
|
||||
|
||||
@ -138,7 +138,7 @@ def test_transpose():
|
||||
node = ov.transpose(input_tensor, input_order)
|
||||
assert node.get_type_name() == "Transpose"
|
||||
assert node.get_output_size() == 1
|
||||
assert node.get_output_element_type(0) == ov_runtime.Type.i32
|
||||
assert node.get_output_element_type(0) == Type.i32
|
||||
assert list(node.get_output_shape(0)) == [3, 224, 224, 3]
|
||||
|
||||
|
||||
@ -149,7 +149,7 @@ def test_tile():
|
||||
|
||||
assert node.get_type_name() == "Tile"
|
||||
assert node.get_output_size() == 1
|
||||
assert node.get_output_element_type(0) == ov_runtime.Type.i32
|
||||
assert node.get_output_element_type(0) == Type.i32
|
||||
assert list(node.get_output_shape(0)) == [2, 2, 3]
|
||||
|
||||
|
||||
@ -177,7 +177,7 @@ def test_strided_slice():
|
||||
)
|
||||
assert node.get_type_name() == "StridedSlice"
|
||||
assert node.get_output_size() == 1
|
||||
assert node.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert node.get_output_element_type(0) == Type.f32
|
||||
assert list(node.get_output_shape(0)) == [1, 3, 4]
|
||||
|
||||
|
||||
@ -189,7 +189,7 @@ def test_reshape_v1():
|
||||
node = ov.reshape(param_a, shape, special_zero)
|
||||
assert node.get_type_name() == "Reshape"
|
||||
assert node.get_output_size() == 1
|
||||
assert node.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert node.get_output_element_type(0) == Type.f32
|
||||
assert list(node.get_output_shape(0)) == [2, 150, 4]
|
||||
|
||||
|
||||
@ -199,5 +199,5 @@ def test_shape_of():
|
||||
node = ov.shape_of(input_tensor)
|
||||
assert node.get_type_name() == "ShapeOf"
|
||||
assert node.get_output_size() == 1
|
||||
assert node.get_output_element_type(0) == ov_runtime.Type.i64
|
||||
assert node.get_output_element_type(0) == Type.i64
|
||||
assert list(node.get_output_shape(0)) == [2]
|
||||
|
@ -6,7 +6,7 @@ import numpy as np
|
||||
import pytest
|
||||
|
||||
import openvino.runtime.opset13 as ov
|
||||
from openvino.runtime import Type
|
||||
from openvino import Type
|
||||
|
||||
|
||||
def test_scatter_update_props():
|
||||
|
@ -5,9 +5,8 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import openvino.runtime as ov_runtime
|
||||
import openvino.runtime.opset13 as ov
|
||||
from openvino.runtime import Shape, Type
|
||||
import openvino.runtime.opset13 as ops
|
||||
from openvino import Shape, Type
|
||||
|
||||
R_TOLERANCE = 1e-6 # global relative tolerance
|
||||
|
||||
@ -15,28 +14,28 @@ R_TOLERANCE = 1e-6 # global relative tolerance
|
||||
@pytest.mark.parametrize(
|
||||
("graph_api_fn", "type_name"),
|
||||
[
|
||||
(ov.absolute, "Abs"),
|
||||
(ov.abs, "Abs"),
|
||||
(ov.acos, "Acos"),
|
||||
(ov.acosh, "Acosh"),
|
||||
(ov.asin, "Asin"),
|
||||
(ov.asinh, "Asinh"),
|
||||
(ov.atan, "Atan"),
|
||||
(ov.atanh, "Atanh"),
|
||||
(ov.ceiling, "Ceiling"),
|
||||
(ov.ceil, "Ceiling"),
|
||||
(ov.cos, "Cos"),
|
||||
(ov.cosh, "Cosh"),
|
||||
(ov.exp, "Exp"),
|
||||
(ov.floor, "Floor"),
|
||||
(ov.log, "Log"),
|
||||
(ov.relu, "Relu"),
|
||||
(ov.sign, "Sign"),
|
||||
(ov.sin, "Sin"),
|
||||
(ov.sinh, "Sinh"),
|
||||
(ov.sqrt, "Sqrt"),
|
||||
(ov.tan, "Tan"),
|
||||
(ov.tanh, "Tanh"),
|
||||
(ops.absolute, "Abs"),
|
||||
(ops.abs, "Abs"),
|
||||
(ops.acos, "Acos"),
|
||||
(ops.acosh, "Acosh"),
|
||||
(ops.asin, "Asin"),
|
||||
(ops.asinh, "Asinh"),
|
||||
(ops.atan, "Atan"),
|
||||
(ops.atanh, "Atanh"),
|
||||
(ops.ceiling, "Ceiling"),
|
||||
(ops.ceil, "Ceiling"),
|
||||
(ops.cos, "Cos"),
|
||||
(ops.cosh, "Cosh"),
|
||||
(ops.exp, "Exp"),
|
||||
(ops.floor, "Floor"),
|
||||
(ops.log, "Log"),
|
||||
(ops.relu, "Relu"),
|
||||
(ops.sign, "Sign"),
|
||||
(ops.sin, "Sin"),
|
||||
(ops.sinh, "Sinh"),
|
||||
(ops.sqrt, "Sqrt"),
|
||||
(ops.tan, "Tan"),
|
||||
(ops.tanh, "Tanh"),
|
||||
],
|
||||
)
|
||||
def test_unary_op_array(graph_api_fn, type_name):
|
||||
@ -46,36 +45,36 @@ def test_unary_op_array(graph_api_fn, type_name):
|
||||
node = graph_api_fn(input_data)
|
||||
assert node.get_output_size() == 1
|
||||
assert node.get_type_name() == type_name
|
||||
assert node.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert node.get_output_element_type(0) == Type.f32
|
||||
assert list(node.get_output_shape(0)) == [2, 3, 4]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("graph_api_fn", [
|
||||
ov.absolute,
|
||||
ov.abs,
|
||||
ov.acos,
|
||||
ov.asin,
|
||||
ov.atan,
|
||||
ov.ceiling,
|
||||
ov.ceil,
|
||||
ov.cos,
|
||||
ov.cosh,
|
||||
ov.exp,
|
||||
ov.floor,
|
||||
ov.log,
|
||||
ov.relu,
|
||||
ov.sign,
|
||||
ov.sin,
|
||||
ov.sinh,
|
||||
ov.sqrt,
|
||||
ov.tan,
|
||||
ov.tanh,
|
||||
ops.absolute,
|
||||
ops.abs,
|
||||
ops.acos,
|
||||
ops.asin,
|
||||
ops.atan,
|
||||
ops.ceiling,
|
||||
ops.ceil,
|
||||
ops.cos,
|
||||
ops.cosh,
|
||||
ops.exp,
|
||||
ops.floor,
|
||||
ops.log,
|
||||
ops.relu,
|
||||
ops.sign,
|
||||
ops.sin,
|
||||
ops.sinh,
|
||||
ops.sqrt,
|
||||
ops.tan,
|
||||
ops.tanh,
|
||||
])
|
||||
def test_unary_op_scalar(graph_api_fn):
|
||||
node = graph_api_fn(np.float32(-0.5))
|
||||
|
||||
assert node.get_output_size() == 1
|
||||
assert node.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert node.get_output_element_type(0) == Type.f32
|
||||
assert list(node.get_output_shape(0)) == []
|
||||
|
||||
|
||||
@ -84,20 +83,20 @@ def test_unary_op_scalar(graph_api_fn):
|
||||
[(np.array([True, False, True, False])), (np.array([True])), (np.array([False]))],
|
||||
)
|
||||
def test_logical_not(input_data):
|
||||
node = ov.logical_not(input_data)
|
||||
node = ops.logical_not(input_data)
|
||||
assert node.get_output_size() == 1
|
||||
assert node.get_type_name() == "LogicalNot"
|
||||
assert node.get_output_element_type(0) == ov_runtime.Type.boolean
|
||||
assert node.get_output_element_type(0) == Type.boolean
|
||||
