[POT] Update tests with new data (#8209)

* Update POT tests with new data

* Revert package changes

* Remove mobinenet-ssd from POT tests

* Update benchmark.py IE Python API usage
This commit is contained in:
Nikita Malinin 2021-10-27 12:40:19 +03:00 committed by GitHub
parent 7ef4ff6385
commit ce9a968030
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
108 changed files with 334 additions and 2029 deletions

6
.gitattributes vendored
View File

@ -67,9 +67,11 @@
#POT attributes
tools/pot/tests/data/test_cases_refs/* filter=lfs diff=lfs merge=lfs -text
tools/pot/tests/data/models/*/* filter=lfs diff=lfs merge=lfs -text
tools/pot/tests/data/reference_models/* filter=lfs diff=lfs merge=lfs -text
tools/pot/tests/data/video/* filter=lfs diff=lfs merge=lfs -text
tools/pot/tests/data/reference_fake_quantize_conf/* filter=lfs diff=lfs merge=lfs -text
/tools/pot/tests/** -pot_package
/configs/accuracy_checker/** -pot_package
/configs/quantization/** -pot_package
/tools/pot/tools/auxilary/** -pot_package
/tools/pot/tools/run_series_experiments.py -pot_package
/tools/pot/.pylintrc -pot_package

View File

@ -95,7 +95,7 @@ def benchmark_embedded_python_api(path_to_model_file):
for key, value in input_info.items():
m = []
dt = np_d_type[value.precision]
for x in value.shape:
for x in value.input_data.shape:
m.append(x)
m[0] = m[0] * batch_size
input_data[key] = np.empty(tuple(m), dtype=dt)
@ -122,7 +122,7 @@ def benchmark_embedded_python_api(path_to_model_file):
infer_requests = exe_network.requests
batch_size = ie_network.batch_size
request_queue = InferRequestsQueue(infer_requests)
requests_input_data = get_dummy_inputs(batch_size, ie_network.inputs, infer_requests)
requests_input_data = get_dummy_inputs(batch_size, ie_network.input_info, infer_requests)
infer_request = request_queue.get_idle_request()
# For warming up

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:8dcf3768e706a5585d9ac32b58f991bc9a872b0ca2a8dbf320919f8dc6ae65d0
size 67197

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:760fa936c7d6f734e19daf8134a4ea7408e3475c6fc9707d9399b36e4734eb29
size 33765

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:7da11f06a96ce498d819a839ea1ceb3f85608b5a98c1f07d60e96e8c003e187a
size 96789

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:8dcf3768e706a5585d9ac32b58f991bc9a872b0ca2a8dbf320919f8dc6ae65d0
size 67197

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:760fa936c7d6f734e19daf8134a4ea7408e3475c6fc9707d9399b36e4734eb29
size 33765

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:7da11f06a96ce498d819a839ea1ceb3f85608b5a98c1f07d60e96e8c003e187a
size 96789

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:e8c0887a2215dad87c2c04becf50ae94c413432299c2c056804a12acd0ed75dd
size 37708

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:e1ad0a169e6772410316e99bd63d8240f1d35b48c82ab26a611c02c9317be116
size 9097

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:dfa77cefe13067555ace1e12e383f93cacac0137893dfbb02f85dd78f81015c0
size 135769

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:c2559b04de51a9576e5be0764fd19662d01698bd035deebbd390543b1b4163bb
size 80215

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:e3a9d6eba3484991ea3d9f9d4237ef0406a91af0cedc8f5324073739d1e4c3ed
size 22335

View File

@ -0,0 +1,5 @@
./images/0.JPEG
./images/1.JPEG
./images/2.JPEG
./images/3.JPEG
./images/4.JPEG

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:776976f67763b4eea488fb8ceceeaef7009f0399ac8b5f67dd156ef6f866f09b
size 159

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:32ec7873e536aeb9e735d3de44c032c1cb33cb305c3a5a032ca50c4d5d2d0223
size 28116312

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:9600e8bcd272e35438d2634ef16af7acf0042fddad7c9964acace5850c5c1533
size 171

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:837c05c2e45374a71ad00539d288e75c83a11462a13d2db7ce3de497557e46df
size 15967759

View File

@ -1,7 +1,3 @@
{
"name": "1_input_model",
"framework": "onnx",
"mo_args": {
"input_model": "$model_dir/first_convs_test_nets/1_input_model.onnx"
}
}
version https://git-lfs.github.com/spec/v1
oid sha256:ad965f49cea59413aef6d0b61b06d35d17d53b875dde3f2f25eacfdc2fe4670c
size 146

View File

@ -1,7 +1,3 @@
{
"name": "3_inputs_model",
"framework": "onnx",
"mo_args": {
"input_model": "$model_dir/first_convs_test_nets/3_inputs_model.onnx"
}
}
version https://git-lfs.github.com/spec/v1
oid sha256:0433858efb3ca6ed53dca5b7e3324fdc31579e6f58c6dddb3f88fafa80e285f4
size 148

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:f3ef0a49a165cbf1f910295287f09c14664566a09bd7ebed6b37b0b1019b6168
size 153

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:d3be84455194bfd343bada5c846a519e9374037026bc7c581c0d642f5052a264
size 13086189

View File

@ -1,8 +1,3 @@
{
"name": "matmul_divide_const",
"framework": "dldt",
"mo_args": {
"model": "$model_dir/matmul_divide_const/matmul_divide_const.xml",
"weights": "$model_dir/matmul_divide_const/matmul_divide_const.bin"
}
}
version https://git-lfs.github.com/spec/v1
oid sha256:7ed7eef3415ccb1cd1b8606bdb8348e124979bb78b02e50badda92aa2cd3dc4d
size 222

View File

@ -1,2 +1,3 @@
<?xml version="1.0" ?>
<mapping/>
version https://git-lfs.github.com/spec/v1
oid sha256:43d82f63bfea7d3ae9d641169b9693596199d78171e94b918e09497a4f08a012
size 34

