Add hsigmoid fusing for MO (#2750)
* Add hsigmoid fusing for MO * Update Bom file * Remove comments * Refactoring hsigmoid fusion according to review * Add div and mul patterns for hsigmoid fusion * Refactoring code according to review * Fix HSigmoid fusion transformation
This commit is contained in:
parent
7bd8391aba
commit
ce19e1fb9a
@ -127,6 +127,7 @@ extensions/front/freeze_placeholder_value.py
|
||||
extensions/front/GeLUMerger_Erf.py
|
||||
extensions/front/GeLUMerger_Tanh.py
|
||||
extensions/front/global_pooling_to_reduce.py
|
||||
extensions/front/HSigmoid_fusion.py
|
||||
extensions/front/HSwish_fusion.py
|
||||
extensions/front/image_scaler.py
|
||||
extensions/front/input_cut.py
|
||||
|
181
model-optimizer/extensions/front/HSigmoid_fusion.py
Normal file
181
model-optimizer/extensions/front/HSigmoid_fusion.py
Normal file
@ -0,0 +1,181 @@
|
||||
"""
|
||||
Copyright (C) 2018-2020 Intel Corporation
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
from extensions.front.AttributedClampNormalizer import AttributedClampNormalizer
|
||||
from extensions.ops.activation_ops import HSigmoid
|
||||
from mo.front.common.replacement import FrontReplacementSubgraph
|
||||
from mo.front.subgraph_matcher import SubgraphMatch
|
||||
from mo.graph.graph import Graph, rename_nodes
|
||||
from mo.utils.graph import Node
|
||||
|
||||
|
||||
def replace_with_hsigmoid(graph: Graph, first_node: Node, last_node: Node):
|
||||
# determine the input port of first and last nodes which gets the 'input' node output
|
||||
add_input_port_idx = int(first_node.in_port(0).get_connection().get_source().node.soft_get('op') == 'Const')
|
||||
last_node_name = last_node.soft_get('name', last_node.id)
|
||||
|
||||
hsigmoid = HSigmoid(graph, {}).create_node()
|
||||
hsigmoid.in_port(0).connect(first_node.in_port(add_input_port_idx).get_source())
|
||||
last_node.out_port(0).get_connection().set_source(hsigmoid.out_port(0))
|
||||
|
||||
rename_nodes([(last_node, last_node_name + '/TBR'), (hsigmoid, last_node_name)])
|
||||
|
||||
|
||||
class HSigmoidWithClamp(FrontReplacementSubgraph):
|
||||
"""
|
||||
The transformation looks for the pattern with ReLU6 (Clamp) defining the HSigmoid function:
|
||||
HSigmoid(x) = Relu6(x + 3.0) / 6.0.
|
||||
"""
|
||||
enabled = True
|
||||
|
||||
def run_after(self):
|
||||
return [AttributedClampNormalizer]
|
||||
|
||||
def pattern(self):
|
||||
return dict(
|
||||
nodes=[
|
||||
('input', dict()),
|
||||
('add', dict(op='Add')),
|
||||
('const_0', dict(op='Const', value=lambda v: v is not None and np.allclose(v, 0.0, atol=1e-6))),
|
||||
('const_3', dict(op='Const', value=lambda v: v is not None and np.allclose(v, 3.0, atol=1e-6))),
|
||||
('const_6', dict(op='Const', value=lambda v: v is not None and np.allclose(v, 6.0, atol=1e-6))),
|
||||
('const_1_6', dict(op='Const', value=lambda v: v is not None and np.allclose(v, 1.0 / 6.0, atol=1e-6))),
|
||||
('clamp', dict(op='Clamp')),
|
||||
('mul_2', dict(op='Mul')),
|
||||
],
|
||||
edges=[
|
||||
('input', 'add', {}),
|
||||
('const_3', 'add', {}),
|
||||
('add', 'clamp', {'in': 0}),
|
||||
('const_0', 'clamp', {'in': 1}),
|
||||
('const_6', 'clamp', {'in': 2}),
|
||||
('clamp', 'mul_2', {}),
|
||||
('const_1_6', 'mul_2', {}),
|
||||
])
|
||||
|
||||
def replace_sub_graph(self, graph: Graph, match: [dict, SubgraphMatch]):
|
||||
replace_with_hsigmoid(graph, match['add'], match['mul_2'])
|
||||
|
||||
|
||||
class HSigmoidWithMinMax(FrontReplacementSubgraph):
|
||||
"""
|
||||
The transformation looks for the pattern with Min/Max defining the HSigmoid function:
|
||||
HSigmoid(x) = Min(Max(x + 3.0, 0), 6.0) / 6.0.