assert list(node.get_output_shape(0)) == list(input_data.shape)
|
||||
|
||||
|
||||
def test_sigmoid():
|
||||
input_data = np.array([-3.14, -1.0, 0.0, 2.71001, 1000.0], dtype=np.float32)
|
||||
node = ov.sigmoid(input_data)
|
||||
node = ops.sigmoid(input_data)
|
||||
|
||||
assert node.get_output_size() == 1
|
||||
assert node.get_type_name() == "Sigmoid"
|
||||
assert node.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert node.get_output_element_type(0) == Type.f32
|
||||
assert list(node.get_output_shape(0)) == [5]
|
||||
|
||||
|
||||
@ -105,28 +104,28 @@ def test_softmax():
|
||||
axis = 1
|
||||
input_tensor = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32)
|
||||
|
||||
node = ov.softmax(input_tensor, axis)
|
||||
node = ops.softmax(input_tensor, axis)
|
||||
assert node.get_output_size() == 1
|
||||
assert node.get_type_name() == "Softmax"
|
||||
assert node.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert node.get_output_element_type(0) == Type.f32
|
||||
assert list(node.get_output_shape(0)) == [2, 3]
|
||||
|
||||
|
||||
def test_erf():
|
||||
input_tensor = np.array([-1.0, 0.0, 1.0, 2.5, 3.14, 4.0], dtype=np.float32)
|
||||
|
||||
node = ov.erf(input_tensor)
|
||||
node = ops.erf(input_tensor)
|
||||
assert node.get_output_size() == 1
|
||||
assert node.get_type_name() == "Erf"
|
||||
assert node.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert node.get_output_element_type(0) == Type.f32
|
||||
assert list(node.get_output_shape(0)) == [6]
|
||||
|
||||
|
||||
def test_hswish():
|
||||
float_dtype = np.float32
|
||||
data = ov.parameter(Shape([3, 10]), dtype=float_dtype, name="data")
|
||||
data = ops.parameter(Shape([3, 10]), dtype=float_dtype, name="data")
|
||||
|
||||
node = ov.hswish(data)
|
||||
node = ops.hswish(data)
|
||||
assert node.get_type_name() == "HSwish"
|
||||
assert node.get_output_size() == 1
|
||||
assert list(node.get_output_shape(0)) == [3, 10]
|
||||
@ -135,9 +134,9 @@ def test_hswish():
|
||||
|
||||
def test_round():
|
||||
float_dtype = np.float32
|
||||
data = ov.parameter(Shape([3, 10]), dtype=float_dtype, name="data")
|
||||
data = ops.parameter(Shape([3, 10]), dtype=float_dtype, name="data")
|
||||
|
||||
node = ov.round(data, "HALF_TO_EVEN")
|
||||
node = ops.round(data, "HALF_TO_EVEN")
|
||||
assert node.get_type_name() == "Round"
|
||||
assert node.get_output_size() == 1
|
||||
assert list(node.get_output_shape(0)) == [3, 10]
|
||||
@ -145,18 +144,18 @@ def test_round():
|
||||
|
||||
input_tensor = np.array([-2.5, -1.5, -0.5, 0.5, 0.9, 1.5, 2.3, 2.5, 3.5], dtype=np.float32)
|
||||
|
||||
node = ov.round(input_tensor, "HALF_TO_EVEN")
|
||||
node = ops.round(input_tensor, "HALF_TO_EVEN")
|
||||
assert node.get_output_size() == 1
|
||||
assert node.get_type_name() == "Round"
|
||||
assert node.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert node.get_output_element_type(0) == Type.f32
|
||||
assert list(node.get_output_shape(0)) == [9]
|
||||
|
||||
|
||||
def test_hsigmoid():
|
||||
float_dtype = np.float32
|
||||
data = ov.parameter(Shape([3, 10]), dtype=float_dtype, name="data")
|
||||
data = ops.parameter(Shape([3, 10]), dtype=float_dtype, name="data")
|
||||
|
||||
node = ov.hsigmoid(data)
|
||||
node = ops.hsigmoid(data)
|
||||
assert node.get_type_name() == "HSigmoid"
|
||||
assert node.get_output_size() == 1
|
||||
assert list(node.get_output_shape(0)) == [3, 10]
|
||||
@ -165,58 +164,58 @@ def test_hsigmoid():
|
||||
|
||||
def test_gelu_operator_with_parameters():
|
||||
data_shape = [2, 2]
|
||||
parameter_data = ov.parameter(data_shape, name="Data", dtype=np.float32)
|
||||
parameter_data = ops.parameter(data_shape, name="Data", dtype=np.float32)
|
||||
|
||||
model = ov.gelu(parameter_data, "erf")
|
||||
model = ops.gelu(parameter_data, "erf")
|
||||
assert model.get_output_size() == 1
|
||||
assert model.get_type_name() == "Gelu"
|
||||
assert model.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert model.get_output_element_type(0) == Type.f32
|
||||
assert list(model.get_output_shape(0)) == [2, 2]
|
||||
|
||||
|
||||
def test_gelu_operator_with_array():
|
||||
data_value = np.array([[-5, 1], [-2, 3]], dtype=np.float32)
|
||||
|
||||
model = ov.gelu(data_value, "erf")
|
||||
model = ops.gelu(data_value, "erf")
|
||||
assert model.get_output_size() == 1
|
||||
assert model.get_type_name() == "Gelu"
|
||||
assert model.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert model.get_output_element_type(0) == Type.f32
|
||||
assert list(model.get_output_shape(0)) == [2, 2]
|
||||
|
||||
|
||||
def test_gelu_tanh_operator_with_parameters():
|
||||
data_shape = [2, 2]
|
||||
parameter_data = ov.parameter(data_shape, name="Data", dtype=np.float32)
|
||||
parameter_data = ops.parameter(data_shape, name="Data", dtype=np.float32)
|
||||
|
||||
model = ov.gelu(parameter_data, "tanh")
|
||||
model = ops.gelu(parameter_data, "tanh")
|
||||
assert model.get_output_size() == 1
|
||||
assert model.get_type_name() == "Gelu"
|
||||
assert model.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert model.get_output_element_type(0) == Type.f32
|
||||
assert list(model.get_output_shape(0)) == [2, 2]
|
||||
|
||||
|
||||
def test_gelu_tanh_operator_with_array():
|
||||
data_value = np.array([[-5, 1], [-2, 3]], dtype=np.float32)
|
||||
|
||||
model = ov.gelu(data_value, "tanh")
|
||||
model = ops.gelu(data_value, "tanh")
|
||||
assert model.get_output_size() == 1
|
||||
assert model.get_type_name() == "Gelu"
|
||||
assert model.get_output_element_type(0) == ov_runtime.Type.f32
|
||||
assert model.get_output_element_type(0) == Type.f32
|
||||
assert list(model.get_output_shape(0)) == [2, 2]
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("input_data", "dtype"),
|
||||
[
|
||||
(np.array([True, False, True, False]), ov_runtime.Type.boolean),