View File

@ -1,640 +1,3 @@
<?xml version="1.0" ?>
<net name="matmul_divide_const" version="10">
<layers>
<layer id="0" name="decoder_0" type="Parameter" version="opset1">
<data element_type="f32" shape="1,16,512"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="1" name="2491117/Output_0/Data_/copy_const284_const" type="Const" version="opset1">
<data element_type="f32" offset="0" shape="1,16,512" size="32768"/>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="2" name="decoder_250" type="Add" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>512</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="3" name="264/3D_Tile_Unsqueeze_dim6178_const286_const" type="Const" version="opset1">
<data element_type="i64" offset="32768" shape="1" size="8"/>
<output>
<port id="1" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="4" name="decoder_264/3D_Tile_Unsqueeze" type="Unsqueeze" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>512</dim>
</port>
<port id="1">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>512</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="5" name="61806182_const288_const" type="Const" version="opset1">
<data element_type="i64" offset="32776" shape="4" size="32"/>
<output>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="6" name="decoder_264" type="Tile" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>512</dim>
<dim>1</dim>
</port>
<port id="1">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>512</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="7" name="264/3D_Tile_Squeeze_dim6185_const290_const" type="Const" version="opset1">
<data element_type="i64" offset="32768" shape="1" size="8"/>
<output>
<port id="1" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="8" name="decoder_264/3D_Tile_Squeeze" type="Squeeze" version="opset1">
<input>
<port id="0">
<dim>8</dim>
<dim>16</dim>
<dim>512</dim>
<dim>1</dim>
</port>
<port id="1">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="9" name="271/Cast_19331_const292_const" type="Const" version="opset1">
<data element_type="i64" offset="32808" shape="3" size="24"/>
<output>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="10" name="decoder_271" type="Reshape" version="opset1">
<data special_zero="True"/>
<input>
<port id="0">
<dim>8</dim>
<dim>16</dim>
<dim>512</dim>
</port>
<port id="1">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="11" name="onnx_initializer_node_218/Output_0/Data__const294_const" type="Const" version="opset1">
<data element_type="f32" offset="32832" shape="8,64,512" size="1048576"/>
<output>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>64</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="12" name="decoder_290" type="MatMul" version="opset1">
<data transpose_a="False" transpose_b="True"/>
<input>
<port id="0">
<dim>8</dim>
<dim>16</dim>
<dim>512</dim>
</port>
<port id="1">
<dim>8</dim>
<dim>64</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>64</dim>
</port>
</output>
</layer>
<layer id="13" name="297/Cast_19315_const296_const" type="Const" version="opset1">
<data element_type="i64" offset="1081408" shape="3" size="24"/>
<output>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="14" name="decoder_297" type="Reshape" version="opset1">
<data special_zero="True"/>
<input>
<port id="0">
<dim>8</dim>
<dim>16</dim>
<dim>64</dim>
</port>
<port id="1">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>64</dim>
</port>
</output>
</layer>
<layer id="15" name="273/3D_Tile_Unsqueeze_dim6274_const298_const" type="Const" version="opset1">
<data element_type="i64" offset="32768" shape="1" size="8"/>
<output>
<port id="1" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="16" name="decoder_273/3D_Tile_Unsqueeze" type="Unsqueeze" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>512</dim>
</port>
<port id="1">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>512</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="17" name="62766278_const300_const" type="Const" version="opset1">
<data element_type="i64" offset="32776" shape="4" size="32"/>
<output>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="18" name="decoder_273" type="Tile" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>512</dim>
<dim>1</dim>
</port>
<port id="1">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>512</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="19" name="273/3D_Tile_Squeeze_dim6281_const302_const" type="Const" version="opset1">
<data element_type="i64" offset="32768" shape="1" size="8"/>
<output>
<port id="1" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="20" name="decoder_273/3D_Tile_Squeeze" type="Squeeze" version="opset1">
<input>
<port id="0">
<dim>8</dim>
<dim>16</dim>
<dim>512</dim>
<dim>1</dim>
</port>
<port id="1">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="21" name="280/Cast_19279_const304_const" type="Const" version="opset1">
<data element_type="i64" offset="32808" shape="3" size="24"/>
<output>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="22" name="decoder_280" type="Reshape" version="opset1">
<data special_zero="True"/>
<input>
<port id="0">
<dim>8</dim>
<dim>16</dim>
<dim>512</dim>
</port>
<port id="1">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="23" name="onnx_initializer_node_219/Output_0/Data__const306_const" type="Const" version="opset1">
<data element_type="f32" offset="1081432" shape="8,64,512" size="1048576"/>
<output>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>64</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="24" name="decoder_298" type="MatMul" version="opset1">
<data transpose_a="False" transpose_b="True"/>
<input>
<port id="0">
<dim>8</dim>
<dim>16</dim>
<dim>512</dim>
</port>
<port id="1">
<dim>8</dim>
<dim>64</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>64</dim>
</port>
</output>
</layer>
<layer id="25" name="305/Cast_19367_const308_const" type="Const" version="opset1">
<data element_type="i64" offset="1081408" shape="3" size="24"/>
<output>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="26" name="decoder_305" type="Reshape" version="opset1">
<data special_zero="True"/>
<input>
<port id="0">
<dim>8</dim>
<dim>16</dim>
<dim>64</dim>
</port>
<port id="1">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>64</dim>
</port>
</output>
</layer>
<layer id="27" name="314/Cast_19273_const310_const" type="Const" version="opset1">
<data element_type="i64" offset="2130008" shape="3" size="24"/>
<output>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="28" name="decoder_314" type="Transpose" version="opset1">
<input>
<port id="0">
<dim>8</dim>
<dim>16</dim>
<dim>64</dim>
</port>
<port id="1">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>8</dim>
<dim>64</dim>
<dim>16</dim>
</port>
</output>
</layer>
<layer id="29" name="decoder_315" type="MatMul" version="opset1">
<data transpose_a="False" transpose_b="False"/>
<input>
<port id="0">
<dim>8</dim>
<dim>16</dim>
<dim>64</dim>
</port>
<port id="1">
<dim>8</dim>
<dim>64</dim>
<dim>16</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>16</dim>
</port>
</output>
</layer>
<layer id="30" name="316/Output_0/Data_/copy_const313_const" type="Const" version="opset1">
<data element_type="f32" offset="2130032" shape="1,1,1" size="4"/>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="31" name="decoder_317" type="Divide" version="opset1">
<input>
<port id="0">
<dim>8</dim>
<dim>16</dim>
<dim>16</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>8</dim>
<dim>16</dim>
<dim>16</dim>
</port>
</output>
</layer>
<layer id="32" name="decoder_674/sink_port_0" type="Result" version="opset1">
<input>
<port id="0">
<dim>8</dim>
<dim>16</dim>
<dim>16</dim>
</port>
</input>
</layer>
</layers>
<edges>
<edge from-layer="0" from-port="0" to-layer="2" to-port="0"/>
<edge from-layer="1" from-port="1" to-layer="2" to-port="1"/>
<edge from-layer="2" from-port="2" to-layer="4" to-port="0"/>
<edge from-layer="3" from-port="1" to-layer="4" to-port="1"/>
<edge from-layer="4" from-port="2" to-layer="6" to-port="0"/>
<edge from-layer="5" from-port="1" to-layer="6" to-port="1"/>
<edge from-layer="6" from-port="2" to-layer="8" to-port="0"/>
<edge from-layer="7" from-port="1" to-layer="8" to-port="1"/>
<edge from-layer="8" from-port="2" to-layer="10" to-port="0"/>
<edge from-layer="9" from-port="1" to-layer="10" to-port="1"/>
<edge from-layer="10" from-port="2" to-layer="12" to-port="0"/>
<edge from-layer="11" from-port="1" to-layer="12" to-port="1"/>
<edge from-layer="12" from-port="2" to-layer="14" to-port="0"/>
<edge from-layer="13" from-port="1" to-layer="14" to-port="1"/>
<edge from-layer="2" from-port="2" to-layer="16" to-port="0"/>
<edge from-layer="15" from-port="1" to-layer="16" to-port="1"/>
<edge from-layer="16" from-port="2" to-layer="18" to-port="0"/>
<edge from-layer="17" from-port="1" to-layer="18" to-port="1"/>
<edge from-layer="18" from-port="2" to-layer="20" to-port="0"/>
<edge from-layer="19" from-port="1" to-layer="20" to-port="1"/>
<edge from-layer="20" from-port="2" to-layer="22" to-port="0"/>
<edge from-layer="21" from-port="1" to-layer="22" to-port="1"/>
<edge from-layer="22" from-port="2" to-layer="24" to-port="0"/>
<edge from-layer="23" from-port="1" to-layer="24" to-port="1"/>
<edge from-layer="24" from-port="2" to-layer="26" to-port="0"/>
<edge from-layer="25" from-port="1" to-layer="26" to-port="1"/>
<edge from-layer="26" from-port="2" to-layer="28" to-port="0"/>
<edge from-layer="27" from-port="1" to-layer="28" to-port="1"/>
<edge from-layer="14" from-port="2" to-layer="29" to-port="0"/>
<edge from-layer="28" from-port="2" to-layer="29" to-port="1"/>
<edge from-layer="29" from-port="2" to-layer="31" to-port="0"/>
<edge from-layer="30" from-port="1" to-layer="31" to-port="1"/>
<edge from-layer="31" from-port="2" to-layer="32" to-port="0"/>
</edges>
<meta_data>
<MO_version value="unknown version"/>
<cli_parameters>
<blobs_as_inputs value="True"/>
<caffe_parser_path value="DIR"/>
<data_type value="FP32"/>
<disable_nhwc_to_nchw value="False"/>
<disable_omitting_optional value="False"/>
<disable_resnet_optimization value="False"/>
<disable_weights_compression value="False"/>
<enable_concat_optimization value="False"/>
<enable_flattening_nested_params value="False"/>
<enable_ssd_gluoncv value="False"/>
<extensions value="DIR"/>
<framework value="onnx"/>
<freeze_placeholder_with_value value="{}"/>
<generate_deprecated_IR_V2 value="False"/>
<generate_deprecated_IR_V7 value="False"/>
<generate_experimental_IR_V10 value="True"/>
<input value="0"/>
<input_model value="DIR/action_recognition_0001_decoder.onnx"/>
<input_model_is_text value="False"/>
<input_shape value="[1,16,512]"/>
<k value="DIR/CustomLayersMapping.xml"/>
<keep_quantize_ops_in_IR value="True"/>
<keep_shape_ops value="False"/>
<legacy_mxnet_model value="False"/>
<log_level value="ERROR"/>
<mean_scale_values value="{}"/>
<mean_values value="()"/>
<model_name value="action-recognition-0001-decoder"/>
<move_to_preprocess value="False"/>
<output value="['674']"/>
<output_dir value="DIR"/>
<placeholder_data_types value="{}"/>
<placeholder_shapes value="{'0': array([ 1, 16, 512])}"/>
<progress value="False"/>
<remove_memory value="False"/>
<remove_output_softmax value="False"/>
<reverse_input_channels value="False"/>
<save_params_from_nd value="False"/>
<scale_values value="()"/>
<silent value="False"/>
<stream_output value="False"/>
<unset unset_cli_parameters="batch, counts, disable_fusing, disable_gfusing, finegrain_fusing, input_checkpoint, input_meta_graph, input_proto, input_symbol, mean_file, mean_file_offsets, nd_prefix_name, pretrained_model_name, saved_model_dir, saved_model_tags, scale, tensorboard_logdir, tensorflow_custom_layer_libraries, tensorflow_custom_operations_config_update, tensorflow_object_detection_api_pipeline_config, tensorflow_use_custom_operations_config, transformations_config"/>
</cli_parameters>
</meta_data>
<quantization_parameters>
<config>{
'compression': {
'target_device': 'CPU',
'algorithms': [
{
'name': 'DefaultQuantization',
'params': {
'stat_subset_size': 1,
'preset': 'performance'
}
}
]
},
'engine': {
'evaluations': [
{
'name': 'action-recognition-0001-encoder',
'module': 'custom_evaluators.sequential_action_recognition_evaluator.SequentialActionRecognitionEvaluator',
'module_config': {
'network_info': {
'encoder': {},
'decoder': {
'num_processing_frames': 16,
'adapter': 'classification'
}
},
'launchers': [
{
'framework': 'dlsdk',
'tags': [
'FP32'
]
}
],
'datasets': [
{
'name': 'kinetics-400',
'data_source': 'PATH',
'annotation_conversion': {
'converter': 'driver_action_recognition',
'annotation_file': 'PATH',
'data_dir': 'PATH'
},
'annotation': 'kinetics_action_recognition.pickle',
'dataset_meta': 'kinetics_action_recognition.json',
'preprocessing': [
{
'type': 'resize',
'size': 224,
'aspect_ratio_scale': 'fit_to_window'
},
{
'type': 'crop',
'size': 224
}
],
'metrics': [
{
'type': 'clip_accuracy',
'presenter': 'print_vector'
}
]
}
]
}
}
],
'models': [],
'stat_requests_number': null,
'eval_requests_number': null,
'type': 'accuracy_checker'
}
}</config>
<version value="1.0"/>
<cli_params value="{'evaluate': True, 'output_dir': 'PATH', 'direct_dump': False, 'log_level': 'DEBUG', 'pbar': False, 'keep_uncompressed_weights': False}"/>
</quantization_parameters>
</net>
version https://git-lfs.github.com/spec/v1
oid sha256:5d678641136d8356fca47d4db4f39cb98e59426a9e1113754811d9e12e47463a
size 17387

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:993a01f598da6e29da4c104b80fb6928ee9a74e859e08e4e654b37351e2e23e0
size 180

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:4da69916b5eae4d8985355ce8e1325fed0c2560d1b7e3e11b3083bf901478df2
size 3700526

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:9b6b02a81088574e09387e7c634712e739c2f4a5a6f93452304373aecb047e56
size 159

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:cc114deb9c089de3043ef6dae9ccdd961e2a328c9e1b26abcf77107bcddc9df8
size 9800899

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:8f63794cc55d623e6a5d4990d12255dcd0dd3b5386330d016af935b39efb9357
size 171

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:26335e55efba71945ea9f39142e150b44e68be1acd955f440c6c7da527f38391
size 7670107

View File

@ -1,7 +1,3 @@
{
"name": "test_multibranch_propogation_with_fq_moving",
"framework": "pytorch",
"mo_args": {
"input_model": "$model_dir/multibranch_propogation_test_nets/test_ig_border_case_with_fq_moving.onnx"
}
}
version https://git-lfs.github.com/spec/v1
oid sha256:03db5199e326aee2e68164fb64388f54d2d058fd2e80c8918c3b65c58ea1f843
size 212

View File

@ -1,7 +1,3 @@
{
"name": "test_multibranch_propogation_without_fq_moving",
"framework": "pytorch",
"mo_args": {
"input_model": "$model_dir/multibranch_propogation_test_nets/test_ig_border_case_without_fq_moving.onnx"
}
}
version https://git-lfs.github.com/spec/v1
oid sha256:e7a22758b328fcbe4860ff8b9381845cab814e77f2fe1d8435d36a774d5749cd
size 218

