Add LogSoftmax-5 to ngraph (#2645)

This commit is contained in:
Maxim Vafin 2020-10-14 08:08:27 +03:00 committed by GitHub
parent 93c2d6db41
commit cf09752a29
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 675 additions and 141 deletions

View File

@ -68,6 +68,7 @@ V10Parser::V10Parser(const std::vector<IExtensionPtr>& exts) {
opsets["opset2"] = ngraph::get_opset2();
opsets["opset3"] = ngraph::get_opset3();
opsets["opset4"] = ngraph::get_opset4();
opsets["opset5"] = ngraph::get_opset5();
// Load custom opsets
for (const auto& ext : exts) {

View File

@ -0,0 +1,84 @@
// Copyright (C) 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include <string>
#include "ngraph_reader_tests.hpp"
TEST_F(NGraphReaderTests, ReadLogSoftmaxNetwork) {
std::string model = R"V0G0N(
<net name="Network" version="10">
<layers>
<layer name="in1" type="Parameter" id="0" version="opset1">
<data element_type="f32" shape="1,1000"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1000</dim>
</port>
</output>
</layer>
<layer name="softmax" id="1" type="LogSoftmax" version="opset5">
<data axis="1"/>
<input>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1000</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>1000</dim>
</port>
</output>
</layer>
<layer name="output" type="Result" id="2" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1000</dim>
</port>
</input>
</layer>
</layers>
<edges>
<edge from-layer="0" from-port="0" to-layer="1" to-port="1"/>
<edge from-layer="1" from-port="2" to-layer="2" to-port="0"/>
</edges>
</net>
)V0G0N";
std::string modelV5 = R"V0G0N(
<net name="Network" version="5" precision="FP32" batch="1">
<layers>
<layer name="in1" type="Input" precision="FP32" id="0">
<output>
<port id="0">
<dim>1</dim>
<dim>1000</dim>
</port>
</output>
</layer>
<layer name="softmax" id="1" type="LogSoftmax" precision="FP32">
<data axis="1"/>
<input>
<port id="1">
<dim>1</dim>
<dim>1000</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>1000</dim>
</port>
</output>
</layer>
</layers>
<edges>
<edge from-layer="0" from-port="0" to-layer="1" to-port="1"/>
</edges>
</net>
)V0G0N";
compareIRs(model, modelV5, 0);
}

View File

@ -0,0 +1,56 @@
//*****************************************************************************
// Copyright 2020 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include "ngraph/op/op.hpp"
namespace ngraph
{
namespace op
{
namespace v5
{
class NGRAPH_API LogSoftmax : public Op
{
public:
NGRAPH_RTTI_DECLARATION;
LogSoftmax() = default;
/// \brief Constructs a LogSoftmax operation.
///
/// \param arg Node that produces the first input tensor.<br>
/// `[d0, ...]`
/// \param axis The axis position (0-based) on which to calculate the LogSoftmax.
///
/// Output `[d0, ...]`
///
LogSoftmax(const Output<Node>& arg, const int64_t axis);
bool visit_attributes(AttributeVisitor& visitor) override;
void validate_and_infer_types() override;
size_t get_version() const override { return 1; }
virtual std::shared_ptr<Node>
clone_with_new_inputs(const OutputVector& new_args) const override;
int64_t get_axis() const { return m_axis; }
void set_axis(const int64_t axis) { m_axis = axis; }
private:
int64_t m_axis = 1;
};
} // namespace v5
} // namespace op
} // namespace ngraph

View File

@ -81,6 +81,7 @@
#include "ngraph/op/less.hpp"
#include "ngraph/op/less_eq.hpp"
#include "ngraph/op/log.hpp"
#include "ngraph/op/log_softmax.hpp"
#include "ngraph/op/lrn.hpp"
#include "ngraph/op/lstm_cell.hpp"
#include "ngraph/op/lstm_sequence.hpp"