|
||||
(np.array([True]), ov_runtime.Type.boolean),
|
||||
(np.array([False]), ov_runtime.Type.boolean),
|
||||
(np.array([0, 3, 7, 256], dtype=np.uint16), ov_runtime.Type.u16),
|
||||
(np.array([[-7, 0], [256, 1]], dtype=np.int32), ov_runtime.Type.i32),
|
||||
(np.array([True, False, True, False]), Type.boolean),
|
||||
(np.array([True]), Type.boolean),
|
||||
(np.array([False]), Type.boolean),
|
||||
(np.array([0, 3, 7, 256], dtype=np.uint16), Type.u16),
|
||||
(np.array([[-7, 0], [256, 1]], dtype=np.int32), Type.i32),
|
||||
],
|
||||
)
|
||||
def test_bitwise_not(input_data, dtype):
|
||||
node = ov.bitwise_not(input_data)
|
||||
node = ops.bitwise_not(input_data)
|
||||
assert node.get_output_size() == 1
|
||||
assert node.get_type_name() == "BitwiseNot"
|
||||
assert node.get_output_element_type(0) == dtype
|
||||
|
@ -2,7 +2,7 @@
|
||||
# Copyright (C) 2018-2023 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
from openvino.runtime import PartialShape, Type
|
||||
from openvino import PartialShape, Type
|
||||
from openvino.runtime.op.util import VariableInfo, Variable
|
||||
|
||||
|
||||
|
@ -7,7 +7,7 @@ import numpy as np
|
||||
import pytest
|
||||
|
||||
import openvino.runtime.opset13 as ov
|
||||
from openvino.runtime import Type
|
||||
from openvino import Type
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
|
@ -6,7 +6,7 @@ import numpy as np
|
||||
import pytest
|
||||
|
||||
import openvino.runtime.opset8 as ov
|
||||
from openvino.runtime import Type
|
||||
from openvino import Type
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
|
@ -5,11 +5,11 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import openvino.runtime as ov
|
||||
import openvino.runtime.opset8 as ops
|
||||
from openvino.runtime import Model, Output, Type
|
||||
import openvino.runtime.opset13 as ops
|
||||
|
||||
from openvino import Core, Layout, Model, Shape, Tensor, Type
|
||||
from openvino.runtime.utils.decorators import custom_preprocess_function
|
||||
from openvino.runtime import Core
|
||||
from openvino.runtime import Output
|
||||
from openvino.preprocess import PrePostProcessor, ColorFormat, ResizeAlgorithm
|
||||
|
||||
|
||||
@ -37,7 +37,7 @@ def test_graph_preprocess_mean_vector():
|
||||
parameter_a = ops.parameter(shape, dtype=np.float32, name="A")
|
||||
model = parameter_a
|
||||
function = Model(model, [parameter_a], "TestFunction")
|
||||
layout = ov.Layout("NC")
|
||||
layout = Layout("NC")
|
||||
|
||||
ppp = PrePostProcessor(function)
|
||||
ppp.input().tensor().set_layout(layout)
|
||||
@ -58,7 +58,7 @@ def test_graph_preprocess_scale_vector():
|
||||
parameter_a = ops.parameter(shape, dtype=np.float32, name="A")
|
||||
model = parameter_a
|
||||
function = Model(model, [parameter_a], "TestFunction")
|
||||
layout = ov.Layout("NC")
|
||||
layout = Layout("NC")
|
||||
|
||||
ppp = PrePostProcessor(function)
|
||||
inp = ppp.input()
|
||||
@ -161,8 +161,8 @@ def test_graph_preprocess_output_postprocess():
|
||||
parameter_a = ops.parameter(shape, dtype=np.int32, name="A")
|
||||
model = parameter_a
|
||||
function = Model(model, [parameter_a], "TestFunction")
|
||||
layout1 = ov.Layout("NC")
|
||||
layout2 = ov.Layout("CN")
|
||||
layout1 = Layout("NC")
|
||||
layout2 = Layout("CN")
|
||||
layout3 = [1, 0]
|
||||
|
||||
@custom_preprocess_function
|
||||
@ -203,7 +203,7 @@ def test_graph_preprocess_spatial_static_shape():
|
||||
parameter_a = ops.parameter(shape, dtype=np.int32, name="A")
|
||||
model = parameter_a
|
||||
function = Model(model, [parameter_a], "TestFunction")
|
||||
layout = ov.Layout("CHW")
|
||||
layout = Layout("CHW")
|
||||
|
||||
color_format = ColorFormat.RGB
|
||||
|
||||
@ -272,19 +272,19 @@ def test_graph_preprocess_set_from_tensor():
|
||||
shape = [1, 224, 224, 3]
|
||||
inp_shape = [1, 480, 640, 3]
|
||||
parameter_a = ops.parameter(shape, dtype=np.float32, name="A")
|
||||
parameter_a.set_layout(ov.Layout("NHWC"))
|
||||
parameter_a.set_layout(Layout("NHWC"))
|
||||
model = parameter_a
|
||||
function = Model(model, [parameter_a], "TestFunction")
|
||||
|
||||
input_data = ov.Tensor(Type.i32, inp_shape)
|
||||
input_data = Tensor(Type.i32, inp_shape)
|
||||
ppp = PrePostProcessor(function)
|
||||
inp = ppp.input()
|
||||
inp.tensor().set_from(input_data)
|
||||
inp.preprocess().resize(ResizeAlgorithm.RESIZE_LINEAR)
|
||||
function = ppp.build()
|
||||
assert function.input().shape == ov.Shape(inp_shape)
|
||||
assert function.input().shape == Shape(inp_shape)
|
||||
assert function.input().element_type == Type.i32
|
||||
assert function.output().shape == ov.Shape(shape)
|
||||
assert function.output().shape == Shape(shape)
|
||||
assert function.output().element_type == Type.f32
|
||||
|
||||
|
||||
@ -311,7 +311,7 @@ def test_graph_preprocess_set_from_np_infer():
|
||||
inp.tensor().set_from(input_data)
|
||||
inp.preprocess().convert_element_type().custom(custom_crop)
|
||||
function = ppp.build()
|
||||
assert function.input().shape == ov.Shape([3, 3, 3])
|
||||
assert function.input().shape == Shape([3, 3, 3])
|
||||
assert function.input().element_type == Type.i32
|
||||
|
||||
model_operators = [op.get_name().split("_")[0] for op in function.get_ops()]
|
||||
@ -381,8 +381,8 @@ def test_graph_preprocess_steps(algorithm, color_format1, color_format2, is_fail
|
||||
parameter_a = ops.parameter(shape, dtype=np.float32, name="A")
|
||||
model = parameter_a
|
||||
function = Model(model, [parameter_a], "TestFunction")
|
||||
layout1 = ov.Layout("NCWH")
|
||||
layout2 = ov.Layout("NCHW")
|
||||
layout1 = Layout("NCWH")
|
||||
layout2 = Layout("NCHW")
|
||||
|
||||
custom_processor = PrePostProcessor(function)
|
||||
inp = custom_processor.input()
|
||||
@ -439,8 +439,8 @@ def test_graph_preprocess_postprocess_layout():
|
||||
