coverity Uninitialized scalar variable (#17182)

Signed-off-by: Hu Yuan2 <yuan2.hu@intel.com>
This commit is contained in:
Yuan Hu 2023-04-27 03:49:21 +08:00 committed by GitHub
parent dbaa1f0c0d
commit cecd0e75a6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 45 additions and 44 deletions

View File

@ -167,7 +167,7 @@ private:
MemoryPtr legacyWeightsZeroPointsMemPtr; MemoryPtr legacyWeightsZeroPointsMemPtr;
MemoryPtr legacyOutputCompensationMemPtr; MemoryPtr legacyOutputCompensationMemPtr;
MemoryPtr stockInputZeroPointsMemPtr; MemoryPtr stockInputZeroPointsMemPtr;
dnnl::memory::data_type outputDataType; dnnl::memory::data_type outputDataType = dnnl::memory::data_type::undef;
InferenceEngine::Precision sumPrc = InferenceEngine::Precision::UNSPECIFIED; InferenceEngine::Precision sumPrc = InferenceEngine::Precision::UNSPECIFIED;
// TODO: migrate on convolution_auto algorithm for x64 // TODO: migrate on convolution_auto algorithm for x64

View File

@ -89,8 +89,8 @@ private:
bool autoPad = false; bool autoPad = false;
bool externOutShape = false; bool externOutShape = false;
size_t groupNum = 1; size_t groupNum = 1;
size_t IC; size_t IC = 0;
size_t OC; size_t OC = 0;
std::vector<ptrdiff_t> kernel; std::vector<ptrdiff_t> kernel;
std::vector<ptrdiff_t> stride; std::vector<ptrdiff_t> stride;
std::vector<ptrdiff_t> dilation; std::vector<ptrdiff_t> dilation;
@ -105,7 +105,7 @@ private:
AttrPtr pAttr; AttrPtr pAttr;
dnnl::memory::data_type outputDataType; dnnl::memory::data_type outputDataType = dnnl::memory::data_type::undef;
std::shared_ptr<dnnl::primitive_attr> attr; std::shared_ptr<dnnl::primitive_attr> attr;
void setPostOps(dnnl::primitive_attr &attr, const VectorDims &dims); void setPostOps(dnnl::primitive_attr &attr, const VectorDims &dims);

View File

@ -78,12 +78,12 @@ private:
static const size_t DATA_ID = 0; static const size_t DATA_ID = 0;
static const size_t WEIGHTS_ID = 1; static const size_t WEIGHTS_ID = 1;
static const size_t BIAS_ID = 2; static const size_t BIAS_ID = 2;
dnnl::memory::data_type outputDataType; dnnl::memory::data_type outputDataType = dnnl::memory::data_type::undef;
using executorPtr = std::shared_ptr<DnnlExecutor>; using executorPtr = std::shared_ptr<DnnlExecutor>;
executorPtr execPtr = nullptr; executorPtr execPtr = nullptr;
bool useConv1x1 = false; bool useConv1x1 = false;
impl_desc_type implementationTypeIP; impl_desc_type implementationTypeIP = impl_desc_type::unknown;
MemoryDescPtr weightDescIP; MemoryDescPtr weightDescIP;
dnnl::primitive_attr attr; dnnl::primitive_attr attr;

View File

@ -228,7 +228,7 @@ private:
static size_t getSpatialDimsNum(const Dim rank); static size_t getSpatialDimsNum(const Dim rank);
bool hasPad = false; bool hasPad = false;
InterpolateShapeCalcMode shapeCalcMode; InterpolateShapeCalcMode shapeCalcMode = InterpolateShapeCalcMode::sizes;
bool isAxesSpecified = false; bool isAxesSpecified = false;
std::vector<int> axes; std::vector<int> axes;
@ -251,4 +251,4 @@ private:
} // namespace node } // namespace node
} // namespace intel_cpu } // namespace intel_cpu
} // namespace ov } // namespace ov

View File

@ -35,7 +35,7 @@ struct jit_dft_args {
struct jit_dft_kernel { struct jit_dft_kernel {
jit_dft_kernel(bool is_inverse, enum dft_type type) : is_inverse_(is_inverse), kernel_type_(type) {} jit_dft_kernel(bool is_inverse, enum dft_type type) : is_inverse_(is_inverse), kernel_type_(type) {}
void (*ker_)(const jit_dft_args*); void (*ker_)(const jit_dft_args*) = nullptr;
void operator()(const jit_dft_args* args) { void operator()(const jit_dft_args* args) {
assert(ker_); assert(ker_);