|
||||
"""
|
||||
enabled = True
|
||||
|
||||
def run_after(self):
|
||||
return [AttributedClampNormalizer]
|
||||
|
||||
def pattern(self):
|
||||
return dict(
|
||||
nodes=[
|
||||
('input', dict()),
|
||||
('add', dict(op='Add')),
|
||||
('const_0', dict(op='Const', value=lambda v: v is not None and np.allclose(v, 0.0, atol=1e-6))),
|
||||
('const_3', dict(op='Const', value=lambda v: v is not None and np.allclose(v, 3.0, atol=1e-6))),
|
||||
('const_6', dict(op='Const', value=lambda v: v is not None and np.allclose(v, 6.0, atol=1e-6))),
|
||||
('const_1_6', dict(op='Const', value=lambda v: v is not None and np.allclose(v, 1.0 / 6.0, atol=1e-6))),
|
||||
('max', dict(op='Maximum')),
|
||||
('min', dict(op='Minimum')),
|
||||
('mul_2', dict(op='Mul')),
|
||||
],
|
||||
edges=[
|
||||
('input', 'add', {'out': 0}),
|
||||
('const_3', 'add', {}),
|
||||
('add', 'max', {}),
|
||||
('const_0', 'max', {}),
|
||||
('max', 'min', {}),
|
||||
('const_6', 'min', {}),
|
||||
('min', 'mul_2', {}),
|
||||
('const_1_6', 'mul_2', {}),
|
||||
])
|
||||
|
||||
def replace_sub_graph(self, graph: Graph, match: [dict, SubgraphMatch]):
|
||||
replace_with_hsigmoid(graph, match['add'], match['mul_2'])
|
||||
|
||||
|
||||
class HSigmoidWithReluDiv(FrontReplacementSubgraph):
|
||||
"""
|
||||
The transformation looks for the pattern with Relu/Div defining the HSigmoid function:
|
||||
HSigmoid(x) = Min(Relu(x + 3.0), 6.0) / 6.0
|
||||
"""
|
||||
enabled = True
|
||||
|
||||
def run_after(self):
|
||||
return [AttributedClampNormalizer]
|
||||
|
||||
def pattern(self):
|
||||
return dict(
|
||||
nodes=[
|
||||
('input', dict()),
|
||||
('add_const', dict(op='Const', value=lambda v: v is not None and np.allclose(v, 3.0, atol=1e-6))),
|
||||
('add', dict(op='Add')),
|
||||
('relu', dict(op='ReLU')),
|
||||
('min_const', dict(op='Const', value=lambda v: v is not None and np.allclose(v, 6.0, atol=1e-6))),
|
||||
('min', dict(op='Minimum')),
|
||||
('div_const', dict(op='Const', value=lambda v: v is not None and np.allclose(v, 6.0, atol=1e-6))),
|
||||
('div', dict(op='Div')),
|
||||
],
|
||||
edges=[
|
||||
('input', 'add', {'out': 0}),
|
||||
('add_const', 'add', {}),
|
||||
('add', 'relu', {}),
|
||||
('relu', 'min', {}),
|
||||
('min_const', 'min', {}),
|
||||
('min', 'div', {}),
|
||||
('div_const', 'div', {}),
|
||||
])
|
||||
|
||||
def replace_sub_graph(self, graph: Graph, match: [dict, SubgraphMatch]):
|
||||
replace_with_hsigmoid(graph, match['add'], match['div'])
|
||||
|
||||
|
||||
class HSigmoidWithReluMul(FrontReplacementSubgraph):
|
||||
"""
|
||||
The transformation looks for the pattern with Relu/Mul defining the HSigmoid function:
|