parameter_a = ops.parameter(shape, dtype=np.float32, name="A")
|
||||
model = parameter_a
|
||||
function = Model(model, [parameter_a], "TestFunction")
|
||||
layout1 = ov.Layout("NCWH")
|
||||
layout2 = ov.Layout("NCHW")
|
||||
layout1 = Layout("NCWH")
|
||||
layout2 = Layout("NCHW")
|
||||
|
||||
ppp = PrePostProcessor(function)
|
||||
inp = ppp.input()
|
||||
@ -472,7 +472,7 @@ def test_graph_preprocess_reverse_channels():
|
||||
parameter_a = ops.parameter(shape, dtype=np.float32, name="A")
|
||||
model = parameter_a
|
||||
function = Model(model, [parameter_a], "TestFunction")
|
||||
layout1 = ov.Layout("NCWH")
|
||||
layout1 = Layout("NCWH")
|
||||
|
||||
ppp = PrePostProcessor(function)
|
||||
inp = ppp.input()
|
||||
@ -530,7 +530,7 @@ def test_graph_preprocess_resize_algorithm():
|
||||
model = parameter_a
|
||||
function = Model(model, [parameter_a], "TestFunction")
|
||||
resize_alg = ResizeAlgorithm.RESIZE_CUBIC
|
||||
layout1 = ov.Layout("NCWH")
|
||||
layout1 = Layout("NCWH")
|
||||
|
||||
ppp = PrePostProcessor(function)
|
||||
inp = ppp.input()
|
||||
@ -653,12 +653,12 @@ def test_graph_preprocess_dump():
|
||||
function = Model(model, [parameter_a], "TestFunction")
|
||||
|
||||
ppp = PrePostProcessor(function)
|
||||
ppp.input().tensor().set_layout(ov.Layout("NHWC")).set_element_type(Type.u8)
|
||||
ppp.input().tensor().set_layout(Layout("NHWC")).set_element_type(Type.u8)
|
||||
ppp.input().tensor().set_spatial_dynamic_shape()
|
||||
ppp.input().preprocess().convert_element_type(Type.f32).reverse_channels()
|
||||
ppp.input().preprocess().mean([1, 2, 3]).scale([4, 5, 6])
|
||||
ppp.input().preprocess().resize(ResizeAlgorithm.RESIZE_LINEAR)
|
||||
ppp.input().model().set_layout(ov.Layout("NCHW"))
|
||||
ppp.input().model().set_layout(Layout("NCHW"))
|
||||
p_str = str(ppp)
|
||||
assert "Pre-processing steps (5):" in p_str
|
||||
assert "convert type (f32):" in p_str
|
||||
@ -667,7 +667,7 @@ def test_graph_preprocess_dump():
|
||||
assert "scale (4,5,6):" in p_str
|
||||
assert "resize to model width/height:" in p_str
|
||||
assert "Implicit pre-processing steps (1):" in p_str
|
||||
assert "convert layout " + ov.Layout("NCHW").to_string() in p_str
|
||||
assert "convert layout " + Layout("NCHW").to_string() in p_str
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
@ -687,7 +687,7 @@ def test_ngraph_set_layout_by_string(layout, layout_str):
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("layout", "layout_str"),
|
||||
[(ov.Layout("NHCW"), "[N,H,C,W]"), (ov.Layout("NHWC"), "[N,H,W,C]")])
|
||||
[(Layout("NHCW"), "[N,H,C,W]"), (Layout("NHWC"), "[N,H,W,C]")])
|
||||
def test_ngraph_set_layout_by_layout_class(layout, layout_str):
|
||||
shape = [1, 3, 224, 224]
|
||||
parameter_a = ops.parameter(shape, dtype=np.float32, name="RGB_input")
|
||||
@ -725,6 +725,6 @@ def test_ngraph_set_layout_by_layout_class_thow_exception():
|
||||
ppp = PrePostProcessor(function)
|
||||
|
||||
with pytest.raises(RuntimeError) as e:
|
||||
layout = ov.Layout("1-2-3D")
|
||||
layout = Layout("1-2-3D")
|
||||
ppp.input().model().set_layout(layout)
|
||||
assert "Layout name is invalid" in str(e.value)
|
||||
|
@ -4,7 +4,7 @@
|
||||
|
||||
import numpy as np
|
||||
import openvino.runtime.opset8 as ov
|
||||
from openvino.runtime import Shape, Type
|
||||
from openvino import Shape, Type
|
||||
|
||||
|
||||
def test_proposal_props():
|
||||
|
@ -2,9 +2,9 @@
|
||||
# Copyright (C) 2018-2023 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import openvino.runtime as ov
|
||||
import openvino.runtime.opset8 as ops
|
||||
import numpy as np
|
||||
import openvino.runtime.opset8 as ops
|
||||
from openvino import Type
|
||||
|
||||
|
||||
def test_random_uniform():
|
||||
@ -17,5 +17,5 @@ def test_random_uniform():
|
||||
op_seed=1546)
|
||||
assert random_uniform_node.get_output_size() == 1
|
||||
assert random_uniform_node.get_type_name() == "RandomUniform"
|
||||
assert random_uniform_node.get_output_element_type(0) == ov.Type.f32
|
||||
assert random_uniform_node.get_output_element_type(0) == Type.f32
|
||||
assert list(random_uniform_node.get_output_shape(0)) == [2, 4, 3]
|
||||
|
@ -3,7 +3,7 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import openvino.runtime.opset10 as ov
|
||||
from openvino.runtime import Shape, Type
|
||||
from openvino import Shape, Type
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
|
@ -5,7 +5,7 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
import openvino.runtime.opset8 as ov
|
||||
from openvino.runtime import Shape, Type
|
||||
from openvino import Shape, Type
|
||||
|
||||
|
||||
@pytest.mark.parametrize(("beta"), [
|
||||
|
@ -4,7 +4,7 @@
|
||||
|
||||
import numpy as np
|
||||
import openvino.runtime.opset8 as ov
|
||||
from openvino.runtime import Model, Shape
|
||||
from openvino import Model, Shape
|
||||
|
||||
from openvino.runtime.op.util import (
|
||||
InvariantInputDescription,
|
||||
|
@ -5,7 +5,7 @@
|
||||
import openvino.runtime as ov
|
||||
import pytest
|
||||
from openvino._pyopenvino.util import deprecation_warning
|
||||
from openvino.runtime import Shape
|
||||
from openvino import Shape
|
||||
|
||||
|
||||
def test_get_constant_from_source_success():
|
||||
|
@ -4,7 +4,7 @@
|
||||
|
||||
import numpy as np
|
||||
|
||||
from openvino.runtime import Tensor, Type
|
||||
from openvino import Tensor, Type
|
||||
|
||||
|
||||
def test_run():
|
||||
|
@ -676,7 +676,7 @@ def test_infer_queue_get_idle_handle(device):
|
||||
def test_query_state_write_buffer(device, input_shape, data_type, mode):
|
||||
core = Core()
|
||||
|
||||
from openvino.runtime import Tensor
|
||||
from openvino import Tensor
|
||||
from openvino.runtime.utils.types import get_dtype
|
||||
|
||||
model = create_model_with_memory(input_shape, data_type)
|