View File

@ -1,7 +1,3 @@
{
"name": "multiple_out_ports_net",
"framework": "tf",
"mo_args": {
"input_model": "$model_dir/multiple_out_ports_net/multiple_out_ports_net.pb"
}
}
version https://git-lfs.github.com/spec/v1
oid sha256:6394338eaa4b275cd74c61c9e25a90fda50ad0d8e946a02d72c14bc5c3d9a36f
size 161

View File

@ -1,7 +1,3 @@
{
"name": "outlier_channel_splitting_example",
"framework": "onnx",
"mo_args": {
"input_model": "$model_dir/outlier_channel_splitting_example/outlier_channel_splitting_example.onnx"
}
}
version https://git-lfs.github.com/spec/v1
oid sha256:c7c69c314159743ee73d08be43b473891865440a7bc8092295bcb5bbb1d99f79
size 198

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:cb72e6af63106ec6ae1624491d8ea3b39d5aab128bd7a66168cb1636ff77393d
size 144

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:950226c0d702bb8b688701434c3846e72c848dc9bd059d194ab132f781be486f
size 40224953

View File

@ -1,8 +1,3 @@
{
"name": "scaleshift_fuse",
"framework": "dldt",
"mo_args": {
"model": "$model_dir/scaleshift_fuse/scaleshift_fuse.xml",
"weights": "$model_dir/scaleshift_fuse/scaleshift_fuse.bin"
}
}
version https://git-lfs.github.com/spec/v1
oid sha256:54e12e3df889dff95bfbe949a8e98facdfd5464bb746686ecc7b48d0da78e154
size 202

View File

@ -1,2 +1,3 @@
<?xml version="1.0" ?>
<mapping/>
version https://git-lfs.github.com/spec/v1
oid sha256:43d82f63bfea7d3ae9d641169b9693596199d78171e94b918e09497a4f08a012
size 34

View File

@ -1,393 +1,3 @@
<?xml version="1.0" ?>
<net name="scaleshift_fuse" version="10">
<layers>
<layer id="0" name="data" type="Parameter" version="opset1">
<data element_type="f32" shape="1,3,60,60"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="1" name="data_mul_22172221/copy_const110_const" type="Const" version="opset1">
<data element_type="f32" offset="0" shape="1,3,1,1" size="12"/>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="2" name="Mul_/Fused_Mul_" type="Multiply" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>3</dim>
<dim>60</dim>
<dim>60</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="3" name="data_add_22182223/copy_const112_const" type="Const" version="opset1">
<data element_type="f32" offset="12" shape="1,3,1,1" size="12"/>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="4" name="Add_/Fused_Add_" type="Add" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>3</dim>
<dim>60</dim>
<dim>60</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="5" name="106/Output_0/Data__const114_const" type="Const" version="opset1">
<data element_type="f32" offset="24" shape="32,3,3,3" size="3456"/>
<output>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="6" name="conv1/WithoutBiases" type="Convolution" version="opset1">
<data dilations="1,1" output_padding="0,0" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>3</dim>
<dim>60</dim>
<dim>60</dim>
</port>
<port id="1">
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="7" name="conv1/Dims1358/copy_const116_const" type="Const" version="opset1">
<data element_type="f32" offset="3480" shape="1,32,1,1" size="128"/>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="8" name="conv1" type="Add" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="9" name="relu_conv1" type="ReLU" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="10" name="data_mul_22252229/copy_const119_const" type="Const" version="opset1">
<data element_type="f32" offset="3608" shape="1,32,1,1" size="128"/>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="11" name="Mul1_1975/Fused_Mul_" type="Multiply" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="12" name="data_add_22262231/copy_const121_const" type="Const" version="opset1">
<data element_type="f32" offset="3736" shape="1,32,1,1" size="128"/>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="13" name="Add1_1976/Fused_Add_" type="Add" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="14" name="108/Output_0/Data__const123_const" type="Const" version="opset1">
<data element_type="f32" offset="3864" shape="16,32,3,3" size="18432"/>
<output>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="15" name="pool1/WithoutBiases" type="Convolution" version="opset1">
<data dilations="1,1" output_padding="0,0" pads_begin="1,1" pads_end="1,1" strides="2,2"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
<port id="1">
<dim>16</dim>
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>30</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="16" name="pool1/Dims1394/copy_const125_const" type="Const" version="opset1">
<data element_type="f32" offset="22296" shape="1,16,1,1" size="64"/>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="17" name="pool1" type="Add" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>30</dim>
<dim>30</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>30</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="18" name="angle_p_fc/sink_port_0" type="Result" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>30</dim>
<dim>30</dim>
</port>
</input>
</layer>
</layers>
<edges>
<edge from-layer="0" from-port="0" to-layer="2" to-port="0"/>
<edge from-layer="1" from-port="1" to-layer="2" to-port="1"/>
<edge from-layer="2" from-port="2" to-layer="4" to-port="0"/>
<edge from-layer="3" from-port="1" to-layer="4" to-port="1"/>
<edge from-layer="4" from-port="2" to-layer="6" to-port="0"/>
<edge from-layer="5" from-port="1" to-layer="6" to-port="1"/>
<edge from-layer="6" from-port="2" to-layer="8" to-port="0"/>
<edge from-layer="7" from-port="1" to-layer="8" to-port="1"/>
<edge from-layer="8" from-port="2" to-layer="9" to-port="0"/>
<edge from-layer="9" from-port="1" to-layer="11" to-port="0"/>
<edge from-layer="10" from-port="1" to-layer="11" to-port="1"/>
<edge from-layer="11" from-port="2" to-layer="13" to-port="0"/>
<edge from-layer="12" from-port="1" to-layer="13" to-port="1"/>
<edge from-layer="13" from-port="2" to-layer="15" to-port="0"/>
<edge from-layer="14" from-port="1" to-layer="15" to-port="1"/>
<edge from-layer="15" from-port="2" to-layer="17" to-port="0"/>
<edge from-layer="16" from-port="1" to-layer="17" to-port="1"/>
<edge from-layer="17" from-port="2" to-layer="18" to-port="0"/>
</edges>
<meta_data>
<MO_version value="unknown version"/>
<cli_parameters>
<blobs_as_inputs value="True"/>
<caffe_parser_path value="DIR"/>
<data_type value="FP32"/>
<disable_nhwc_to_nchw value="False"/>
<disable_omitting_optional value="False"/>
<disable_resnet_optimization value="False"/>
<enable_concat_optimization value="False"/>
<enable_flattening_nested_params value="False"/>
<enable_ssd_gluoncv value="False"/>
<extensions value="DIR"/>
<framework value="caffe"/>
<freeze_placeholder_with_value value="{}"/>
<generate_deprecated_IR_V2 value="False"/>
<generate_deprecated_IR_V7 value="False"/>
<generate_experimental_IR_V10 value="True"/>
<input value="data"/>
<input_model value="DIR/headpos_net.caffemodel"/>
<input_model_is_text value="False"/>
<input_proto value="DIR/headpos_net.prototxt"/>
<input_shape value="[1,3,60,60]"/>
<k value="DIR/CustomLayersMapping.xml"/>
<keep_quantize_ops_in_IR value="True"/>
<keep_shape_ops value="False"/>
<legacy_mxnet_model value="False"/>
<log_level value="ERROR"/>
<mean_scale_values value="{'data': {'mean': array([120., 110., 104.]), 'scale': array([256.41025641])}}"/>
<mean_values value="data[120.0,110.0,104.0]"/>
<model_name value="headpos_net"/>
<move_to_preprocess value="False"/>
<output value="['angle_r_fc', 'angle_p_fc', 'angle_y_fc']"/>
<output_dir value="DIR"/>
<placeholder_data_types value="{}"/>
<placeholder_shapes value="{'data': array([ 1, 3, 60, 60])}"/>
<progress value="False"/>
<remove_memory value="False"/>
<remove_output_softmax value="False"/>
<reverse_input_channels value="False"/>
<save_params_from_nd value="False"/>
<scale_values value="data[256.4102564102564]"/>
<silent value="False"/>
<stream_output value="False"/>
<unset unset_cli_parameters="batch, counts, disable_fusing, disable_gfusing, finegrain_fusing, input_checkpoint, input_meta_graph, input_symbol, mean_file, mean_file_offsets, nd_prefix_name, pretrained_model_name, saved_model_dir, saved_model_tags, scale, tensorboard_logdir, tensorflow_custom_layer_libraries, tensorflow_custom_operations_config_update, tensorflow_object_detection_api_pipeline_config, tensorflow_operation_patterns, tensorflow_subgraph_patterns, tensorflow_use_custom_operations_config, transformations_config"/>
</cli_parameters>
</meta_data>
</net>
version https://git-lfs.github.com/spec/v1
oid sha256:f3dcb45d8f69aa643c3e8038b92fdee885418d17d052470b9ef921039a8c3822
size 10919

View File

@ -1,8 +1,3 @@
{
"name": "scaleshift_no_fuse_1",
"framework": "dldt",
"mo_args": {
"model": "$model_dir/scaleshift_fuse/scaleshift_no_fuse_1.xml",
"weights": "$model_dir/scaleshift_fuse/scaleshift_no_fuse_1.bin"
}
}
version https://git-lfs.github.com/spec/v1
oid sha256:58d6366c3dbb3c1a0f4f9c5ce8c4569260a0d65e355dc0d16b8aec3432a72d7a
size 217

View File

@ -1,2 +1,3 @@
<?xml version="1.0" ?>
<mapping/>
version https://git-lfs.github.com/spec/v1
oid sha256:43d82f63bfea7d3ae9d641169b9693596199d78171e94b918e09497a4f08a012
size 34