View File

@ -164,6 +164,7 @@ NGRAPH_OP(SoftPlus, ngraph::op::v4)
NGRAPH_OP(Swish, ngraph::op::v4)
// New operations added in opset5
NGRAPH_OP(LogSoftmax, ngraph::op::v5)
NGRAPH_OP(LSTMSequence, ngraph::op::v5)
NGRAPH_OP(GRUSequence, ngraph::op::v5)
NGRAPH_OP(RNNSequence, ngraph::op::v5)

View File

@ -0,0 +1,60 @@
//*****************************************************************************
// Copyright 2020 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include "ngraph/op/log_softmax.hpp"
#include "itt.hpp"
#include "ngraph/util.hpp"
using namespace std;
using namespace ngraph;
NGRAPH_RTTI_DEFINITION(op::v5::LogSoftmax, "LogSoftmax", 5);
op::v5::LogSoftmax::LogSoftmax(const Output<Node>& arg, const int64_t axis)
: Op({arg})
, m_axis(axis)
{
constructor_validate_and_infer_types();
}
bool op::v5::LogSoftmax::visit_attributes(AttributeVisitor& visitor)
{
visitor.on_attribute("axis", m_axis);
return true;
}
void op::v5::LogSoftmax::validate_and_infer_types()
{
const PartialShape& input_shape = get_input_partial_shape(0);
if (input_shape.rank().is_static())
NODE_VALIDATION_CHECK(this,
m_axis < input_shape.rank().get_length() &&
m_axis >= -input_shape.rank().get_length(),
"Reduction axis (",
m_axis,
") is out of bounds (argument shape: ",
input_shape,
").");
set_output_type(0, get_input_element_type(0), input_shape);
}
shared_ptr<Node> op::v5::LogSoftmax::clone_with_new_inputs(const OutputVector& new_args) const
{
check_new_args_count(this, new_args);
return make_shared<op::v5::LogSoftmax>(new_args.at(0), m_axis);
}

View File

@ -244,6 +244,7 @@ packages = [
"ngraph.opset2",
"ngraph.opset3",
"ngraph.opset4",
"ngraph.opset5",
"ngraph.utils",
"ngraph.impl",
"ngraph.impl.op",