||||
|
@ -5,8 +5,7 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import openvino.runtime as ov
|
||||
from openvino import Tensor
|
||||
from openvino import Tensor, Type
|
||||
from openvino.runtime.op import Constant
|
||||
|
||||
from tests.utils.helpers import generate_image
|
||||
@ -28,18 +27,18 @@ def test_init_with_numpy_fail(cls, cls_str):
|
||||
@pytest.mark.parametrize("cls", [Tensor, Constant])
|
||||
@pytest.mark.parametrize("shared_flag", [True, False])
|
||||
@pytest.mark.parametrize(("ov_type", "numpy_dtype"), [
|
||||
(ov.Type.f32, np.float32),
|
||||
(ov.Type.f64, np.float64),
|
||||
(ov.Type.f16, np.float16),
|
||||
(ov.Type.i8, np.int8),
|
||||
(ov.Type.u8, np.uint8),
|
||||
(ov.Type.i32, np.int32),
|
||||
(ov.Type.u32, np.uint32),
|
||||
(ov.Type.i16, np.int16),
|
||||
(ov.Type.u16, np.uint16),
|
||||
(ov.Type.i64, np.int64),
|
||||
(ov.Type.u64, np.uint64),
|
||||
(ov.Type.boolean, bool),
|
||||
(Type.f32, np.float32),
|
||||
(Type.f64, np.float64),
|
||||
(Type.f16, np.float16),
|
||||
(Type.i8, np.int8),
|
||||
(Type.u8, np.uint8),
|
||||
(Type.i32, np.int32),
|
||||
(Type.u32, np.uint32),
|
||||
(Type.i16, np.int16),
|
||||
(Type.u16, np.uint16),
|
||||
(Type.i64, np.int64),
|
||||
(Type.u64, np.uint64),
|
||||
(Type.boolean, bool),
|
||||
])
|
||||
def test_with_numpy_memory(cls, shared_flag, ov_type, numpy_dtype):
|
||||
arr = np.ascontiguousarray(generate_image().astype(numpy_dtype))
|
||||
@ -95,18 +94,18 @@ def test_with_external_memory(cls, shared_flag):
|
||||
@pytest.mark.parametrize("shared_flag_one", [True, False])
|
||||
@pytest.mark.parametrize("shared_flag_two", [True, False])
|
||||
@pytest.mark.parametrize(("ov_type", "numpy_dtype"), [
|
||||
(ov.Type.f32, np.float32),
|
||||
(ov.Type.f64, np.float64),
|
||||
(ov.Type.f16, np.float16),
|
||||
(ov.Type.i8, np.int8),
|
||||
(ov.Type.u8, np.uint8),
|
||||
(ov.Type.i32, np.int32),
|
||||
(ov.Type.u32, np.uint32),
|
||||
(ov.Type.i16, np.int16),
|
||||
(ov.Type.u16, np.uint16),
|
||||
(ov.Type.i64, np.int64),
|
||||
(ov.Type.u64, np.uint64),
|
||||
(ov.Type.boolean, bool),
|
||||
(Type.f32, np.float32),
|
||||
(Type.f64, np.float64),
|
||||
(Type.f16, np.float16),
|
||||
(Type.i8, np.int8),
|
||||
(Type.u8, np.uint8),
|
||||
(Type.i32, np.int32),
|
||||
(Type.u32, np.uint32),
|
||||
(Type.i16, np.int16),
|
||||
(Type.u16, np.uint16),
|
||||
(Type.i64, np.int64),
|
||||
(Type.u64, np.uint64),
|
||||
(Type.boolean, bool),
|
||||
])
|
||||
def test_with_tensor_memory(cls, shared_flag_one, shared_flag_two, ov_type, numpy_dtype):
|
||||
arr = np.ascontiguousarray(generate_image().astype(numpy_dtype))
|
||||
|
@ -9,7 +9,8 @@ import io
|
||||
import threading
|
||||
import numpy as np
|
||||
|
||||
from openvino.runtime import Core, Model, AsyncInferQueue, PartialShape, Layout, opset13 as ops, serialize
|
||||
from openvino import Core, Model, AsyncInferQueue, PartialShape, Layout, serialize
|
||||
from openvino.runtime import opset13 as ops
|
||||
from openvino.preprocess import PrePostProcessor
|
||||
|
||||
from tests import skip_devtest
|
||||
|
@ -9,7 +9,7 @@ import sys
|
||||
import numpy as np
|
||||
|
||||
import openvino as ov
|
||||
import openvino.runtime.opset11 as ops
|
||||
import openvino.runtime.opset13 as ops
|
||||
from openvino.helpers import pack_data, unpack_data
|
||||
|
||||
import pytest
|
||||
|
@ -12,8 +12,7 @@ import torch
|
||||
import torch.nn.functional as f
|
||||
import torchvision.transforms as transforms
|
||||
|
||||
from openvino import Type
|
||||
from openvino.runtime import Core, Tensor
|
||||
from openvino import Type, Core
|
||||
from openvino.tools.mo import convert_model
|
||||
from openvino.properties.hint import inference_precision
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright (C) 2022 Intel Corporation
|
||||
# Copyright (C) 2018-2023 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
from openvino.runtime import opset8
|
||||
from openvino.runtime.passes import Manager, GraphRewrite, MatcherPass, WrapType, Matcher
|
||||
|
@ -1,5 +1,5 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright (C) 2022 Intel Corporation
|
||||
# Copyright (C) 2018-2023 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
from openvino.runtime.passes import Manager, GraphRewrite, BackwardGraphRewrite, Serialize
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright (C) 2022 Intel Corporation
|
||||
# Copyright (C) 2018-2023 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
from openvino.runtime import opset8
|
||||
from openvino.runtime.passes import Manager, Matcher, MatcherPass, WrapType
|
||||
|
@ -1,5 +1,5 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright (C) 2022 Intel Corporation
|
||||
# Copyright (C) 2018-2023 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
from openvino.runtime.passes import Manager
|
||||
|
||||
|
@ -16,7 +16,7 @@ from openvino._offline_transformations import (
|
||||
apply_fused_names_cleanup,
|
||||
)
|
||||
|
||||
from openvino.runtime import Model, PartialShape, Core, serialize, save_model
|
||||
from openvino import Model, PartialShape, Core, serialize, save_model
|
||||
import openvino.runtime as ov
|
||||
|
||||
from tests.utils.helpers import create_filename_for_test, compare_models, _compare_models
|
||||
|
@ -1,9 +1,10 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright (C) 2022 Intel Corporation
|
||||
# Copyright (C) 2018-2023 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
import numpy as np
|
||||
|
||||
from openvino.runtime import PartialShape, opset8
|
||||
from openvino import PartialShape
|
||||
from openvino.runtime import opset13 as ops
|
||||
from openvino.runtime.passes import Matcher, WrapType, Or, AnyInput
|
||||
from openvino.runtime.passes import (
|
||||
consumers_count,
|
||||