View File

@ -1,404 +1,3 @@
<?xml version="1.0" ?>
<net name="scaleshift_no_fuse_1" version="10">
<layers>
<layer id="0" name="data" type="Parameter" version="opset1">
<data element_type="f32" shape="1,3,60,60"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="1" name="data_mul_22172221/copy_const110_const" type="Const" version="opset1">
<data element_type="f32" offset="0" shape="1,3,1,1" size="12"/>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="2" name="Mul_/Fused_Mul_" type="Multiply" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>3</dim>
<dim>60</dim>
<dim>60</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="3" name="data_add_22182223/copy_const112_const" type="Const" version="opset1">
<data element_type="f32" offset="12" shape="1,3,1,1" size="12"/>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="4" name="Add_/Fused_Add_" type="Add" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>3</dim>
<dim>60</dim>
<dim>60</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="5" name="106/Output_0/Data__const114_const" type="Const" version="opset1">
<data element_type="f32" offset="24" shape="32,3,3,3" size="3456"/>
<output>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="6" name="conv1/WithoutBiases" type="Convolution" version="opset1">
<data dilations="1,1" output_padding="0,0" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>3</dim>
<dim>60</dim>
<dim>60</dim>
</port>
<port id="1">
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="7" name="conv1/Dims1358/copy_const116_const" type="Const" version="opset1">
<data element_type="f32" offset="3480" shape="1,32,1,1" size="128"/>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="8" name="conv1" type="Add" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="9" name="relu_conv1" type="ReLU" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="10" name="data_mul_22252229/copy_const119_const" type="Const" version="opset1">
<data element_type="f32" offset="3608" shape="1,32,1,1" size="128"/>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="11" name="Mul1_1975/Fused_Mul_" type="Multiply" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="12" name="data_add_22262231/copy_const121_const" type="Const" version="opset1">
<data element_type="f32" offset="3736" shape="1,32,1,1" size="128"/>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="13" name="Add1_1976/Fused_Add_" type="Add" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="14" name="108/Output_0/Data__const123_const" type="Const" version="opset1">
<data element_type="f32" offset="3864" shape="16,32,3,3" size="18432"/>
<output>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="15" name="pool1/WithoutBiases" type="Convolution" version="opset1">
<data dilations="1,1" output_padding="0,0" pads_begin="1,1" pads_end="1,1" strides="2,2"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
<port id="1">
<dim>16</dim>
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>30</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="16" name="pool1/Dims1394/copy_const125_const" type="Const" version="opset1">
<data element_type="f32" offset="22296" shape="1,16,1,1" size="64"/>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="17" name="pool1" type="Add" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>30</dim>
<dim>30</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>30</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="18" name="angle_p_fc/sink_port_0" type="Result" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>30</dim>
<dim>30</dim>
</port>
</input>
</layer>
<layer id="19" name="angle_r_fc/sink_port_0" type="Result" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</input>
</layer>
</layers>
<edges>
<edge from-layer="0" from-port="0" to-layer="2" to-port="0"/>
<edge from-layer="1" from-port="1" to-layer="2" to-port="1"/>
<edge from-layer="2" from-port="2" to-layer="4" to-port="0"/>
<edge from-layer="3" from-port="1" to-layer="4" to-port="1"/>
<edge from-layer="4" from-port="2" to-layer="6" to-port="0"/>
<edge from-layer="5" from-port="1" to-layer="6" to-port="1"/>
<edge from-layer="6" from-port="2" to-layer="8" to-port="0"/>
<edge from-layer="7" from-port="1" to-layer="8" to-port="1"/>
<edge from-layer="8" from-port="2" to-layer="9" to-port="0"/>
<edge from-layer="9" from-port="1" to-layer="11" to-port="0"/>
<edge from-layer="10" from-port="1" to-layer="11" to-port="1"/>
<edge from-layer="11" from-port="2" to-layer="13" to-port="0"/>
<edge from-layer="12" from-port="1" to-layer="13" to-port="1"/>
<edge from-layer="13" from-port="2" to-layer="15" to-port="0"/>
<edge from-layer="14" from-port="1" to-layer="15" to-port="1"/>
<edge from-layer="15" from-port="2" to-layer="17" to-port="0"/>
<edge from-layer="16" from-port="1" to-layer="17" to-port="1"/>
<edge from-layer="17" from-port="2" to-layer="18" to-port="0"/>
<edge from-layer="8" from-port="2" to-layer="19" to-port="0"/>
</edges>
<meta_data>
<MO_version value="unknown version"/>
<cli_parameters>
<blobs_as_inputs value="True"/>
<caffe_parser_path value="DIR"/>
<data_type value="FP32"/>
<disable_nhwc_to_nchw value="False"/>
<disable_omitting_optional value="False"/>
<disable_resnet_optimization value="False"/>
<enable_concat_optimization value="False"/>
<enable_flattening_nested_params value="False"/>
<enable_ssd_gluoncv value="False"/>
<extensions value="DIR"/>
<framework value="caffe"/>
<freeze_placeholder_with_value value="{}"/>
<generate_deprecated_IR_V2 value="False"/>
<generate_deprecated_IR_V7 value="False"/>
<generate_experimental_IR_V10 value="True"/>
<input value="data"/>
<input_model value="DIR/headpos_net.caffemodel"/>
<input_model_is_text value="False"/>
<input_proto value="DIR/headpos_net.prototxt"/>
<input_shape value="[1,3,60,60]"/>
<k value="DIR/CustomLayersMapping.xml"/>
<keep_quantize_ops_in_IR value="True"/>
<keep_shape_ops value="False"/>
<legacy_mxnet_model value="False"/>
<log_level value="ERROR"/>
<mean_scale_values value="{'data': {'mean': array([120., 110., 104.]), 'scale': array([256.41025641])}}"/>
<mean_values value="data[120.0,110.0,104.0]"/>
<model_name value="headpos_net"/>
<move_to_preprocess value="False"/>
<output value="['angle_r_fc', 'angle_p_fc', 'angle_y_fc']"/>
<output_dir value="DIR"/>
<placeholder_data_types value="{}"/>
<placeholder_shapes value="{'data': array([ 1, 3, 60, 60])}"/>
<progress value="False"/>
<remove_memory value="False"/>
<remove_output_softmax value="False"/>
<reverse_input_channels value="False"/>
<save_params_from_nd value="False"/>
<scale_values value="data[256.4102564102564]"/>
<silent value="False"/>
<stream_output value="False"/>
<unset unset_cli_parameters="batch, counts, disable_fusing, disable_gfusing, finegrain_fusing, input_checkpoint, input_meta_graph, input_symbol, mean_file, mean_file_offsets, nd_prefix_name, pretrained_model_name, saved_model_dir, saved_model_tags, scale, tensorboard_logdir, tensorflow_custom_layer_libraries, tensorflow_custom_operations_config_update, tensorflow_object_detection_api_pipeline_config, tensorflow_operation_patterns, tensorflow_subgraph_patterns, tensorflow_use_custom_operations_config, transformations_config"/>
</cli_parameters>
</meta_data>
</net>
version https://git-lfs.github.com/spec/v1
oid sha256:b816b8316b12511fa5a1b46e637179c86677b9b2b8608b671e6fa7c10c68484e
size 11207

View File

@ -1,8 +1,3 @@
{
"name": "scaleshift_no_fuse_2",
"framework": "dldt",
"mo_args": {
"model": "$model_dir/scaleshift_fuse/scaleshift_no_fuse_2.xml",
"weights": "$model_dir/scaleshift_fuse/scaleshift_no_fuse_2.bin"
}
}
version https://git-lfs.github.com/spec/v1
oid sha256:b1e0e6b4866c66ee6040110408d8e717f4b253948a623f45b8c427a175f18e62
size 217

View File

@ -1,2 +1,3 @@
<?xml version="1.0" ?>
<mapping/>
version https://git-lfs.github.com/spec/v1
oid sha256:43d82f63bfea7d3ae9d641169b9693596199d78171e94b918e09497a4f08a012
size 34

View File

@ -1,404 +1,3 @@
<?xml version="1.0" ?>
<net name="scaleshift_no_fuse_2" version="10">
<layers>
<layer id="0" name="data" type="Parameter" version="opset1">
<data element_type="f32" shape="1,3,60,60"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="1" name="data_mul_22172221/copy_const110_const" type="Const" version="opset1">
<data element_type="f32" offset="0" shape="1,3,1,1" size="12"/>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="2" name="Mul_/Fused_Mul_" type="Multiply" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>3</dim>
<dim>60</dim>
<dim>60</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="3" name="data_add_22182223/copy_const112_const" type="Const" version="opset1">
<data element_type="f32" offset="12" shape="1,3,1,1" size="12"/>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="4" name="Add_/Fused_Add_" type="Add" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>3</dim>
<dim>60</dim>
<dim>60</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="5" name="106/Output_0/Data__const114_const" type="Const" version="opset1">
<data element_type="f32" offset="24" shape="32,3,3,3" size="3456"/>
<output>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="6" name="conv1/WithoutBiases" type="Convolution" version="opset1">
<data dilations="1,1" output_padding="0,0" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>3</dim>
<dim>60</dim>
<dim>60</dim>
</port>
<port id="1">
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="7" name="conv1/Dims1358/copy_const116_const" type="Const" version="opset1">
<data element_type="f32" offset="3480" shape="1,32,1,1" size="128"/>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="8" name="conv1" type="Add" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="9" name="relu_conv1" type="ReLU" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="10" name="data_mul_22252229/copy_const119_const" type="Const" version="opset1">
<data element_type="f32" offset="3608" shape="1,32,1,1" size="128"/>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="11" name="Mul1_1975/Fused_Mul_" type="Multiply" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="12" name="data_add_22262231/copy_const121_const" type="Const" version="opset1">
<data element_type="f32" offset="3736" shape="1,32,1,1" size="128"/>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="13" name="Add1_1976/Fused_Add_" type="Add" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</output>
</layer>
<layer id="14" name="108/Output_0/Data__const123_const" type="Const" version="opset1">
<data element_type="f32" offset="3864" shape="16,32,3,3" size="18432"/>
<output>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="15" name="pool1/WithoutBiases" type="Convolution" version="opset1">
<data dilations="1,1" output_padding="0,0" pads_begin="1,1" pads_end="1,1" strides="2,2"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
<port id="1">
<dim>16</dim>
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>30</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="16" name="pool1/Dims1394/copy_const125_const" type="Const" version="opset1">
<data element_type="f32" offset="22296" shape="1,16,1,1" size="64"/>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="17" name="pool1" type="Add" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>30</dim>
<dim>30</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>30</dim>
<dim>30</dim>
</port>
</output>
</layer>
<layer id="18" name="angle_p_fc/sink_port_0" type="Result" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>30</dim>
<dim>30</dim>
</port>
</input>
</layer>
<layer id="19" name="angle_r_fc/sink_port_0" type="Result" version="opset1">
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>60</dim>
<dim>60</dim>
</port>
</input>
</layer>
</layers>
<edges>
<edge from-layer="0" from-port="0" to-layer="2" to-port="0"/>
<edge from-layer="1" from-port="1" to-layer="2" to-port="1"/>
<edge from-layer="2" from-port="2" to-layer="4" to-port="0"/>
<edge from-layer="3" from-port="1" to-layer="4" to-port="1"/>
<edge from-layer="4" from-port="2" to-layer="6" to-port="0"/>
<edge from-layer="5" from-port="1" to-layer="6" to-port="1"/>
<edge from-layer="6" from-port="2" to-layer="8" to-port="0"/>
<edge from-layer="7" from-port="1" to-layer="8" to-port="1"/>
<edge from-layer="8" from-port="2" to-layer="9" to-port="0"/>
<edge from-layer="9" from-port="1" to-layer="11" to-port="0"/>
<edge from-layer="10" from-port="1" to-layer="11" to-port="1"/>
<edge from-layer="11" from-port="2" to-layer="13" to-port="0"/>
<edge from-layer="12" from-port="1" to-layer="13" to-port="1"/>
<edge from-layer="13" from-port="2" to-layer="15" to-port="0"/>
<edge from-layer="14" from-port="1" to-layer="15" to-port="1"/>
<edge from-layer="15" from-port="2" to-layer="17" to-port="0"/>
<edge from-layer="16" from-port="1" to-layer="17" to-port="1"/>
<edge from-layer="17" from-port="2" to-layer="18" to-port="0"/>
<edge from-layer="9" from-port="1" to-layer="19" to-port="0"/>
</edges>
<meta_data>
<MO_version value="unknown version"/>
<cli_parameters>
<blobs_as_inputs value="True"/>
<caffe_parser_path value="DIR"/>
<data_type value="FP32"/>
<disable_nhwc_to_nchw value="False"/>
<disable_omitting_optional value="False"/>
<disable_resnet_optimization value="False"/>
<enable_concat_optimization value="False"/>
<enable_flattening_nested_params value="False"/>
<enable_ssd_gluoncv value="False"/>
<extensions value="DIR"/>
<framework value="caffe"/>
<freeze_placeholder_with_value value="{}"/>
<generate_deprecated_IR_V2 value="False"/>
<generate_deprecated_IR_V7 value="False"/>
<generate_experimental_IR_V10 value="True"/>
<input value="data"/>
<input_model value="DIR/headpos_net.caffemodel"/>
<input_model_is_text value="False"/>
<input_proto value="DIR/headpos_net.prototxt"/>
<input_shape value="[1,3,60,60]"/>
<k value="DIR/CustomLayersMapping.xml"/>
<keep_quantize_ops_in_IR value="True"/>
<keep_shape_ops value="False"/>
<legacy_mxnet_model value="False"/>
<log_level value="ERROR"/>
<mean_scale_values value="{'data': {'mean': array([120., 110., 104.]), 'scale': array([256.41025641])}}"/>
<mean_values value="data[120.0,110.0,104.0]"/>
<model_name value="headpos_net"/>
<move_to_preprocess value="False"/>
<output value="['angle_r_fc', 'angle_p_fc', 'angle_y_fc']"/>
<output_dir value="DIR"/>
<placeholder_data_types value="{}"/>
<placeholder_shapes value="{'data': array([ 1, 3, 60, 60])}"/>
<progress value="False"/>
<remove_memory value="False"/>
<remove_output_softmax value="False"/>
<reverse_input_channels value="False"/>
<save_params_from_nd value="False"/>
<scale_values value="data[256.4102564102564]"/>
<silent value="False"/>
<stream_output value="False"/>
<unset unset_cli_parameters="batch, counts, disable_fusing, disable_gfusing, finegrain_fusing, input_checkpoint, input_meta_graph, input_symbol, mean_file, mean_file_offsets, nd_prefix_name, pretrained_model_name, saved_model_dir, saved_model_tags, scale, tensorboard_logdir, tensorflow_custom_layer_libraries, tensorflow_custom_operations_config_update, tensorflow_object_detection_api_pipeline_config, tensorflow_operation_patterns, tensorflow_subgraph_patterns, tensorflow_use_custom_operations_config, transformations_config"/>
</cli_parameters>
</meta_data>
</net>
version https://git-lfs.github.com/spec/v1
oid sha256:7e3c4e8d1a0d0a3569dc97c4f6f4660e46c73dd6cfd528f47a710fbc47937bcb
size 11207