||||
HSigmoid(x) = Min(Relu(x + 3.0), 6.0) * 1.0/6.0
|
||||
"""
|
||||
enabled = True
|
||||
|
||||
def run_after(self):
|
||||
return [AttributedClampNormalizer]
|
||||
|
||||
def pattern(self):
|
||||
return dict(
|
||||
nodes=[
|
||||
('input', dict()),
|
||||
('add_const', dict(op='Const', value=lambda v: v is not None and np.allclose(v, 3.0, atol=1e-6))),
|
||||
('add', dict(op='Add')),
|
||||
('relu', dict(op='ReLU')),
|
||||
('min_const', dict(op='Const', value=lambda v: v is not None and np.allclose(v, 6.0, atol=1e-6))),
|
||||
('min', dict(op='Minimum')),
|
||||
('mul_const', dict(op='Const', value=lambda v: v is not None and np.allclose(v, 1.0/6.0, atol=1e-6))),
|
||||
('mul', dict(op='Mul')),
|
||||
],
|
||||
edges=[
|
||||
('input', 'add', {'out': 0}),
|
||||
('add_const', 'add', {}),
|
||||
('add', 'relu', {}),
|
||||
('relu', 'min', {}),
|
||||
('min_const', 'min', {}),
|
||||
('min', 'mul', {}),
|
||||
('mul_const', 'mul', {}),
|
||||
])
|
||||
|
||||
def replace_sub_graph(self, graph: Graph, match: [dict, SubgraphMatch]):
|
||||
replace_with_hsigmoid(graph, match['add'], match['mul'])
|
355
model-optimizer/extensions/front/HSigmoid_fusion_test.py
Normal file
355
model-optimizer/extensions/front/HSigmoid_fusion_test.py
Normal file
@ -0,0 +1,355 @@
|
||||
"""
|
||||
Copyright (C) 2018-2020 Intel Corporation
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
"""
|
||||
|
||||
import unittest
|
||||
|
||||
from extensions.front.HSigmoid_fusion import HSigmoidWithClamp, HSigmoidWithMinMax, HSigmoidWithReluDiv, \
|
||||
HSigmoidWithReluMul
|
||||
from mo.front.common.partial_infer.utils import float_array
|
||||
from mo.utils.ir_engine.compare_graphs import compare_graphs
|
||||
from mo.utils.unittest.graph import build_graph, const, regular_op, result, build_graph_with_edge_attrs
|
||||
|
||||
ref_nodes = {**regular_op('input', {'type': 'Parameter'}),
|
||||
**regular_op('hsigmoid', {'type': 'HSigmoid', 'name': 'final_mul'}),
|
||||
**result('result')
|
||||
}
|
||||
ref_edges = [('input', 'hsigmoid'), ('hsigmoid', 'result')]
|
||||
|
||||
|
||||
class HSigmoidWithClampTest(unittest.TestCase):
|
||||
nodes = {
|
||||
**regular_op('input', {'type': 'Parameter'}),
|
||||
**regular_op('add', {'op': 'Add'}),
|
||||
**regular_op('relu6', {'op': 'Clamp'}),
|
||||
**regular_op('mul_2', {'op': 'Mul', 'name': 'final_mul'}),
|
||||
**const('const_0', float_array([0.0])),
|
||||
**const('const_3', float_array([3.0])),
|
||||
**const('const_6', float_array([6.0])),
|
||||
**const('const_1_6', float_array([1.0 / 6.0])),
|
||||
**result('result'),
|
||||
}
|
||||
|
||||
edges = [('input', 'add', {'in': 0, 'out': 0}),
|
||||