@ -31,53 +32,53 @@ def test_wrap_type_pattern_type():
|
||||
|
||||
# Generic negative test cases
|
||||
expect_exception(lambda: WrapType(""))
|
||||
expect_exception(lambda: WrapType("opset8"))
|
||||
expect_exception(lambda: WrapType("ops"))
|
||||
expect_exception(lambda: WrapType("Parameter"))
|
||||
expect_exception(lambda: WrapType("opset.Parameter"))
|
||||
expect_exception(lambda: WrapType("opset8,Parameter"))
|
||||
expect_exception(lambda: WrapType("Parameter.opset8"))
|
||||
expect_exception(lambda: WrapType("ops,Parameter"))
|
||||
expect_exception(lambda: WrapType("Parameter.ops"))
|
||||
|
||||
|
||||
def test_wrap_type_ctors():
|
||||
param = opset8.parameter(PartialShape([1, 3, 22, 22]))
|
||||
relu = opset8.relu(param.output(0))
|
||||
slope = opset8.parameter(PartialShape([]))
|
||||
prelu = opset8.prelu(param.output(0), slope.output(0))
|
||||
param = ops.parameter(PartialShape([1, 3, 22, 22]))
|
||||
relu = ops.relu(param.output(0))
|
||||
slope = ops.parameter(PartialShape([]))
|
||||
prelu = ops.prelu(param.output(0), slope.output(0))
|
||||
|
||||
matcher = Matcher(WrapType(["opset8.Relu", "opset8.PRelu"]), "FindActivation")
|
||||
matcher = Matcher(WrapType(["opset13.Relu", "opset13.PRelu"]), "FindActivation")
|
||||
assert matcher.match(relu)
|
||||
assert matcher.match(prelu)
|
||||
|
||||
matcher = Matcher(WrapType(["opset8.Relu", "opset8.PRelu"],
|
||||
WrapType("opset8.Parameter").output(0)), "FindActivation")
|
||||
matcher = Matcher(WrapType(["opset13.Relu", "opset13.PRelu"],
|
||||
WrapType("opset13.Parameter").output(0)), "FindActivation")
|
||||
assert matcher.match(relu)
|
||||
|
||||
|
||||
def test_or():
|
||||
param = opset8.parameter(PartialShape([1, 3, 22, 22]))
|
||||
relu = opset8.relu(param.output(0))
|
||||
slope = opset8.parameter(PartialShape([]))
|
||||
prelu = opset8.prelu(param.output(0), slope.output(0))
|
||||
param = ops.parameter(PartialShape([1, 3, 22, 22]))
|
||||
relu = ops.relu(param.output(0))
|
||||
slope = ops.parameter(PartialShape([]))
|
||||
prelu = ops.prelu(param.output(0), slope.output(0))
|
||||
|
||||
matcher = Matcher(Or([WrapType("opset8.Relu"), WrapType("opset8.PRelu")]), "FindActivation")
|
||||
matcher = Matcher(Or([WrapType("opset13.Relu"), WrapType("opset13.PRelu")]), "FindActivation")
|
||||
assert matcher.match(relu)
|
||||
assert matcher.match(prelu)
|
||||
|
||||
|
||||
def test_any_input():
|
||||
param = opset8.parameter(PartialShape([1, 3, 22, 22]))
|
||||
relu = opset8.relu(param.output(0))
|
||||
slope = opset8.parameter(PartialShape([]))
|
||||
prelu = opset8.prelu(param.output(0), slope.output(0))
|
||||
param = ops.parameter(PartialShape([1, 3, 22, 22]))
|
||||
relu = ops.relu(param.output(0))
|
||||
slope = ops.parameter(PartialShape([]))
|
||||
prelu = ops.prelu(param.output(0), slope.output(0))
|
||||
|
||||
matcher = Matcher(WrapType("opset8.PRelu", [AnyInput(), AnyInput()]), "FindActivation")
|
||||
matcher = Matcher(WrapType("opset13.PRelu", [AnyInput(), AnyInput()]), "FindActivation")
|
||||
assert not matcher.match(relu)
|
||||
assert matcher.match(prelu)
|
||||
|
||||
|
||||
def test_any_input_predicate():
|
||||
param = opset8.parameter(PartialShape([1, 3, 22, 22]))
|
||||
slope = opset8.parameter(PartialShape([]))
|
||||
param = ops.parameter(PartialShape([1, 3, 22, 22]))
|
||||
slope = ops.parameter(PartialShape([]))
|
||||
|
||||
matcher = Matcher(AnyInput(lambda output: len(output.get_shape()) == 4), "FindActivation")
|
||||
assert matcher.match(param)
|
||||
@ -85,33 +86,33 @@ def test_any_input_predicate():
|
||||
|
||||
|
||||
def test_all_predicates():
|
||||
static_param = opset8.parameter(PartialShape([1, 3, 22, 22]), np.float32)
|
||||
dynamic_param = opset8.parameter(PartialShape([-1, 6]), np.compat.long)
|
||||
fully_dynamic_param = opset8.parameter(PartialShape.dynamic())
|
||||
static_param = ops.parameter(PartialShape([1, 3, 22, 22]), np.float32)
|
||||
dynamic_param = ops.parameter(PartialShape([-1, 6]), np.compat.long)
|
||||
fully_dynamic_param = ops.parameter(PartialShape.dynamic())
|
||||
|
||||
assert Matcher(WrapType("opset8.Parameter", consumers_count(0)), "Test").match(static_param)
|
||||
assert not Matcher(WrapType("opset8.Parameter", consumers_count(1)), "Test").match(static_param)
|
||||
assert Matcher(WrapType("opset13.Parameter", consumers_count(0)), "Test").match(static_param)
|
||||
assert not Matcher(WrapType("opset13.Parameter", consumers_count(1)), "Test").match(static_param)
|
||||
|
||||
assert Matcher(WrapType("opset8.Parameter", has_static_dim(1)), "Test").match(static_param)
|
||||
assert not Matcher(WrapType("opset8.Parameter", has_static_dim(0)), "Test").match(dynamic_param)
|
||||
assert Matcher(WrapType("opset13.Parameter", has_static_dim(1)), "Test").match(static_param)
|
||||
assert not Matcher(WrapType("opset13.Parameter", has_static_dim(0)), "Test").match(dynamic_param)
|
||||
|
||||
assert Matcher(WrapType("opset8.Parameter", has_static_dims([0, 3])), "Test").match(static_param)
|
||||
assert not Matcher(WrapType("opset8.Parameter", has_static_dims([0, 1])), "Test").match(dynamic_param)
|
||||
assert Matcher(WrapType("opset13.Parameter", has_static_dims([0, 3])), "Test").match(static_param)
|
||||
assert not Matcher(WrapType("opset13.Parameter", has_static_dims([0, 1])), "Test").match(dynamic_param)
|
||||
|
||||
assert Matcher(WrapType("opset8.Parameter", has_static_shape()), "Test").match(static_param)
|
||||
assert not Matcher(WrapType("opset8.Parameter", has_static_shape()), "Test").match(dynamic_param)
|
||||
assert Matcher(WrapType("opset13.Parameter", has_static_shape()), "Test").match(static_param)
|
||||
assert not Matcher(WrapType("opset13.Parameter", has_static_shape()), "Test").match(dynamic_param)
|
||||
|
||||