View File

@ -1,7 +1,3 @@
{
"name": "sparsity_example",
"framework": "tf",
"mo_args": {
"input_model": "$model_dir/sparsity_example/sparsity_example.pb"
}
}
version https://git-lfs.github.com/spec/v1
oid sha256:14baef7789d2897a9325d380d1fa0b3c077910484f66ff0af9319ee9d9bc2c23
size 143

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:9203d23507fd107be3aa3cdf40c519f8a4c55d41233e2cdd64df6878b646e09a
size 165

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:5ac0f1d329683e99f74e640b3540f8694ab8d83fc5badb96487bbc43b92a14e5
size 2897132

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:ad7053835f5e9dad1e03fc9d14945a77cba40df1d1fef958d6793c424a9c1f9c
size 1085622

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:df841d3e81aa6476e54787bcfec5e334bee27b80bbad7c8446b0f7f120ca5e7e
size 570777

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:7c0f1c9825c4702d799f718e8dd988657f2c44358cd463585f4ca1bf0d90a6e6
size 264440

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:04d5d451ee94f09bea1bc69afdaf13c497a39797384675a702777ff6a1970506
size 266073

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:28d8dd7ce7ef796fc94bd94d974986f693d6194de00bab1f6497d1361551c89e
size 400586

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:6a5bb771b397abb967e156f0deffb3f4ee7fa5f1dcdd13fe36226817c3f11a16
size 138625

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:f4091df7f399097a4ecb046014df916b26c79bdef30ff564d349f314a61de217
size 365966

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:6f2cea1cb0c85f3b3b5d360ffa383f91cebadb2cd6696a524bbec16e1e780fe4
size 200424

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:72be47cf42c9771bd4fa3d0f42837c2f54cc8f619c0ca29c732f25a871a1fbb0
size 249198

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:5e081799bb7929f865b836e413c74c2e4fd4c7ac4242db7969b632274e121631
size 262139

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:6848630335a85c7f3d80100f866da8a8b3ae987a04cef90637ad0ef229508622
size 102370

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:add70f121123664a48002a9f0673e0dd9ec3984fd5bd0e293d219f5f97af8c4c
size 437836

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:3118d1ef6a1ec4e0cec1e68de7d04f9462fd1ccdc7601ad01ea5208ab6b9cf2b
size 325360

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:aff0bb1f34ad541699d5ec229a49fc8d090acbf2bee320d3ad17592b14d46309
size 97200

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:486ad7c7bca603eec7a940a655c9aa53bbbf23e1ef026d01961bbaf43696179a
size 115127

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:1ab4a16206b62c9a52cedaf26e696cd53bcaab943e30c1edf4f9a6dede83b633
size 54186

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:d53c5dc4302f036a65d73b4d5d54df138a480f071a2e7da2959d85f175c1e4c1
size 100908

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:35e2f90b0f4f3758947ab0d51bd9fef292674518fc1adf15df5e757416372867
size 103255

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:fb176f5a1b2e380aa42bd87a5600dd917078a190bac4fd226975fd10b4aa99cf
size 93195

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:b725d959c41a95d8028dc68b7622deb1c11a9ab845a86dfa9b78ba5f5be4dc9c
size 69444

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:7c8d6b23f61ad3585ed1b7184260d6be725c96d6a1b3c3834890e72f0311706b
size 48053

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:b6d022b9d82f84e4d1a019175fd246aa69a4b0eb5f169130c39323af6365cc5d
size 113049