View File

@ -142,12 +142,13 @@ protected:
private: private:
struct brgemmCtx { struct brgemmCtx {
size_t M, N, K, LDA, LDB, LDC; size_t M = 0, N = 0, K = 0, LDA = 0, LDB = 0, LDC = 0;
dnnl_data_type_t dt_in0, dt_in1; dnnl_data_type_t dt_in0 = dnnl_data_type_undef;
dnnl_data_type_t dt_in1 = dnnl_data_type_undef;
char palette[64]; char palette[64];
bool is_with_amx; bool is_with_amx = false;
bool is_with_comp; bool is_with_comp = false;
float beta; float beta = 0.0f;
}; };
template <typename in1_type> template <typename in1_type>
@ -190,18 +191,18 @@ private:
VectorDims dimsMatMul1In1; VectorDims dimsMatMul1In1;
VectorDims dimsMatMul1Out; VectorDims dimsMatMul1Out;
size_t batch0, batch1; size_t batch0 = 0, batch1 = 0;
size_t M, M_blk, M_tail; size_t M = 0, M_blk = 0, M_tail = 0;
size_t K0, K0_blk, K0_tail, N0, N0_blk, N0_tail; size_t K0 = 0, K0_blk = 0, K0_tail = 0, N0 = 0, N0_blk = 0, N0_tail = 0;
size_t K1, K1_blk, K1_tail, N1, N1_blk, N1_tail; size_t K1 = 0, K1_blk = 0, K1_tail = 0, N1 = 0, N1_blk = 0, N1_tail = 0;
size_t bufferMatMul0In0Size; size_t bufferMatMul0In0Size = 0;
size_t bufferMatMul0In1Size; size_t bufferMatMul0In1Size = 0;
size_t bufferMatMul0OutSize; size_t bufferMatMul0OutSize = 0;
size_t bufferMatMul1In1Size; size_t bufferMatMul1In1Size = 0;
size_t bufferMatMul1OutSize; size_t bufferMatMul1OutSize = 0;
size_t bufferCompensation0Size; size_t bufferCompensation0Size = 0;
size_t bufferCompensation1Size; size_t bufferCompensation1Size = 0;
size_t wsp_size_per_thread = 4 * 1024; size_t wsp_size_per_thread = 4 * 1024;
std::vector<uint8_t> bufferMatMul0In0; std::vector<uint8_t> bufferMatMul0In0;
@ -222,13 +223,13 @@ private:
std::vector<float> fqScales2; std::vector<float> fqScales2;
std::vector<float> fqScales3; std::vector<float> fqScales3;
size_t brg0VnniFactor; size_t brg0VnniFactor = 0;
brgemmCtx brgCtxs0[MHA_BRGEMM_KERNELS_NUM]; brgemmCtx brgCtxs0[MHA_BRGEMM_KERNELS_NUM];
std::unique_ptr<dnnl::impl::cpu::x64::brgemm_kernel_t> brgKernels0[MHA_BRGEMM_KERNELS_NUM]; std::unique_ptr<dnnl::impl::cpu::x64::brgemm_kernel_t> brgKernels0[MHA_BRGEMM_KERNELS_NUM];
std::unique_ptr<dnnl::impl::cpu::x64::matmul::jit_brgemm_matmul_copy_a_t> brgCopyAKernel0; std::unique_ptr<dnnl::impl::cpu::x64::matmul::jit_brgemm_matmul_copy_a_t> brgCopyAKernel0;
std::unique_ptr<dnnl::impl::cpu::x64::matmul::jit_brgemm_matmul_copy_b_t> brgCopyBKernel0; std::unique_ptr<dnnl::impl::cpu::x64::matmul::jit_brgemm_matmul_copy_b_t> brgCopyBKernel0;
size_t brg1VnniFactor; size_t brg1VnniFactor = 0;
brgemmCtx brgCtxs1[MHA_BRGEMM_KERNELS_NUM]; brgemmCtx brgCtxs1[MHA_BRGEMM_KERNELS_NUM];
std::unique_ptr<dnnl::impl::cpu::x64::brgemm_kernel_t> brgKernels1[MHA_BRGEMM_KERNELS_NUM]; std::unique_ptr<dnnl::impl::cpu::x64::brgemm_kernel_t> brgKernels1[MHA_BRGEMM_KERNELS_NUM];
std::unique_ptr<dnnl::impl::cpu::x64::matmul::jit_brgemm_matmul_copy_b_t> brgCopyBKernel1; std::unique_ptr<dnnl::impl::cpu::x64::matmul::jit_brgemm_matmul_copy_b_t> brgCopyBKernel1;

View File

@ -78,7 +78,7 @@ private:
// Holds ISA version used is codeGeneration target // Holds ISA version used is codeGeneration target
dnnl::impl::cpu::x64::cpu_isa_t host_isa; dnnl::impl::cpu::x64::cpu_isa_t host_isa;
size_t isa_num_lanes; // number of elements that fit in vector size size_t isa_num_lanes = 0; // number of elements that fit in vector size
// Holds index of output used as in execution domain // Holds index of output used as in execution domain
// it should be compatible with a schedule's work size // it should be compatible with a schedule's work size

View File

@ -113,27 +113,27 @@ private:
void preset_params(); void preset_params();
void prepare_original_idx(); void prepare_original_idx();
bool topk_innermost; bool topk_innermost = false;
bool jit_mode; bool jit_mode = false;
bool sort_index; bool sort_index = false;
bool stable; bool stable = false;
bool mode_max; bool mode_max = false;
int axis; int axis = 0;
static const size_t TOPK_DATA = 0; static const size_t TOPK_DATA = 0;
static const size_t TOPK_K = 1; static const size_t TOPK_K = 1;
static const size_t TOPK_INDEX = 1; static const size_t TOPK_INDEX = 1;
size_t O, A, I; size_t O = 0, A = 0, I = 0;
size_t blk_size; size_t blk_size = 0;
size_t data_size; size_t data_size = 0;
size_t axis_dim; size_t axis_dim = 0;
int top_k; int top_k = 0;
int dim, before_num; int dim = 0, before_num = 0;
bool bubble_inplace; bool bubble_inplace = false;
bool preset_params_done; bool preset_params_done = false;
VectorDims src_dims, dst_dims; VectorDims src_dims, dst_dims;
TopKLayoutType layout; TopKLayoutType layout = TopKLayoutType::topk_ncsp;
TopKAlgorithm algorithm; TopKAlgorithm algorithm = TopKAlgorithm::topk_bubble_sort;
std::vector<int> vec_bitonic_idx; std::vector<int> vec_bitonic_idx;
std::vector<int> vec_bitonic_k_idx; std::vector<int> vec_bitonic_k_idx;