View File

@ -28,146 +28,147 @@ from ngraph.impl import Function
from ngraph.helpers import function_from_cnn
from ngraph.helpers import function_to_cnn
from ngraph.opset4 import absolute
from ngraph.opset4 import absolute as abs
from ngraph.opset4 import acos
from ngraph.opset4 import acosh
from ngraph.opset4 import add
from ngraph.opset4 import asin
from ngraph.opset4 import asinh
from ngraph.opset4 import assign
from ngraph.opset4 import atan
from ngraph.opset4 import atanh
from ngraph.opset4 import avg_pool
from ngraph.opset4 import batch_norm_inference
from ngraph.opset4 import batch_to_space
from ngraph.opset4 import binary_convolution
from ngraph.opset4 import broadcast
from ngraph.opset4 import bucketize
from ngraph.opset4 import ceiling
from ngraph.opset4 import ceiling as ceil
from ngraph.opset4 import clamp
from ngraph.opset4 import concat
from ngraph.opset4 import constant
from ngraph.opset4 import convert
from ngraph.opset4 import convert_like
from ngraph.opset4 import convolution
from ngraph.opset4 import convolution_backprop_data
from ngraph.opset4 import cos
from ngraph.opset4 import cosh
from ngraph.opset4 import ctc_greedy_decoder
from ngraph.opset4 import ctc_loss
from ngraph.opset4 import cum_sum
from ngraph.opset4 import cum_sum as cumsum
from ngraph.opset4 import deformable_convolution
from ngraph.opset4 import deformable_psroi_pooling
from ngraph.opset4 import depth_to_space
from ngraph.opset4 import detection_output
from ngraph.opset4 import divide
from ngraph.opset4 import elu
from ngraph.opset4 import embedding_bag_offsets_sum
from ngraph.opset4 import embedding_bag_packed_sum
from ngraph.opset4 import embedding_segments_sum
from ngraph.opset4 import extract_image_patches
from ngraph.opset4 import equal
from ngraph.opset4 import erf
from ngraph.opset4 import exp
from ngraph.opset4 import fake_quantize
from ngraph.opset4 import floor
from ngraph.opset4 import floor_mod
from ngraph.opset4 import gather
from ngraph.opset4 import gather_tree
from ngraph.opset4 import gelu
from ngraph.opset4 import greater
from ngraph.opset4 import greater_equal
from ngraph.opset4 import grn
from ngraph.opset4 import group_convolution
from ngraph.opset4 import group_convolution_backprop_data
from ngraph.opset4 import gru_cell
from ngraph.opset4 import hard_sigmoid
from ngraph.opset4 import hswish
from ngraph.opset4 import interpolate
from ngraph.opset4 import less
from ngraph.opset4 import less_equal
from ngraph.opset4 import log
from ngraph.opset4 import logical_and
from ngraph.opset4 import logical_not
from ngraph.opset4 import logical_or
from ngraph.opset4 import logical_xor
from ngraph.opset4 import lrn
from ngraph.opset4 import lstm_cell
from ngraph.opset4 import lstm_sequence
from ngraph.opset4 import matmul
from ngraph.opset4 import max_pool
from ngraph.opset4 import maximum
from ngraph.opset4 import minimum
from ngraph.opset4 import mish
from ngraph.opset4 import mod
from ngraph.opset4 import multiply
from ngraph.opset4 import mvn
from ngraph.opset4 import negative
from ngraph.opset4 import non_max_suppression
from ngraph.opset4 import non_zero
from ngraph.opset4 import normalize_l2
from ngraph.opset4 import not_equal
from ngraph.opset4 import one_hot
from ngraph.opset4 import pad
from ngraph.opset4 import parameter
from ngraph.opset4 import power
from ngraph.opset4 import prelu
from ngraph.opset4 import prior_box
from ngraph.opset4 import prior_box_clustered
from ngraph.opset4 import psroi_pooling
from ngraph.opset4 import proposal