View File

@ -1 +1 @@
{"Conv_142/WithoutBiases/fq_input_0": [0.0, 0.2242812712987264], "Conv_109/WithoutBiases/fq_input_0": [-1.8664333624963545e-06, 0.052320354198194446], "Conv_28/WithoutBiases/fq_input_0": [-0.6761601765950521, 0.7606801986694336], "Conv_133/WithoutBiases/fq_input_0": [0.0, 0.17377585172653198], "Conv_138/WithoutBiases/fq_input_0": [-5.599300087489063e-07, 0.038324688244406775], "Conv_123/WithoutBiases/fq_input_0": [0.0, 0.20735913515090942], "Conv_57/WithoutBiases/fq_input_0": [-0.7855395362490699, 0.6873470942179362], "Conv_94/WithoutBiases/fq_input_0": [0.0, 0.2643519441286723], "Conv_51/WithoutBiases/fq_input_0": [-6.99912510936133e-07, 0.07398068032526514], "Conv_45/WithoutBiases/fq_input_0": [0.0, 0.2704688310623169], "Conv_96/WithoutBiases/fq_input_0": [-0.46407422703944395, 0.49027196566263836], "Conv_65/WithoutBiases/fq_input_0": [0.0, 0.40045098463694256], "Add_114/fq_input_0": [-0.2957377831141154, 0.39612583793266837], "Add_114/fq_input_1": [-0.20504931608835855, 0.16843336678686596], "Add_75/fq_input_0": [-0.33282386845555795, 0.4387223720550537], "Add_75/fq_input_1": [-0.2811157777905464, 0.2498806913693746], "Conv_162/WithoutBiases/fq_input_0": [0.0, 0.19471615552902222], "Add_95/fq_input_0": [-0.5081917842229208, 0.451726030420374], "Add_95/fq_input_1": [-0.2702499142824075, 0.1861323912938436], "Conv_13/WithoutBiases/fq_input_0": [0.0, 0.2555986753044029], "Conv_90/WithoutBiases/fq_input_0": [-1.7497812773403325e-06, 0.049696102097811584], "Conv_4/WithoutBiases/fq_input_0": [-1.6797900262467193e-05, 0.12491567412913622], "Conv_0/WithoutBiases/fq_input_0": [-0.2776877482732137, 0.42340508152549416], "Conv_84/WithoutBiases/fq_input_0": [0.0, 0.20490833123524985], "Add_27/fq_input_0": [-0.45871689029642054, 0.6344869136810303], "Add_27/fq_input_1": [-0.5353115544174657, 0.5744806925455729], "Conv_61/WithoutBiases/fq_input_0": [0.0, 0.10879192669462], "Conv_70/WithoutBiases/fq_input_0": [-6.99912510936133e-07, 0.05212856566480833], "Conv_55/WithoutBiases/fq_input_0": [0.0, 0.24343103170394897], "Add_56/fq_input_0": [-0.47849833965301514, 0.538310632109642], "Add_56/fq_input_1": [-0.3224060734113057, 0.30042384113326215], "Add_153/fq_input_0": [-0.16854696046738396, 0.14747859040896097], "Add_153/fq_input_1": [-0.14878487214446068, 0.13225321968396506], "Conv_80/WithoutBiases/fq_input_0": [-1.0498687664041996e-06, 0.04881053143390195], "Conv_36/WithoutBiases/fq_input_0": [0.0, 0.3457832336425781], "Conv_17/WithoutBiases/fq_input_0": [0.0, 0.7615942160288492], "Add_124/fq_input_0": [-0.34435376035215715, 0.43272773424784344], "Add_124/fq_input_1": [-0.18676529611860002, 0.22736644744873047], "Conv_32/WithoutBiases/fq_input_0": [0.0, 0.14368237382559865], "Conv_158/WithoutBiases/fq_input_0": [-1.007426508515174e-05, 0.014825364361810207], "Conv_163/WithoutBiases/fq_input_0": [-0.2511186701313296, 0.27376051743825275], "Conv_26/WithoutBiases/fq_input_0": [0.0, 0.4776722590128581], "Conv_152/WithoutBiases/fq_input_0": [0.0, 0.12657655278841654], "Conv_100/WithoutBiases/fq_input_0": [0.0, 0.06863055285389742], "Add_85/fq_input_0": [-0.46573809782663983, 0.42055455102256284], "Add_85/fq_input_1": [-0.1863194237584653, 0.21976137161254883], "Conv_129/WithoutBiases/fq_input_0": [-9.332166812481773e-07, 0.05778365740125063], "Conv_113/WithoutBiases/fq_input_0": [0.0, 0.24311176935831705], "Conv_9/WithoutBiases/fq_input_0": [-0.7567498683929443, 0.812121809982672], "Conv_148/WithoutBiases/fq_input_0": [-2.2397200349956254e-06, 0.03194333815664984], "GlobalAveragePool_167/reduce/fq_input_0": [0.0, 1.0], "Conv_119/WithoutBiases/fq_input_0": [-1.8664333624963547e-06, 0.05056043888575707], "Conv_104/WithoutBiases/fq_input_0": [0.0, 0.2517488996187846], "Conv_22/WithoutBiases/fq_input_0": [0.0, 0.1020818330106084], "Add_143/fq_input_0": [-0.17097491853766975, 0.1256142258644104], "Add_143/fq_input_1": [-0.08282462934342523, 0.08347679177920024], "Conv_41/WithoutBiases/fq_input_0": [0.0, 0.07427590073914163], "Add_46/fq_input_0": [-0.4115632568917624, 0.38350212574005127], "Add_46/fq_input_1": [-0.36867761611938477, 0.32259291410446167], "Conv_8/WithoutBiases/fq_input_0": [0.0, 1.0], "Conv_125/WithoutBiases/fq_input_0": [-0.38285431117876195, 0.4735303322474162], "Conv_154/WithoutBiases/fq_input_0": [-0.2496981308573768, 0.19556776682535806], "Conv_74/WithoutBiases/fq_input_0": [0.0, 0.22831233342488608], "Reshape_173/fq_input_0": [0.0, 0.8365342617034912]}
{"Conv_74/WithoutBiases/fq_input_0": [0.0, 0.1986770341905644], "Add_124/fq_input_0": [-0.272860113301509, 0.30696762746419765], "Add_124/fq_input_1": [-0.32439105371346183, 0.26227361789599035], "Conv_125/WithoutBiases/fq_input_0": [-0.41168129966033096, 0.48557281498398014], "Conv_70/WithoutBiases/fq_input_0": [0.0, 0.04836913998273462], "Add_27/fq_input_0": [-0.4858114130019989, 0.4820160113379209], "Add_27/fq_input_1": [-0.7506775992739116, 0.756588446512289], "Conv_9/WithoutBiases/fq_input_0": [-1.0, 0.8613138686131386], "Add_75/fq_input_0": [-0.43236630570979506, 0.32800202502122383], "Add_75/fq_input_1": [-0.26767741089219377, 0.34176669426414025], "Conv_80/WithoutBiases/fq_input_0": [-9.331298663654041e-07, 0.04795441368156403], "Conv_8/WithoutBiases/fq_input_0": [0.0, 0.8888061977130475], "Add_95/fq_input_0": [-0.4670480196746606, 0.3776132925029171], "Add_95/fq_input_1": [-0.5320417328378549, 0.2902045815479209], "Conv_154/WithoutBiases/fq_input_0": [-0.5123423996720231, 0.6336866522259234], "Conv_152/WithoutBiases/fq_input_0": [0.0, 0.28360465669046603], "Conv_55/WithoutBiases/fq_input_0": [0.0, 0.26970554618804865], "Conv_142/WithoutBiases/fq_input_0": [0.0, 0.37551385019509304], "Add_143/fq_input_0": [-0.26211320360754853, 0.2725977317518505], "Add_143/fq_input_1": [-0.12865026386419867, 0.14936513685928152], "Conv_41/WithoutBiases/fq_input_0": [0.0, 0.0730270750799249], "Conv_65/WithoutBiases/fq_input_0": [0.0, 0.2538664893986357], "Conv_104/WithoutBiases/fq_input_0": [0.0, 0.32660769410782287], "GlobalAveragePool_167/reduce/fq_input_0": [0.0, 0.8888061977130475], "Add_46/fq_input_0": [-0.4630984623750088, 0.41164307766667446], "Add_46/fq_input_1": [-0.4644157525842346, 0.4128140022970974], "Add_85/fq_input_0": [-0.39777751548287493, 0.3824783802719951], "Add_85/fq_input_1": [-0.23387001130811247, 0.2046362598945984], "Conv_84/WithoutBiases/fq_input_0": [0.0, 0.20072268720704173], "Conv_32/WithoutBiases/fq_input_0": [0.0, 0.16312493181298865], "Conv_17/WithoutBiases/fq_input_0": [0.0, 0.5136048763683335], "Conv_109/WithoutBiases/fq_input_0": [-1.4515353476795174e-06, 0.0488219123411795], "Conv_57/WithoutBiases/fq_input_0": [-0.63127367215193, 0.7807858576615976], "Add_56/fq_input_0": [-0.5720002764330961, 0.6641020158587643], "Add_56/fq_input_1": [-0.29116690834763886, 0.3174196623789834], "Conv_22/WithoutBiases/fq_input_0": [0.0, 0.1054715493335459], "Conv_94/WithoutBiases/fq_input_0": [0.0, 0.500169455692634], "Conv_138/WithoutBiases/fq_input_0": [-2.4883463103077446e-07, 0.041876295983191626], "Conv_129/WithoutBiases/fq_input_0": [-4.147243850512907e-07, 0.08542537264190668], "Conv_4/WithoutBiases/fq_input_0": [-1.4930077861846466e-05, 0.14306248555199863], "Conv_90/WithoutBiases/fq_input_0": [-1.8662597327308082e-06, 0.04625857273261655], "Conv_0/WithoutBiases/fq_input_0": [-0.29686057572878516, 0.3136188340360553], "Conv_96/WithoutBiases/fq_input_0": [-0.5538940426317897, 0.44782922595761715], "Conv_61/WithoutBiases/fq_input_0": [0.0, 0.10988586790625982], "Conv_158/WithoutBiases/fq_input_0": [-1.8907486646365963e-05, 0.012060893794179912], "Conv_163/WithoutBiases/fq_input_0": [-0.22149533099768434, 0.17626036903336853], "Conv_119/WithoutBiases/fq_input_0": [-1.4515353476795176e-06, 0.04821581800256121], "Conv_51/WithoutBiases/fq_input_0": [-6.220865775769361e-07, 0.07665421540265335], "Conv_113/WithoutBiases/fq_input_0": [0.0, 0.36954189677216925], "Add_114/fq_input_0": [-0.2459926094997045, 0.28560158899541965], "Add_114/fq_input_1": [-0.1701828436690771, 0.22433193029105622], "Conv_148/WithoutBiases/fq_input_0": [-4.976692620615489e-07, 0.04610769558002592], "Conv_13/WithoutBiases/fq_input_0": [0.0, 0.27532813837889425], "Conv_162/WithoutBiases/fq_input_0": [0.0, 0.18792196604203984], "Add_153/fq_input_0": [-0.25017974292631573, 0.3143851636773171], "Add_153/fq_input_1": [-0.4105879150203398, 0.4010393588570761], "Conv_133/WithoutBiases/fq_input_0": [0.0, 0.3768387337711209], "Conv_28/WithoutBiases/fq_input_0": [-0.8976801240198111, 0.9335873289806036], "Conv_45/WithoutBiases/fq_input_0": [0.0, 0.268333901599714], "Conv_100/WithoutBiases/fq_input_0": [0.0, 0.06661587036129482], "Conv_123/WithoutBiases/fq_input_0": [0.0, 0.30598569918273477], "Conv_26/WithoutBiases/fq_input_0": [0.0, 0.412934844745316], "Conv_36/WithoutBiases/fq_input_0": [0.0, 0.368357190279106], "Reshape_173/fq_input_0": [0.0, 0.6060830426133388]}