('const_3', 'add', {'in': 1, 'out': 0}),
|
||||
('add', 'relu6', {'in': 0, 'out': 0}),
|
||||
('const_0', 'relu6', {'in': 1, 'out': 0}),
|
||||
('const_6', 'relu6', {'in': 2, 'out': 0}),
|
||||
('relu6', 'mul_2', {'in': 1, 'out': 0}),
|
||||
('const_1_6', 'mul_2', {'in': 1, 'out': 0}),
|
||||
('mul_2', 'result', {'in': 0, 'out': 0})]
|
||||
|
||||
def test_hsigmoid_with_clamp(self):
|
||||
graph = build_graph_with_edge_attrs(self.nodes, self.edges, {})
|
||||
|
||||
graph_ref = build_graph(ref_nodes, ref_edges)
|
||||
graph.stage = 'front'
|
||||
|
||||
HSigmoidWithClamp().find_and_replace_pattern(graph)
|
||||
|
||||
(flag, resp) = compare_graphs(graph, graph_ref, 'result')
|
||||
self.assertTrue(flag, resp)
|
||||
self.assertTrue(len(graph.get_op_nodes(name='final_mul')) == 1 and
|
||||
graph.get_op_nodes(name='final_mul')[0].op == 'HSigmoid')
|
||||
|
||||
def test_hsigmoid_with_clamp_wrong_constant(self):
|
||||
graph = build_graph_with_edge_attrs(self.nodes, self.edges, {'const_0': {'value': float_array([0.00001])}})
|
||||
|
||||
graph_ref = graph.copy()
|
||||
graph.stage = 'front'
|
||||
|
||||
HSigmoidWithClamp().find_and_replace_pattern(graph)
|
||||
|
||||
(flag, resp) = compare_graphs(graph, graph_ref, 'result')
|
||||
self.assertTrue(flag, resp)
|
||||
|
||||
def test_hsigmoid_with_clamp_different_tensors(self):
|
||||
graph = build_graph_with_edge_attrs({
|
||||
**regular_op('input', {'type': 'Parameter'}),
|
||||
**regular_op('input_2', {'type': 'Parameter'}),
|
||||
**regular_op('add', {'op': 'Add'}),
|
||||
**regular_op('relu6', {'op': 'Clamp'}),
|
||||
**regular_op('mul', {'op': 'Mul'}),
|
||||
**regular_op('mul_2', {'op': 'Mul', 'name': 'final_mul'}),
|
||||
**const('const_0', float_array([0.0])),
|
||||
**const('const_3', float_array([3.0])),
|
||||
**const('const_6', float_array([6.0])),
|
||||
**const('const_1_6', float_array([1.0 / 6.0])),
|
||||
**result('result'),
|
||||
}, [('input', 'mul', {'in': 0, 'out': 0}),
|
||||
('input_2', 'add', {'in': 0, 'out': 0}),
|
||||
('const_3', 'add', {'in': 1, 'out': 0}),
|
||||
('add', 'relu6', {'in': 0, 'out': 0}),
|
||||
('const_0', 'relu6', {'in': 1, 'out': 0}),
|
||||
('const_6', 'relu6', {'in': 2, 'out': 0}),
|
||||
('relu6', 'mul', {'in': 1, 'out': 0}),
|
||||
('mul', 'mul_2', {'in': 0, 'out': 0}),
|
||||
('const_1_6', 'mul_2', {'in': 1, 'out': 0}),
|
||||
('mul_2', 'result', {'in': 0, 'out': 0})])
|
||||
|
||||
graph_ref = graph.copy()
|
||||
graph.stage = 'front'
|
||||
|
||||
HSigmoidWithClamp().find_and_replace_pattern(graph)
|
||||
|
||||
(flag, resp) = compare_graphs(graph, graph_ref, 'result')
|
||||
self.assertTrue(flag, resp)
|
||||
|
||||
|
||||