from ngraph.opset4 import range
from ngraph.opset4 import read_value
from ngraph.opset4 import reduce_l1
from ngraph.opset4 import reduce_l2
from ngraph.opset4 import reduce_logical_and
from ngraph.opset4 import reduce_logical_or
from ngraph.opset4 import reduce_max
from ngraph.opset4 import reduce_mean
from ngraph.opset4 import reduce_min
from ngraph.opset4 import reduce_prod
from ngraph.opset4 import reduce_sum
from ngraph.opset4 import region_yolo
from ngraph.opset4 import reorg_yolo
from ngraph.opset4 import relu
from ngraph.opset4 import reshape
from ngraph.opset4 import result
from ngraph.opset4 import reverse_sequence
from ngraph.opset4 import rnn_cell
from ngraph.opset4 import roi_align
from ngraph.opset4 import roi_pooling
from ngraph.opset4 import scatter_elements_update
from ngraph.opset4 import scatter_update
from ngraph.opset4 import select
from ngraph.opset4 import selu
from ngraph.opset4 import shape_of
from ngraph.opset4 import shuffle_channels
from ngraph.opset4 import sigmoid
from ngraph.opset4 import sign
from ngraph.opset4 import sin
from ngraph.opset4 import sinh
from ngraph.opset4 import softmax
from ngraph.opset4 import softplus
from ngraph.opset4 import space_to_batch
from ngraph.opset4 import space_to_depth
from ngraph.opset4 import split
from ngraph.opset4 import sqrt
from ngraph.opset4 import squared_difference
from ngraph.opset4 import squeeze
from ngraph.opset4 import strided_slice
from ngraph.opset4 import subtract
from ngraph.opset4 import swish
from ngraph.opset4 import tan
from ngraph.opset4 import tanh
from ngraph.opset4 import tensor_iterator
from ngraph.opset4 import tile
from ngraph.opset4 import topk
from ngraph.opset4 import transpose
from ngraph.opset4 import unsqueeze
from ngraph.opset4 import variadic_split
from ngraph.opset5 import absolute
from ngraph.opset5 import absolute as abs
from ngraph.opset5 import acos
from ngraph.opset5 import acosh
from ngraph.opset5 import add
from ngraph.opset5 import asin
from ngraph.opset5 import asinh
from ngraph.opset5 import assign
from ngraph.opset5 import atan
from ngraph.opset5 import atanh
from ngraph.opset5 import avg_pool
from ngraph.opset5 import batch_norm_inference
from ngraph.opset5 import batch_to_space
from ngraph.opset5 import binary_convolution
from ngraph.opset5 import broadcast
from ngraph.opset5 import bucketize
from ngraph.opset5 import ceiling
from ngraph.opset5 import ceiling as ceil
from ngraph.opset5 import clamp
from ngraph.opset5 import concat
from ngraph.opset5 import constant
from ngraph.opset5 import convert
from ngraph.opset5 import convert_like
from ngraph.opset5 import convolution
from ngraph.opset5 import convolution_backprop_data
from ngraph.opset5 import cos
from ngraph.opset5 import cosh
from ngraph.opset5 import ctc_greedy_decoder
from ngraph.opset5 import ctc_loss
from ngraph.opset5 import cum_sum
from ngraph.opset5 import cum_sum as cumsum
from ngraph.opset5 import deformable_convolution
from ngraph.opset5 import deformable_psroi_pooling
from ngraph.opset5 import depth_to_space
from ngraph.opset5 import detection_output
from ngraph.opset5 import divide
from ngraph.opset5 import elu
from ngraph.opset5 import embedding_bag_offsets_sum
from ngraph.opset5 import embedding_bag_packed_sum
from ngraph.opset5 import embedding_segments_sum
from ngraph.opset5 import extract_image_patches
from ngraph.opset5 import equal
from ngraph.opset5 import erf
from ngraph.opset5 import exp
from ngraph.opset5 import fake_quantize