View File

@ -1 +1 @@
{"Conv_142/WithoutBiases/fq_input_0": [0.0, 0.2755489305605197], "Conv_109/WithoutBiases/fq_input_0": [0.0, 0.06430231181257642], "Conv_28/WithoutBiases/fq_input_0": [-0.9369239559344311, 0.6142932242289382], "Conv_133/WithoutBiases/fq_input_0": [0.0, 0.21349865650044245], "Conv_138/WithoutBiases/fq_input_0": [0.0, 0.047094490479181655], "Conv_123/WithoutBiases/fq_input_0": [0.0, 0.2547586234103526], "Conv_57/WithoutBiases/fq_input_0": [-0.9705570862387501, 0.6142932242289382], "Conv_94/WithoutBiases/fq_input_0": [0.0, 0.3247792161799804], "Conv_51/WithoutBiases/fq_input_0": [0.0, 0.09090055108477514], "Conv_45/WithoutBiases/fq_input_0": [0.0, 0.33229434057340523], "Conv_96/WithoutBiases/fq_input_0": [-0.6070843394740638, 0.6023414930719228], "Conv_65/WithoutBiases/fq_input_0": [0.0, 0.4919886529965608], "Add_114/fq_input_0": [-0.48748908408243213, 0.4836805756130381], "Add_114/fq_input_1": [-0.253904439444876, 0.25192081101171293], "Add_75/fq_input_0": [-0.5432525212645125, 0.5390083609421334], "Add_75/fq_input_1": [-0.3456265869534882, 0.3429263792429141], "Conv_162/WithoutBiases/fq_input_0": [0.0, 0.23922562997877286], "Add_95/fq_input_0": [-0.6292737404108696, 0.6142932242289382], "Add_95/fq_input_1": [-0.3327225799137669, 0.33012318475819064], "Conv_13/WithoutBiases/fq_input_0": [0.0, 0.2935925959882982], "Conv_90/WithoutBiases/fq_input_0": [0.0, 0.06107350902584563], "Conv_4/WithoutBiases/fq_input_0": [0.0, 0.15410890631916244], "Conv_0/WithoutBiases/fq_input_0": [-0.5232526511631934, 0.519164739825981], "Conv_84/WithoutBiases/fq_input_0": [0.0, 0.2517475989317457], "Add_27/fq_input_0": [-0.7856599925642845, 0.6142932242289382], "Add_27/fq_input_1": [-0.711356667728818, 0.6142932242289382], "Conv_61/WithoutBiases/fq_input_0": [0.0, 0.1336603000288348], "Conv_70/WithoutBiases/fq_input_0": [0.0, 0.06405321570589022], "Conv_55/WithoutBiases/fq_input_0": [0.0, 0.29907606668559134], "Add_56/fq_input_0": [-0.6654038284290348, 0.6142932242289382], "Add_56/fq_input_1": [-0.3992226597227293, 0.39610373269364546], "Add_153/fq_input_0": [-0.20742287807060308, 0.20580238683567648], "Add_153/fq_input_1": [-0.18306217639729155, 0.18163200314418773], "Conv_80/WithoutBiases/fq_input_0": [0.0, 0.05997703213378154], "Conv_36/WithoutBiases/fq_input_0": [0.0, 0.4248245949572151], "Conv_17/WithoutBiases/fq_input_0": [0.0, 0.6142932242289382], "Add_124/fq_input_0": [-0.5358295989102682, 0.5316434301687817], "Add_124/fq_input_1": [-0.28153885850156357, 0.2793393361695201], "Conv_32/WithoutBiases/fq_input_0": [0.0, 0.1765262133808422], "Conv_158/WithoutBiases/fq_input_0": [0.0, 0.018292064328992032], "Conv_163/WithoutBiases/fq_input_0": [-0.338986796192709, 0.3363384618474535], "Conv_26/WithoutBiases/fq_input_0": [0.0, 0.5868616642274581], "Conv_152/WithoutBiases/fq_input_0": [0.0, 0.15551023744836157], "Conv_100/WithoutBiases/fq_input_0": [0.0, 0.08431856527548029], "Add_85/fq_input_0": [-0.5767050235165817, 0.5721995155203583], "Add_85/fq_input_1": [-0.2721217945778322, 0.2699958430576929], "Conv_129/WithoutBiases/fq_input_0": [0.0, 0.07100889144362615], "Conv_113/WithoutBiases/fq_input_0": [0.0, 0.2986838252942451], "Conv_9/WithoutBiases/fq_input_0": [-1.0, 0.6142932242289382], "Conv_148/WithoutBiases/fq_input_0": [0.0, 0.03926168143718818], "GlobalAveragePool_167/reduce/fq_input_0": [0.0, 0.6142932242289382], "Conv_119/WithoutBiases/fq_input_0": [0.0, 0.06214195124008526], "Conv_104/WithoutBiases/fq_input_0": [0.0, 0.30929528648582094], "Conv_22/WithoutBiases/fq_input_0": [0.0, 0.12541635944634277], "Add_143/fq_input_0": [-0.21034385164940816, 0.2087005403083972], "Add_143/fq_input_1": [-0.10336600203153663, 0.10255845514066526], "Conv_41/WithoutBiases/fq_input_0": [0.0, 0.0912543592151422], "Add_46/fq_input_0": [-0.5058592177776973, 0.501907192638809], "Add_46/fq_input_1": [-0.45651887673855107, 0.4529523230140312], "Conv_8/WithoutBiases/fq_input_0": [0.0, 0.6142932242289382], "Conv_125/WithoutBiases/fq_input_0": [-0.5863538384961826, 0.5817729491329312], "Conv_154/WithoutBiases/fq_input_0": [-0.3077924152160166, 0.3053877869721415], "Conv_74/WithoutBiases/fq_input_0": [0.0, 0.2805014388616113], "Reshape_173/fq_input_0": [0.0, 0.6142932242289382]}
{"Conv_74/WithoutBiases/fq_input_0": [0.0, 0.19712486986095062], "Add_124/fq_input_0": [-0.30510741152862386, 0.3027237598760565], "Add_124/fq_input_1": [-0.32193653739507117, 0.3194214081966722], "Conv_125/WithoutBiases/fq_input_0": [-0.48557281498398014, 0.44093119964670713], "Conv_70/WithoutBiases/fq_input_0": [0.0, 0.04799125778908363], "Add_27/fq_input_0": [-0.4857995917664735, 0.44093119964670713], "Add_27/fq_input_1": [-0.756588446512289, 0.44093119964670713], "Conv_9/WithoutBiases/fq_input_0": [-1.0, 0.44093119964670713], "Add_75/fq_input_0": [-0.4323663057097951, 0.4289884439464373], "Add_75/fq_input_1": [-0.3401223683421448, 0.3374651623394718], "Conv_80/WithoutBiases/fq_input_0": [0.0, 0.0475885850586743], "Conv_8/WithoutBiases/fq_input_0": [0.0, 0.44093119964670713], "Add_95/fq_input_0": [-0.46598874500577203, 0.44093119964670713], "Add_95/fq_input_1": [-0.5275738105273449, 0.44093119964670713], "Conv_154/WithoutBiases/fq_input_0": [-0.630203460555073, 0.44093119964670713], "Conv_152/WithoutBiases/fq_input_0": [0.0, 0.2813889953100718], "Conv_55/WithoutBiases/fq_input_0": [0.0, 0.2675984716084545], "Conv_142/WithoutBiases/fq_input_0": [0.0, 0.3725801482404439], "Add_143/fq_input_0": [-0.27090319672266056, 0.26878676549826475], "Add_143/fq_input_1": [-0.14877220909688169, 0.14760992621331231], "Conv_41/WithoutBiases/fq_input_0": [0.0, 0.07245654888854787], "Conv_65/WithoutBiases/fq_input_0": [0.0, 0.2518831574502089], "Conv_104/WithoutBiases/fq_input_0": [0.0, 0.3240560714976055], "GlobalAveragePool_167/reduce/fq_input_0": [0.0, 0.44093119964670713], "Add_46/fq_input_0": [-0.4630984623750088, 0.44093119964670713], "Add_46/fq_input_1": [-0.4644157525842347, 0.44093119964670713], "Add_85/fq_input_0": [-0.3973987456323131, 0.3942940679320606], "Add_85/fq_input_1": [-0.2338700113081125, 0.23204290184476786], "Conv_84/WithoutBiases/fq_input_0": [0.0, 0.19915454121323672], "Conv_32/WithoutBiases/fq_input_0": [0.0, 0.16185053017681666], "Conv_17/WithoutBiases/fq_input_0": [0.0, 0.44093119964670713], "Conv_109/WithoutBiases/fq_input_0": [0.0, 0.048461754433139985], "Conv_57/WithoutBiases/fq_input_0": [-0.7807858576615976, 0.44093119964670713], "Add_56/fq_input_0": [-0.6641020158587643, 0.44093119964670713], "Add_56/fq_input_1": [-0.3157671917532787, 0.31330026056770627], "Conv_22/WithoutBiases/fq_input_0": [0.0, 0.104647550557784], "Conv_94/WithoutBiases/fq_input_0": [0.0, 0.44093119964670713], "Conv_138/WithoutBiases/fq_input_0": [0.0, 0.04155202021016073], "Conv_129/WithoutBiases/fq_input_0": [0.0, 0.08476486777412125], "Conv_4/WithoutBiases/fq_input_0": [0.0, 0.14246885253362926], "Conv_90/WithoutBiases/fq_input_0": [0.0, 0.04591175662268951], "Conv_0/WithoutBiases/fq_input_0": [-0.3136188340360553, 0.3111686868951486], "Conv_96/WithoutBiases/fq_input_0": [-0.5527886268741754, 0.44093119964670713], "Conv_61/WithoutBiases/fq_input_0": [0.0, 0.10902738797391175], "Conv_158/WithoutBiases/fq_input_0": [0.0, 0.012117864176108687], "Conv_163/WithoutBiases/fq_input_0": [-0.22149533099768434, 0.21976489872426494], "Conv_119/WithoutBiases/fq_input_0": [0.0, 0.0478593288007644], "Conv_51/WithoutBiases/fq_input_0": [0.0, 0.07606394972161658], "Conv_113/WithoutBiases/fq_input_0": [0.0, 0.3666548507036367], "Add_114/fq_input_0": [-0.2833707103569921, 0.2811568766823281], "Add_114/fq_input_1": [-0.22433193029105625, 0.22257933708565736], "Conv_148/WithoutBiases/fq_input_0": [0.0, 0.04575276640093503], "Conv_13/WithoutBiases/fq_input_0": [0.0, 0.2537086036571915], "Conv_162/WithoutBiases/fq_input_0": [0.0, 0.18645382568233643], "Add_153/fq_input_0": [-0.3143851636773171, 0.31192902958608804], "Add_153/fq_input_1": [-0.4100139414214486, 0.40681070750409354], "Conv_133/WithoutBiases/fq_input_0": [0.0, 0.3738946811635341], "Conv_28/WithoutBiases/fq_input_0": [-0.9303551230468007, 0.44093119964670713], "Conv_45/WithoutBiases/fq_input_0": [0.0, 0.26623754299346625], "Conv_100/WithoutBiases/fq_input_0": [0.0, 0.06609543320964402], "Conv_123/WithoutBiases/fq_input_0": [0.0, 0.30359518590786966], "Conv_26/WithoutBiases/fq_input_0": [0.0, 0.4097087912707432], "Conv_36/WithoutBiases/fq_input_0": [0.0, 0.3654793997300505], "Reshape_173/fq_input_0": [0.0, 0.44093119964670713]}