class HSigmoidWithMinMaxTest(unittest.TestCase):
|
||||
nodes = {
|
||||
**regular_op('input', {'type': 'Parameter'}),
|
||||
**regular_op('add', {'op': 'Add'}),
|
||||
**regular_op('max', {'op': 'Maximum'}),
|
||||
**regular_op('min', {'op': 'Minimum'}),
|
||||
**regular_op('mul_2', {'op': 'Mul', 'name': 'final_mul'}),
|
||||
**const('const_0', float_array([0.0])),
|
||||
**const('const_3', float_array([3.0])),
|
||||
**const('const_6', float_array([6.0])),
|
||||
**const('const_1_6', float_array([1.0 / 6.0])),
|
||||
**result('result'),
|
||||
}
|
||||
|
||||
edges = [('input', 'add', {'in': 0, 'out': 0}),
|
||||
('const_3', 'add', {'in': 1, 'out': 0}),
|
||||
('add', 'max', {'in': 0, 'out': 0}),
|
||||
('const_0', 'max', {'in': 1, 'out': 0}),
|
||||
('max', 'min', {'in': 0, 'out': 0}),
|
||||
('const_6', 'min', {'in': 1, 'out': 0}),
|
||||
('min', 'mul_2', {'in': 0, 'out': 0}),
|
||||
('const_1_6', 'mul_2', {'in': 1, 'out': 0}),
|
||||
('mul_2', 'result', {'in': 0, 'out': 0})]
|
||||
|
||||
def test_hsigmoid_with_min_max(self):
|
||||
graph = build_graph_with_edge_attrs(self.nodes, self.edges, {})
|
||||
|
||||
graph_ref = build_graph(ref_nodes, ref_edges)
|
||||
graph.stage = 'front'
|
||||
|
||||
HSigmoidWithMinMax().find_and_replace_pattern(graph)
|
||||
|
||||
(flag, resp) = compare_graphs(graph, graph_ref, 'result')
|
||||
self.assertTrue(flag, resp)
|
||||
self.assertTrue(len(graph.get_op_nodes(name='final_mul')) == 1 and
|
||||
graph.get_op_nodes(name='final_mul')[0].op == 'HSigmoid')
|
||||
|
||||
def test_hsigmoid_with_min_max_wrong_constant(self):
|
||||
graph = build_graph_with_edge_attrs(self.nodes, self.edges, {'const_0': {'value': float_array([0.00001])}})
|
||||
|
||||
graph_ref = graph.copy()
|
||||
graph.stage = 'front'
|
||||
|
||||
HSigmoidWithMinMax().find_and_replace_pattern(graph)
|
||||
|
||||
(flag, resp) = compare_graphs(graph, graph_ref, 'result')
|
||||
self.assertTrue(flag, resp)
|
||||
|
||||
def test_hsigmoid_with_min_max_different_tensors(self):
|
||||
graph = build_graph_with_edge_attrs({
|
||||
**regular_op('input', {'type': 'Parameter'}),
|
||||
**regular_op('input_2', {'type': 'Parameter'}),
|
||||
**regular_op('add', {'op': 'Add'}),
|
||||
**regular_op('max', {'op': 'Maximum'}),
|
||||
**regular_op('min', {'op': 'Minimum'}),
|
||||
**regular_op('mul', {'op': 'Mul'}),
|
||||
**regular_op('mul_2', {'op': 'Mul', 'name': 'final_mul'}),
|
||||
**const('const_0', float_array([0.0])),
|
||||
**const('const_3', float_array([3.0])),
|
||||
**const('const_6', float_array([6.0])),
|
||||
**const('const_1_6', float_array([1.0 / 6.0])),
|
||||
**result('result'),
|
||||
}, [('input_2', 'mul', {'in': 1, 'out': 0}),