from ngraph.opset5 import floor
from ngraph.opset5 import floor_mod
from ngraph.opset5 import gather
from ngraph.opset5 import gather_tree
from ngraph.opset5 import gelu
from ngraph.opset5 import greater
from ngraph.opset5 import greater_equal
from ngraph.opset5 import grn
from ngraph.opset5 import group_convolution
from ngraph.opset5 import group_convolution_backprop_data
from ngraph.opset5 import gru_cell
from ngraph.opset5 import hard_sigmoid
from ngraph.opset5 import hswish
from ngraph.opset5 import interpolate
from ngraph.opset5 import less
from ngraph.opset5 import less_equal
from ngraph.opset5 import log
from ngraph.opset5 import logical_and
from ngraph.opset5 import logical_not
from ngraph.opset5 import logical_or
from ngraph.opset5 import logical_xor
from ngraph.opset5 import log_softmax
from ngraph.opset5 import lrn
from ngraph.opset5 import lstm_cell
from ngraph.opset5 import lstm_sequence
from ngraph.opset5 import matmul
from ngraph.opset5 import max_pool
from ngraph.opset5 import maximum
from ngraph.opset5 import minimum
from ngraph.opset5 import mish
from ngraph.opset5 import mod
from ngraph.opset5 import multiply
from ngraph.opset5 import mvn
from ngraph.opset5 import negative
from ngraph.opset5 import non_max_suppression
from ngraph.opset5 import non_zero
from ngraph.opset5 import normalize_l2
from ngraph.opset5 import not_equal
from ngraph.opset5 import one_hot
from ngraph.opset5 import pad
from ngraph.opset5 import parameter
from ngraph.opset5 import power
from ngraph.opset5 import prelu
from ngraph.opset5 import prior_box
from ngraph.opset5 import prior_box_clustered
from ngraph.opset5 import psroi_pooling
from ngraph.opset5 import proposal
from ngraph.opset5 import range
from ngraph.opset5 import read_value
from ngraph.opset5 import reduce_l1
from ngraph.opset5 import reduce_l2
from ngraph.opset5 import reduce_logical_and
from ngraph.opset5 import reduce_logical_or
from ngraph.opset5 import reduce_max
from ngraph.opset5 import reduce_mean
from ngraph.opset5 import reduce_min
from ngraph.opset5 import reduce_prod
from ngraph.opset5 import reduce_sum
from ngraph.opset5 import region_yolo
from ngraph.opset5 import reorg_yolo
from ngraph.opset5 import relu
from ngraph.opset5 import reshape
from ngraph.opset5 import result
from ngraph.opset5 import reverse_sequence
from ngraph.opset5 import rnn_cell
from ngraph.opset5 import roi_align
from ngraph.opset5 import roi_pooling
from ngraph.opset5 import scatter_elements_update
from ngraph.opset5 import scatter_update
from ngraph.opset5 import select
from ngraph.opset5 import selu
from ngraph.opset5 import shape_of
from ngraph.opset5 import shuffle_channels
from ngraph.opset5 import sigmoid
from ngraph.opset5 import sign
from ngraph.opset5 import sin
from ngraph.opset5 import sinh
from ngraph.opset5 import softmax
from ngraph.opset5 import softplus
from ngraph.opset5 import space_to_batch
from ngraph.opset5 import space_to_depth
from ngraph.opset5 import split
from ngraph.opset5 import sqrt
from ngraph.opset5 import squared_difference
from ngraph.opset5 import squeeze
from ngraph.opset5 import strided_slice
from ngraph.opset5 import subtract
from ngraph.opset5 import swish
from ngraph.opset5 import tan
from ngraph.opset5 import tanh
from ngraph.opset5 import tensor_iterator
from ngraph.opset5 import tile
from ngraph.opset5 import topk
from ngraph.opset5 import transpose
from ngraph.opset5 import unsqueeze
from ngraph.opset5 import variadic_split
# Extend Node class to support binary operators