assert Matcher(WrapType("opset8.Parameter", has_static_rank()), "Test").match(dynamic_param)
|
||||
assert not Matcher(WrapType("opset8.Parameter", has_static_rank()), "Test").match(fully_dynamic_param)
|
||||
assert Matcher(WrapType("opset13.Parameter", has_static_rank()), "Test").match(dynamic_param)
|
||||
assert not Matcher(WrapType("opset13.Parameter", has_static_rank()), "Test").match(fully_dynamic_param)
|
||||
|
||||
assert Matcher(WrapType("opset8.Parameter",
|
||||
assert Matcher(WrapType("opset13.Parameter",
|
||||
type_matches(get_element_type(np.float32))), "Test").match(static_param)
|
||||
assert not Matcher(WrapType("opset8.Parameter",
|
||||
assert not Matcher(WrapType("opset13.Parameter",
|
||||
type_matches(get_element_type(np.float32))), "Test").match(dynamic_param)
|
||||
|
||||
assert Matcher(WrapType("opset8.Parameter", # noqa: ECE001
|
||||
assert Matcher(WrapType("opset13.Parameter", # noqa: ECE001
|
||||
type_matches_any([get_element_type(np.float32),
|
||||
get_element_type(np.compat.long)])), "Test").match(static_param)
|
||||
assert Matcher(WrapType("opset8.Parameter", # noqa: ECE001
|
||||
assert Matcher(WrapType("opset13.Parameter", # noqa: ECE001
|
||||
type_matches_any([get_element_type(np.float32),
|
||||
get_element_type(np.compat.long)])), "Test").match(dynamic_param)
|
||||
|
@ -1,12 +1,12 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright (C) 2022 Intel Corporation
|
||||
# Copyright (C) 2018-2023 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
import os
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
from openvino.runtime import Model, PartialShape, Shape, Core
|
||||
from openvino.runtime import opset10
|
||||
from openvino import Model, PartialShape, Shape, Core
|
||||
from openvino.runtime import opset13 as ops
|
||||
from openvino.runtime.passes import (
|
||||
Manager,
|
||||
ConstantFolding,
|
||||
@ -21,21 +21,21 @@ from tests.utils.helpers import create_filename_for_test, compare_models
|
||||
|
||||
|
||||
def get_model():
|
||||
param = opset10.parameter(PartialShape([1, 3, 22, 22]), name="parameter")
|
||||
param = ops.parameter(PartialShape([1, 3, 22, 22]), name="parameter")
|
||||
param.get_output_tensor(0).set_names({"parameter"})
|
||||
relu = opset10.relu(param)
|
||||
reshape = opset10.reshape(relu, opset10.shape_of(relu), False)
|
||||
res = opset10.result(reshape, name="result")
|
||||
relu = ops.relu(param)
|
||||
reshape = ops.reshape(relu, ops.shape_of(relu), False)
|
||||
res = ops.result(reshape, name="result")
|
||||
res.get_output_tensor(0).set_names({"result"})
|
||||
return Model([res], [param], "test")
|
||||
|
||||
|
||||
def test_make_stateful():
|
||||
param = opset10.parameter(PartialShape([1, 3, 22, 22]), name="parameter")
|
||||
param = ops.parameter(PartialShape([1, 3, 22, 22]), name="parameter")
|
||||
param.get_output_tensor(0).set_names({"parameter"})
|
||||
relu = opset10.relu(param)
|
||||
reshape = opset10.reshape(relu, opset10.shape_of(relu), False)
|
||||
res = opset10.result(reshape, name="result")
|
||||
relu = ops.relu(param)
|
||||
reshape = ops.reshape(relu, ops.shape_of(relu), False)
|
||||
res = ops.result(reshape, name="result")
|
||||
res.get_output_tensor(0).set_names({"result"})
|
||||
model = Model([res], [param], "test")
|
||||
|
||||
@ -87,20 +87,20 @@ def test_convert_precision():
|
||||
|
||||
|
||||
def test_low_latency2():
|
||||
param_x = opset10.parameter(Shape([32, 40, 10]), np.float32, "X")
|
||||
param_y = opset10.parameter(Shape([32, 40, 10]), np.float32, "Y")
|
||||
param_m = opset10.parameter(Shape([32, 2, 10]), np.float32, "M")
|
||||
param_x = ops.parameter(Shape([32, 40, 10]), np.float32, "X")
|
||||
param_y = ops.parameter(Shape([32, 40, 10]), np.float32, "Y")
|
||||
param_m = ops.parameter(Shape([32, 2, 10]), np.float32, "M")
|
||||
|
||||
x_i = opset10.parameter(Shape([32, 2, 10]), np.float32, "X_i")
|
||||
y_i = opset10.parameter(Shape([32, 2, 10]), np.float32, "Y_i")
|
||||
m_body = opset10.parameter(Shape([32, 2, 10]), np.float32, "M_body")
|
||||
x_i = ops.parameter(Shape([32, 2, 10]), np.float32, "X_i")
|
||||
y_i = ops.parameter(Shape([32, 2, 10]), np.float32, "Y_i")
|
||||
m_body = ops.parameter(Shape([32, 2, 10]), np.float32, "M_body")
|
||||
|
||||
add = opset10.add(x_i, y_i)
|
||||
zo = opset10.multiply(add, m_body)
|
||||
add = ops.add(x_i, y_i)
|
||||
zo = ops.multiply(add, m_body)
|
||||
|
||||
body = Model([zo], [x_i, y_i, m_body], "body_function")
|
||||
|
||||
ti = opset10.tensor_iterator()
|
||||
ti = ops.tensor_iterator()
|
||||
ti.set_body(body)
|
||||
ti.set_sliced_input(x_i, param_x.output(0), 0, 2, 2, 39, 1)
|
||||
ti.set_sliced_input(y_i, param_y.output(0), 0, 2, 2, -1, 1)
|
||||
@ -109,8 +109,8 @@ def test_low_latency2():
|
||||
out0 = ti.get_iter_value(zo.output(0), -1)
|
||||
out1 = ti.get_concatenated_slices(zo.output(0), 0, 2, 2, 39, 1)
|
||||
|
||||
result0 = opset10.result(out0)
|
||||
result1 = opset10.result(out1)
|
||||
result0 = ops.result(out0)
|
||||
result1 = ops.result(out1)
|
||||
|
||||
model = Model([result0, result1], [param_x, param_y, param_m])
|
||||
|
||||
|
@ -1,36 +1,37 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright (C) 2022 Intel Corporation
|
||||
# Copyright (C) 2018-2023 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
from openvino.runtime import Model, PartialShape, opset8
|
||||
from openvino import Model, PartialShape
|
||||
from openvino.runtime import opset13 as ops
|
||||
from openvino.runtime.utils import replace_node, replace_output_update_name
|
||||
|
||||
|
||||
def get_relu_model():
|
||||
# Parameter->Relu->Result
|
||||
param = opset8.parameter(PartialShape([1, 3, 22, 22]), name="parameter")
|
||||
relu = opset8.relu(param.output(0))
|
||||
res = opset8.result(relu.output(0), name="result")
|
||||