|
||||
('input', 'add', {'in': 0, 'out': 0}),
|
||||
('const_3', 'add', {'in': 1, 'out': 0}),
|
||||
('add', 'max', {'in': 0, 'out': 0}),
|
||||
('const_0', 'max', {'in': 1, 'out': 0}),
|
||||
('max', 'min', {'in': 0, 'out': 0}),
|
||||
('const_6', 'min', {'in': 1, 'out': 0}),
|
||||
('min', 'mul', {'in': 0, 'out': 0}),
|
||||
('mul', 'mul_2', {'in': 0, 'out': 0}),
|
||||
('const_1_6', 'mul_2', {'in': 1, 'out': 0}),
|
||||
('mul_2', 'result', {'in': 0, 'out': 0})])
|
||||
|
||||
graph_ref = graph.copy()
|
||||
graph.stage = 'front'
|
||||
|
||||
HSigmoidWithMinMax().find_and_replace_pattern(graph)
|
||||
|
||||
(flag, resp) = compare_graphs(graph, graph_ref, 'result')
|
||||
self.assertTrue(flag, resp)
|
||||
|
||||
|
||||
class HSigmoidWithReluDivTest(unittest.TestCase):
|
||||
nodes = {
|
||||
**regular_op('input', {'type': 'Parameter'}),
|
||||
**regular_op('add', {'op': 'Add'}),
|
||||
**regular_op('relu', {'op': 'ReLU'}),
|
||||
**regular_op('min', {'op': 'Minimum'}),
|
||||
**regular_op('div', {'op': 'Div', 'name': 'final_div'}),
|
||||
**const('add_const', float_array([3.0])),
|
||||
**const('min_const', float_array([6.0])),
|
||||
**const('div_const', float_array([6.0])),
|
||||
**result('result'),
|
||||
}
|
||||
|
||||
edges = [('input', 'add', {'in': 0, 'out': 0}),
|
||||
('add_const', 'add', {'in': 1, 'out': 0}),
|
||||
('add', 'relu', {'in': 0, 'out': 0}),
|
||||
('relu', 'min', {'in': 0, 'out': 0}),
|
||||
('min_const', 'min', {'in': 1, 'out': 0}),
|
||||
('min', 'div', {'in': 0, 'out': 0}),
|
||||
('div_const', 'div', {'in': 1, 'out': 0}),
|
||||
('div', 'result', {'in': 0, 'out': 0})]
|
||||
|
||||
def test_hsigmoid_with_relu_div(self):
|
||||
graph = build_graph_with_edge_attrs(self.nodes, self.edges, {})
|
||||
|
||||
graph_ref = build_graph(ref_nodes, ref_edges)
|
||||
graph.stage = 'front'
|
||||
|
||||
HSigmoidWithReluDiv().find_and_replace_pattern(graph)
|
||||
|
||||
(flag, resp) = compare_graphs(graph, graph_ref, 'result')
|
||||
self.assertTrue(flag, resp)
|
||||
self.assertTrue(len(graph.get_op_nodes(name='final_div')) == 1 and
|
||||
graph.get_op_nodes(name='final_div')[0].op == 'HSigmoid')
|
||||
self.assertTrue(graph.get_op_nodes(name='final_div')[0].out_nodes()[0].node == 'result')
|
||||
|
||||
def test_hsigmoid_with_relu_div_wrong_constant(self):
|
||||
graph = build_graph_with_edge_attrs(self.nodes, self.edges, {'add_const': {'value': float_array([0.00001])}})
|
||||
|
||||
graph_ref = graph.copy()
|
||||
graph.stage = 'front'
|
||||
|
||||
HSigmoidWithReluDiv().find_and_replace_pattern(graph)
|
||||
|
||||
(flag, resp) = compare_graphs(graph, graph_ref, 'result')
|
||||
self.assertTrue(flag, resp)