View File

@ -0,0 +1,158 @@
# ******************************************************************************
# Copyright 2017-2020 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
from ngraph.opset1.ops import absolute
from ngraph.opset1.ops import absolute as abs
from ngraph.opset1.ops import acos
from ngraph.opset4.ops import acosh
from ngraph.opset1.ops import add
from ngraph.opset1.ops import asin
from ngraph.opset4.ops import asinh
from ngraph.opset3.ops import assign
from ngraph.opset1.ops import atan
from ngraph.opset4.ops import atanh
from ngraph.opset1.ops import avg_pool
from ngraph.opset1.ops import batch_norm_inference
from ngraph.opset2.ops import batch_to_space
from ngraph.opset1.ops import binary_convolution
from ngraph.opset3.ops import broadcast
from ngraph.opset3.ops import bucketize
from ngraph.opset1.ops import ceiling
from ngraph.opset1.ops import ceiling as ceil
from ngraph.opset1.ops import clamp
from ngraph.opset1.ops import concat
from ngraph.opset1.ops import constant
from ngraph.opset1.ops import convert
from ngraph.opset1.ops import convert_like
from ngraph.opset1.ops import convolution
from ngraph.opset1.ops import convolution_backprop_data
from ngraph.opset1.ops import cos
from ngraph.opset1.ops import cosh
from ngraph.opset1.ops import ctc_greedy_decoder
from ngraph.opset4.ops import ctc_loss
from ngraph.opset3.ops import cum_sum
from ngraph.opset3.ops import cum_sum as cumsum
from ngraph.opset1.ops import deformable_convolution
from ngraph.opset1.ops import deformable_psroi_pooling
from ngraph.opset1.ops import depth_to_space
from ngraph.opset1.ops import detection_output
from ngraph.opset1.ops import divide
from ngraph.opset1.ops import elu
from ngraph.opset3.ops import embedding_bag_offsets_sum
from ngraph.opset3.ops import embedding_bag_packed_sum
from ngraph.opset3.ops import embedding_segments_sum
from ngraph.opset3.ops import extract_image_patches
from ngraph.opset1.ops import equal
from ngraph.opset1.ops import erf
from ngraph.opset1.ops import exp
from ngraph.opset1.ops import fake_quantize
from ngraph.opset1.ops import floor
from ngraph.opset1.ops import floor_mod
from ngraph.opset1.ops import gather
from ngraph.opset1.ops import gather_tree
from ngraph.opset2.ops import gelu
from ngraph.opset1.ops import greater
from ngraph.opset1.ops import greater_equal
from ngraph.opset1.ops import grn
from ngraph.opset1.ops import group_convolution
from ngraph.opset1.ops import group_convolution_backprop_data
from ngraph.opset3.ops import gru_cell
from ngraph.opset1.ops import hard_sigmoid
from ngraph.opset4.ops import hswish
from ngraph.opset1.ops import interpolate
from ngraph.opset1.ops import less
from ngraph.opset1.ops import less_equal
from ngraph.opset1.ops import log
from ngraph.opset1.ops import logical_and
from ngraph.opset1.ops import logical_not
from ngraph.opset1.ops import logical_or
from ngraph.opset1.ops import logical_xor
from ngraph.opset5.ops import log_softmax
from ngraph.opset1.ops import lrn
from ngraph.opset4.ops import lstm_cell
from ngraph.opset1.ops import lstm_sequence
from ngraph.opset1.ops import matmul
from ngraph.opset1.ops import max_pool
from ngraph.opset1.ops import maximum
from ngraph.opset1.ops import minimum
from ngraph.opset4.ops import mish
from ngraph.opset1.ops import mod
from ngraph.opset1.ops import multiply
from ngraph.opset2.ops import mvn
from ngraph.opset1.ops import negative
from ngraph.opset4.ops import non_max_suppression
from ngraph.opset3.ops import non_zero
from ngraph.opset1.ops import normalize_l2
from ngraph.opset1.ops import not_equal
from ngraph.opset1.ops import one_hot
from ngraph.opset1.ops import pad
from ngraph.opset1.ops import parameter
from ngraph.opset1.ops import power
from ngraph.opset1.ops import prelu
from ngraph.opset1.ops import prior_box
from ngraph.opset1.ops import prior_box_clustered
from ngraph.opset1.ops import psroi_pooling
from ngraph.opset4.ops import proposal
from ngraph.opset1.ops import range
from ngraph.opset3.ops import read_value
from ngraph.opset4.ops import reduce_l1
from ngraph.opset4.ops import reduce_l2
from ngraph.opset1.ops import reduce_logical_and
from ngraph.opset1.ops import reduce_logical_or
from ngraph.opset1.ops import reduce_max
from ngraph.opset1.ops import reduce_mean
from ngraph.opset1.ops import reduce_min
from ngraph.opset1.ops import reduce_prod
from ngraph.opset1.ops import reduce_sum
from ngraph.opset1.ops import region_yolo
from ngraph.opset2.ops import reorg_yolo
from ngraph.opset1.ops import relu
from ngraph.opset1.ops import reshape
from ngraph.opset1.ops import result
from ngraph.opset1.ops import reverse_sequence
from ngraph.opset3.ops import rnn_cell
from ngraph.opset3.ops import roi_align
from ngraph.opset2.ops import roi_pooling
from ngraph.opset3.ops import scatter_elements_update
from ngraph.opset3.ops import scatter_update
from ngraph.opset1.ops import select
from ngraph.opset1.ops import selu
from ngraph.opset3.ops import shape_of
from ngraph.opset3.ops import shuffle_channels
from ngraph.opset1.ops import sigmoid
from ngraph.opset1.ops import sign
from ngraph.opset1.ops import sin
from ngraph.opset1.ops import sinh
from ngraph.opset1.ops import softmax
from ngraph.opset4.ops import softplus
from ngraph.opset2.ops import space_to_batch
from ngraph.opset1.ops import space_to_depth
from ngraph.opset1.ops import split
from ngraph.opset1.ops import sqrt
from ngraph.opset1.ops import squared_difference
from ngraph.opset1.ops import squeeze
from ngraph.opset1.ops import strided_slice
from ngraph.opset1.ops import subtract
from ngraph.opset4.ops import swish
from ngraph.opset1.ops import tan
from ngraph.opset1.ops import tanh
from ngraph.opset1.ops import tensor_iterator
from ngraph.opset1.ops import tile
from ngraph.opset3.ops import topk
from ngraph.opset1.ops import transpose
from ngraph.opset1.ops import unsqueeze
from ngraph.opset1.ops import variadic_split