param = ops.parameter(PartialShape([1, 3, 22, 22]), name="parameter")
|
||||
relu = ops.relu(param.output(0))
|
||||
res = ops.result(relu.output(0), name="result")
|
||||
return Model([res], [param], "test")
|
||||
|
||||
|
||||
def test_output_replace():
|
||||
param = opset8.parameter(PartialShape([1, 3, 22, 22]), name="parameter")
|
||||
relu = opset8.relu(param.output(0))
|
||||
res = opset8.result(relu.output(0), name="result")
|
||||
param = ops.parameter(PartialShape([1, 3, 22, 22]), name="parameter")
|
||||
relu = ops.relu(param.output(0))
|
||||
res = ops.result(relu.output(0), name="result")
|
||||
|
||||
exp = opset8.exp(param.output(0))
|
||||
exp = ops.exp(param.output(0))
|
||||
relu.output(0).replace(exp.output(0))
|
||||
|
||||
assert res.input_value(0).get_node() == exp
|
||||
|
||||
|
||||
def test_replace_source_output():
|
||||
param = opset8.parameter(PartialShape([1, 3, 22, 22]), name="parameter")
|
||||
relu = opset8.relu(param.output(0))
|
||||
res = opset8.result(relu.output(0), name="result")
|
||||
param = ops.parameter(PartialShape([1, 3, 22, 22]), name="parameter")
|
||||
relu = ops.relu(param.output(0))
|
||||
res = ops.result(relu.output(0), name="result")
|
||||
|
||||
exp = opset8.exp(param.output(0))
|
||||
exp = ops.exp(param.output(0))
|
||||
res.input(0).replace_source_output(exp.output(0))
|
||||
|
||||
assert len(exp.output(0).get_target_inputs()) == 1
|
||||
@ -40,21 +41,21 @@ def test_replace_source_output():
|
||||
|
||||
|
||||
def test_replace_node():
|
||||
param = opset8.parameter(PartialShape([1, 3, 22, 22]), name="parameter")
|
||||
relu = opset8.relu(param.output(0))
|
||||
res = opset8.result(relu.output(0), name="result")
|
||||
param = ops.parameter(PartialShape([1, 3, 22, 22]), name="parameter")
|
||||
relu = ops.relu(param.output(0))
|
||||
res = ops.result(relu.output(0), name="result")
|
||||
|
||||
exp = opset8.exp(param.output(0))
|
||||
exp = ops.exp(param.output(0))
|
||||
replace_node(relu, exp)
|
||||
|
||||
assert res.input_value(0).get_node() == exp
|
||||
|
||||
|
||||
def test_replace_output_update_name():
|
||||
param = opset8.parameter(PartialShape([1, 3, 22, 22]), name="parameter")
|
||||
relu = opset8.relu(param.output(0))
|
||||
exp = opset8.exp(relu.output(0))
|
||||
res = opset8.result(exp.output(0), name="result")
|
||||
param = ops.parameter(PartialShape([1, 3, 22, 22]), name="parameter")
|
||||
relu = ops.relu(param.output(0))
|
||||
exp = ops.exp(relu.output(0))
|
||||
res = ops.result(exp.output(0), name="result")
|
||||
|
||||
replace_output_update_name(exp.output(0), exp.input_value(0))
|
||||
|
||||
|
@ -1,16 +1,17 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright (C) 2022 Intel Corporation
|
||||
# Copyright (C) 2018-2023 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
from openvino.runtime import Model, PartialShape, opset8
|
||||
from openvino import Model, PartialShape
|
||||
from openvino.runtime import opset13 as ops
|
||||
from openvino.runtime.passes import ModelPass, Matcher, MatcherPass, WrapType
|
||||
|
||||
|
||||
def get_relu_model():
|
||||
# Parameter->Relu->Result
|
||||
param = opset8.parameter(PartialShape([1, 3, 22, 22]), name="parameter")
|
||||
relu = opset8.relu(param.output(0))
|
||||
res = opset8.result(relu.output(0), name="result")
|
||||
param = ops.parameter(PartialShape([1, 3, 22, 22]), name="parameter")
|
||||
relu = ops.relu(param.output(0))
|
||||
res = ops.result(relu.output(0), name="result")
|
||||
return Model([res], [param], "test")
|
||||
|
||||
|
||||
@ -45,12 +46,12 @@ class PatternReplacement(MatcherPass):
|
||||
MatcherPass.__init__(self)
|
||||
self.model_changed = False
|
||||
|
||||
relu = WrapType("opset8::Relu")
|
||||
relu = WrapType("opset13::Relu")
|
||||
|
||||
def callback(matcher: Matcher) -> bool:
|
||||
self.applied = True
|
||||
root = matcher.get_match_root()
|
||||
new_relu = opset8.relu(root.input(0).get_source_output())
|
||||
new_relu = ops.relu(root.input(0).get_source_output())
|
||||
|
||||
# For testing purpose
|
||||
self.model_changed = True
|
||||
|
@ -7,7 +7,8 @@ import pytest
|
||||
import numpy as np
|
||||
|
||||
from tests.utils.helpers import generate_relu_compiled_model
|
||||
from openvino.runtime import Model, ConstOutput, Type, Shape, Core, Tensor
|
||||
from openvino import Model, Type, Shape, Core, Tensor
|
||||
from openvino.runtime import ConstOutput
|
||||
from openvino.runtime.utils.data_helpers import _data_dispatch
|
||||
|
||||
is_myriad = os.environ.get("TEST_DEVICE") == "MYRIAD"
|
||||
|
@ -12,8 +12,8 @@ from sys import platform
|
||||
from pathlib import Path
|
||||
|
||||
import openvino
|
||||
from openvino import Model, Core, Shape
|
||||
import openvino.runtime.opset13 as ops
|
||||
from openvino.runtime import Model, Core, Shape
|
||||
|
||||
|
||||
def _compare_models(model_one: Model, model_two: Model, compare_names: bool = True) -> Tuple[bool, str]: # noqa: C901 the function is too complex
|
||||
@ -172,7 +172,7 @@ def get_model_with_template_extension():
|
||||
return core, core.read_model(ir)
|
||||
|
||||
|
||||
def get_relu_model(input_shape: List[int] = None, input_dtype=np.float32) -> openvino.runtime.Model:
|
||||
def get_relu_model(input_shape: List[int] = None, input_dtype=np.float32) -> openvino.Model:
|
||||
if input_shape is None:
|
||||
input_shape = [1, 3, 32, 32]
|
||||
param = ops.parameter(input_shape, input_dtype, name="data")
|
||||
@ -188,7 +188,7 @@ def generate_relu_compiled_model(
|
||||
device,
|
||||
input_shape: List[int] = None,
|
||||
input_dtype=np.float32,
|
||||
) -> openvino.runtime.CompiledModel:
|
||||
) -> openvino.CompiledModel:
|
||||
if input_shape is None:
|
||||
input_shape = [1, 3, 32, 32]
|
||||
model = get_relu_model(input_shape, input_dtype)
|
||||
|
Loading…
Reference in New Issue
Block a user