|
||||
|
||||
def test_hsigmoid_with_relu_div_different_tensors(self):
|
||||
graph = build_graph_with_edge_attrs({
|
||||
**regular_op('input', {'type': 'Parameter'}),
|
||||
**regular_op('input_2', {'type': 'Parameter'}),
|
||||
**regular_op('add', {'op': 'Add'}),
|
||||
**regular_op('max', {'op': 'Maximum'}),
|
||||
**regular_op('min', {'op': 'Minimum'}),
|
||||
**regular_op('mul', {'op': 'Mul'}),
|
||||
**regular_op('mul_2', {'op': 'Mul', 'name': 'final_mul'}),
|
||||
**const('const_0', float_array([0.0])),
|
||||
**const('const_3', float_array([3.0])),
|
||||
**const('const_6', float_array([6.0])),
|
||||
**const('const_1_6', float_array([1.0 / 6.0])),
|
||||
**result('result'),
|
||||
}, [('input_2', 'mul', {'in': 1, 'out': 0}),
|
||||
('input', 'add', {'in': 0, 'out': 0}),
|
||||
('const_3', 'add', {'in': 1, 'out': 0}),
|
||||
('add', 'max', {'in': 0, 'out': 0}),
|
||||
('const_0', 'max', {'in': 1, 'out': 0}),
|
||||
('max', 'min', {'in': 0, 'out': 0}),
|
||||
('const_6', 'min', {'in': 1, 'out': 0}),
|
||||
('min', 'mul', {'in': 0, 'out': 0}),
|
||||
('mul', 'mul_2', {'in': 0, 'out': 0}),
|
||||
('const_1_6', 'mul_2', {'in': 1, 'out': 0}),
|
||||
('mul_2', 'result', {'in': 0, 'out': 0})])
|
||||
|
||||
graph_ref = graph.copy()
|
||||
graph.stage = 'front'
|
||||
|
||||
HSigmoidWithReluDiv().find_and_replace_pattern(graph)
|
||||
|
||||
(flag, resp) = compare_graphs(graph, graph_ref, 'result')
|
||||
self.assertTrue(flag, resp)
|
||||
|
||||
|
||||
class HSigmoidWithReluMulTest(unittest.TestCase):
|
||||
nodes = {
|
||||
**regular_op('input', {'type': 'Parameter'}),
|
||||
**regular_op('add', {'op': 'Add'}),
|
||||
**regular_op('relu', {'op': 'ReLU'}),
|
||||
**regular_op('min', {'op': 'Minimum'}),
|
||||
**regular_op('mul', {'op': 'Mul', 'name': 'final_mul'}),
|
||||
**const('add_const', float_array([3.0])),
|
||||
**const('min_const', float_array([6.0])),
|
||||
**const('mul_const', float_array([1.0/6.0])),
|
||||
**result('result'),
|
||||
}
|
||||
|
||||
edges = [('input', 'add', {'in': 0, 'out': 0}),
|
||||
('add_const', 'add', {'in': 1, 'out': 0}),
|
||||
('add', 'relu', {'in': 0, 'out': 0}),
|
||||
('relu', 'min', {'in': 0, 'out': 0}),
|
||||
('min_const', 'min', {'in': 1, 'out': 0}),
|
||||
('min', 'mul', {'in': 0, 'out': 0}),
|
||||
('mul_const', 'mul', {'in': 1, 'out': 0}),
|
||||
('mul', 'result', {'in': 0, 'out': 0})]
|
||||
|
||||
def test_hsigmoid_with_relu_mul(self):
|
||||
graph = build_graph_with_edge_attrs(self.nodes, self.edges, {})
|
||||
|
||||
graph_ref = build_graph(ref_nodes, ref_edges)
|
||||
graph.stage = 'front'
|
||||
|
||||
HSigmoidWithReluMul().find_and_replace_pattern(graph)
|