View File

@ -1 +1 @@
{"Conv_142/WithoutBiases/fq_input_0": [0.0, 0.2242812712987264], "Conv_109/WithoutBiases/fq_input_0": [0.0, 0.05233845114707947], "Conv_28/WithoutBiases/fq_input_0": [-0.7626031990752132, 0.7566453615824381], "Conv_133/WithoutBiases/fq_input_0": [0.0, 0.17377585172653198], "Conv_138/WithoutBiases/fq_input_0": [0.0, 0.038332256178061165], "Conv_123/WithoutBiases/fq_input_0": [0.0, 0.20735913515090942], "Conv_57/WithoutBiases/fq_input_0": [-0.7899786681327919, 0.7838069597880045], "Conv_94/WithoutBiases/fq_input_0": [0.0, 0.2643519441286723], "Conv_51/WithoutBiases/fq_input_0": [0.0, 0.0739879161119461], "Conv_45/WithoutBiases/fq_input_0": [0.0, 0.2704688310623169], "Conv_96/WithoutBiases/fq_input_0": [-0.49413237484108435, 0.49027196566263836], "Conv_65/WithoutBiases/fq_input_0": [0.0, 0.40045098463694256], "Add_114/fq_input_0": [-0.39678858959768704, 0.3936886787414551], "Add_114/fq_input_1": [-0.20666387763236138, 0.20504931608835855], "Add_75/fq_input_0": [-0.44217687892162894, 0.4387223720550537], "Add_75/fq_input_1": [-0.28132052684393455, 0.2791227102279663], "Conv_162/WithoutBiases/fq_input_0": [0.0, 0.19471615552902222], "Add_95/fq_input_0": [-0.5121932943349122, 0.5081917842229208], "Add_95/fq_input_1": [-0.2708173937059137, 0.26870163281758624], "Conv_13/WithoutBiases/fq_input_0": [0.0, 0.25559868415196735], "Conv_90/WithoutBiases/fq_input_0": [0.0, 0.0497103879849116], "Conv_4/WithoutBiases/fq_input_0": [0.0, 0.1254359483718872], "Conv_0/WithoutBiases/fq_input_0": [-0.4258981139015338, 0.42257078488667804], "Conv_84/WithoutBiases/fq_input_0": [0.0, 0.20490833123524985], "Add_27/fq_input_0": [-0.6394828736312747, 0.6344869136810303], "Add_27/fq_input_1": [-0.5790041625656168, 0.5744806925455729], "Conv_61/WithoutBiases/fq_input_0": [0.0, 0.10879193743069966], "Conv_70/WithoutBiases/fq_input_0": [0.0, 0.05213570098082224], "Conv_55/WithoutBiases/fq_input_0": [0.0, 0.24343103170394897], "Add_56/fq_input_0": [-0.5416011459871227, 0.5373698870340983], "Add_56/fq_input_1": [-0.32494470391060737, 0.3224060734113057], "Add_153/fq_input_0": [-0.16883051113819514, 0.16751152276992798], "Add_153/fq_input_1": [-0.14900227544188813, 0.14783819516499838], "Conv_80/WithoutBiases/fq_input_0": [0.0, 0.048817917704582214], "Conv_36/WithoutBiases/fq_input_0": [0.0, 0.3457832336425781], "Conv_17/WithoutBiases/fq_input_0": [0.0, 0.7615942160288492], "Add_124/fq_input_0": [-0.43613503924192093, 0.43272773424784344], "Add_124/fq_input_1": [-0.22915673443651574, 0.22736644744873047], "Conv_32/WithoutBiases/fq_input_0": [0.0, 0.14368237058321634], "Conv_158/WithoutBiases/fq_input_0": [0.0, 0.014888707548379898], "Conv_163/WithoutBiases/fq_input_0": [-0.27591611206375083, 0.27376051743825275], "Conv_26/WithoutBiases/fq_input_0": [0.0, 0.4776722590128581], "Conv_152/WithoutBiases/fq_input_0": [0.0, 0.12657655278841654], "Conv_100/WithoutBiases/fq_input_0": [0.0, 0.06863055129845937], "Add_85/fq_input_0": [-0.46940532694338505, 0.46573809782663983], "Add_85/fq_input_1": [-0.22149177611343504, 0.21976137161254883], "Conv_129/WithoutBiases/fq_input_0": [0.0, 0.0577972282965978], "Conv_113/WithoutBiases/fq_input_0": [0.0, 0.24311176935831705], "Conv_9/WithoutBiases/fq_input_0": [-0.8139435375143537, 0.8075846036275228], "Conv_148/WithoutBiases/fq_input_0": [0.0, 0.03195679187774658], "GlobalAveragePool_167/reduce/fq_input_0": [0.0, 1.0], "Conv_119/WithoutBiases/fq_input_0": [0.0, 0.050580039620399475], "Conv_104/WithoutBiases/fq_input_0": [0.0, 0.2517488996187846], "Conv_22/WithoutBiases/fq_input_0": [0.0, 0.10208183526992798], "Add_143/fq_input_0": [-0.1712080187059137, 0.16987045605977377], "Add_143/fq_input_1": [-0.0841340893522648, 0.08347679177920024], "Conv_41/WithoutBiases/fq_input_0": [0.0, 0.0742758959531784], "Add_46/fq_input_0": [-0.41174084120222276, 0.4085241158803304], "Add_46/fq_input_1": [-0.3715805894746555, 0.36867761611938477], "Conv_8/WithoutBiases/fq_input_0": [0.0, 1.0], "Conv_125/WithoutBiases/fq_input_0": [-0.47725891754070293, 0.4735303322474162], "Conv_154/WithoutBiases/fq_input_0": [-0.2505256472610113, 0.24856841564178467], "Conv_74/WithoutBiases/fq_input_0": [0.0, 0.22831233342488608], "Reshape_173/fq_input_0": [0.0, 0.8365342617034912]}
{"Conv_74/WithoutBiases/fq_input_0": [0.0, 0.19712486986095062], "Add_124/fq_input_0": [-0.30510741152862386, 0.3027237598760565], "Add_124/fq_input_1": [-0.32193653739507117, 0.3194214081966722], "Conv_125/WithoutBiases/fq_input_0": [-0.48557281498398014, 0.4817792773669178], "Conv_70/WithoutBiases/fq_input_0": [0.0, 0.04799125778908363], "Add_27/fq_input_0": [-0.4857995917664735, 0.48200428245579796], "Add_27/fq_input_1": [-0.756588446512289, 0.7506775992739118], "Conv_9/WithoutBiases/fq_input_0": [-1.0, 0.9921875], "Add_75/fq_input_0": [-0.4323663057097951, 0.4289884439464373], "Add_75/fq_input_1": [-0.3401223683421448, 0.3374651623394718], "Conv_80/WithoutBiases/fq_input_0": [0.0, 0.0475885850586743], "Conv_8/WithoutBiases/fq_input_0": [0.0, 0.8818623992934143], "Add_95/fq_input_0": [-0.46598874500577203, 0.4623482079354144], "Add_95/fq_input_1": [-0.5275738105273449, 0.5234521401326], "Conv_154/WithoutBiases/fq_input_0": [-0.630203460555073, 0.6252799960194865], "Conv_152/WithoutBiases/fq_input_0": [0.0, 0.2813889953100718], "Conv_55/WithoutBiases/fq_input_0": [0.0, 0.2675984716084545], "Conv_142/WithoutBiases/fq_input_0": [0.0, 0.3725801482404439], "Add_143/fq_input_0": [-0.27090319672266056, 0.26878676549826475], "Add_143/fq_input_1": [-0.14877220909688169, 0.14760992621331231], "Conv_41/WithoutBiases/fq_input_0": [0.0, 0.07245654888854787], "Conv_65/WithoutBiases/fq_input_0": [0.0, 0.2518831574502089], "Conv_104/WithoutBiases/fq_input_0": [0.0, 0.3240560714976055], "GlobalAveragePool_167/reduce/fq_input_0": [0.0, 0.8818623992934143], "Add_46/fq_input_0": [-0.4630984623750088, 0.45948050563770404], "Add_46/fq_input_1": [-0.4644157525842347, 0.4607875045171703], "Add_85/fq_input_0": [-0.3973987456323131, 0.3942940679320606], "Add_85/fq_input_1": [-0.2338700113081125, 0.23204290184476786], "Conv_84/WithoutBiases/fq_input_0": [0.0, 0.19915454121323672], "Conv_32/WithoutBiases/fq_input_0": [0.0, 0.16185053017681666], "Conv_17/WithoutBiases/fq_input_0": [0.0, 0.5095923382717059], "Conv_109/WithoutBiases/fq_input_0": [0.0, 0.048461754433139985], "Conv_57/WithoutBiases/fq_input_0": [-0.7807858576615976, 0.7746859681486165], "Add_56/fq_input_0": [-0.6641020158587643, 0.6589137188598677], "Add_56/fq_input_1": [-0.3157671917532787, 0.31330026056770627], "Conv_22/WithoutBiases/fq_input_0": [0.0, 0.104647550557784], "Conv_94/WithoutBiases/fq_input_0": [0.0, 0.4962618818200354], "Conv_138/WithoutBiases/fq_input_0": [0.0, 0.04155202021016073], "Conv_129/WithoutBiases/fq_input_0": [0.0, 0.08476486777412125], "Conv_4/WithoutBiases/fq_input_0": [0.0, 0.14246885253362926], "Conv_90/WithoutBiases/fq_input_0": [0.0, 0.04591175662268951], "Conv_0/WithoutBiases/fq_input_0": [-0.3136188340360553, 0.3111686868951486], "Conv_96/WithoutBiases/fq_input_0": [-0.5527886268741754, 0.5484699657267209], "Conv_61/WithoutBiases/fq_input_0": [0.0, 0.10902738797391175], "Conv_158/WithoutBiases/fq_input_0": [0.0, 0.012117864176108687], "Conv_163/WithoutBiases/fq_input_0": [-0.22149533099768434, 0.21976489872426494], "Conv_119/WithoutBiases/fq_input_0": [0.0, 0.0478593288007644], "Conv_51/WithoutBiases/fq_input_0": [0.0, 0.07606394972161658], "Conv_113/WithoutBiases/fq_input_0": [0.0, 0.3666548507036367], "Add_114/fq_input_0": [-0.2833707103569921, 0.2811568766823281], "Add_114/fq_input_1": [-0.22433193029105625, 0.22257933708565736], "Conv_148/WithoutBiases/fq_input_0": [0.0, 0.04575276640093503], "Conv_13/WithoutBiases/fq_input_0": [0.0, 0.2731771330544343], "Conv_162/WithoutBiases/fq_input_0": [0.0, 0.18645382568233643], "Add_153/fq_input_0": [-0.3143851636773171, 0.31192902958608804], "Add_153/fq_input_1": [-0.4100139414214486, 0.40681070750409354], "Conv_133/WithoutBiases/fq_input_0": [0.0, 0.3738946811635341], "Conv_28/WithoutBiases/fq_input_0": [-0.9303551230468007, 0.9230867236479976], "Conv_45/WithoutBiases/fq_input_0": [0.0, 0.26623754299346625], "Conv_100/WithoutBiases/fq_input_0": [0.0, 0.06609543320964402], "Conv_123/WithoutBiases/fq_input_0": [0.0, 0.30359518590786966], "Conv_26/WithoutBiases/fq_input_0": [0.0, 0.4097087912707432], "Conv_36/WithoutBiases/fq_input_0": [0.0, 0.3654793997300505], "Reshape_173/fq_input_0": [0.0, 0.6013480188429221]}

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:e8c0887a2215dad87c2c04becf50ae94c413432299c2c056804a12acd0ed75dd
size 37708

Some files were not shown because too many files have changed in this diff Show More