||||
|
||||
(flag, resp) = compare_graphs(graph, graph_ref, 'result')
|
||||
self.assertTrue(flag, resp)
|
||||
self.assertTrue(len(graph.get_op_nodes(name='final_mul')) == 1 and
|
||||
graph.get_op_nodes(name='final_mul')[0].op == 'HSigmoid')
|
||||
self.assertTrue(graph.get_op_nodes(name='final_mul')[0].out_nodes()[0].node == 'result')
|
||||
|
||||
def test_hsigmoid_with_relu_mul_wrong_constant(self):
|
||||
graph = build_graph_with_edge_attrs(self.nodes, self.edges, {'add_const': {'value': float_array([0.00001])}})
|
||||
|
||||
graph_ref = graph.copy()
|
||||
graph.stage = 'front'
|
||||
|
||||
HSigmoidWithReluMul().find_and_replace_pattern(graph)
|
||||
|
||||
(flag, resp) = compare_graphs(graph, graph_ref, 'result')
|
||||
self.assertTrue(flag, resp)
|
||||
|
||||
def test_hsigmoid_with_relu_mul_different_tensors(self):
|
||||
graph = build_graph_with_edge_attrs({
|
||||
**regular_op('input', {'type': 'Parameter'}),
|
||||
**regular_op('input_2', {'type': 'Parameter'}),
|
||||
**regular_op('add', {'op': 'Add'}),
|
||||
**regular_op('max', {'op': 'Maximum'}),
|
||||
**regular_op('min', {'op': 'Minimum'}),
|
||||
**regular_op('mul', {'op': 'Mul'}),
|
||||
**regular_op('mul_2', {'op': 'Mul', 'name': 'final_mul'}),
|
||||
**const('const_0', float_array([0.0])),
|
||||
**const('const_3', float_array([3.0])),
|
||||
**const('const_6', float_array([6.0])),
|
||||
**const('const_1_6', float_array([1.0 / 6.0])),
|
||||
**result('result'),
|
||||
}, [('input_2', 'mul', {'in': 1, 'out': 0}),
|
||||
('input', 'add', {'in': 0, 'out': 0}),
|
||||
('const_3', 'add', {'in': 1, 'out': 0}),
|
||||
('add', 'max', {'in': 0, 'out': 0}),
|
||||
('const_0', 'max', {'in': 1, 'out': 0}),
|
||||
('max', 'min', {'in': 0, 'out': 0}),
|
||||
('const_6', 'min', {'in': 1, 'out': 0}),
|
||||
('min', 'mul', {'in': 0, 'out': 0}),
|
||||
('mul', 'mul_2', {'in': 0, 'out': 0}),
|
||||
('const_1_6', 'mul_2', {'in': 1, 'out': 0}),
|
||||
('mul_2', 'result', {'in': 0, 'out': 0})])
|
||||
|
||||
graph_ref = graph.copy()
|
||||
graph.stage = 'front'
|
||||
|
||||
HSigmoidWithReluMul().find_and_replace_pattern(graph)
|
||||
|
||||
(flag, resp) = compare_graphs(graph, graph_ref, 'result')
|
||||
self.assertTrue(flag, resp)
|
@ -248,6 +248,12 @@ class HSwish(Activation):
|
||||
operation = staticmethod(lambda x: x * np.minimum(np.maximum(x + 3.0, 0.0), 6.0) / 6.0)
|
||||
|
||||
|
||||
class HSigmoid(Activation):
|
||||
op = 'HSigmoid'
|
||||
version = 'opset5'
|
||||
operation = staticmethod(lambda x: np.minimum(np.maximum(x + 3.0, 0.0), 6.0) / 6.0)
|
||||
|
||||
|
||||
class Swish(Op):
|
||||
op = 'Swish'
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user