View File

@ -0,0 +1,69 @@
# ******************************************************************************
# Copyright 2017-2020 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
"""Factory functions for all ngraph ops."""
from typing import Callable, Iterable, List, Optional, Set, Union
import numpy as np
from functools import partial
from ngraph.impl import Node, Shape
from ngraph.impl.op import Constant, Parameter
from ngraph.opset_utils import _get_node_factory
from ngraph.utils.decorators import binary_op, nameable_op, unary_op
from ngraph.utils.input_validation import (
assert_list_of_ints,
check_valid_attributes,
is_non_negative_value,
is_positive_value,
)
from ngraph.utils.node_factory import NodeFactory
from ngraph.utils.tensor_iterator_types import (
GraphBody,
TensorIteratorSliceInputDesc,
TensorIteratorMergedInputDesc,
TensorIteratorInvariantInputDesc,
TensorIteratorBodyOutputDesc,
TensorIteratorConcatOutputDesc,
)
from ngraph.utils.types import (
NodeInput,
NumericData,
NumericType,
ScalarData,
TensorShape,
as_node,
as_nodes,
get_dtype,
get_element_type,
get_element_type_str,
make_constant_node,
)
_get_node_factory_opset5 = partial(_get_node_factory, "opset5")
# -------------------------------------------- ops ------------------------------------------------
@nameable_op
def log_softmax(data: NodeInput, axis: int, name: Optional[str] = None) -> Node:
"""Apply LogSoftmax operation on each element of input tensor.
:param data: The tensor providing input data.
:param axis: An axis along which LogSoftmax should be calculated
:return: The new node with LogSoftmax operation applied on each element.
"""
return _get_node_factory_opset5().create("LogSoftmax", [as_node(data)], {"axis": axis})

View File

@ -5,7 +5,7 @@ from _pyngraph import NodeFactory as _NodeFactory
from ngraph.impl import Node
DEFAULT_OPSET = "opset4"
DEFAULT_OPSET = "opset5"
class NodeFactory(object):

View File

@ -91,6 +91,7 @@ namespace
{"opset2", OpsetFunction(ngraph::get_opset2)},
{"opset3", OpsetFunction(ngraph::get_opset3)},
{"opset4", OpsetFunction(ngraph::get_opset4)},
{"opset5", OpsetFunction(ngraph::get_opset5)},
};
auto it = s_opsets.find(opset_ver);

View File

@ -0,0 +1,29 @@
# ******************************************************************************
# Copyright 2020 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
import numpy as np
import ngraph as ng
from ngraph.impl import Shape, Type
def test_log_softmax():
float_dtype = np.float32
data = ng.parameter(Shape([3, 10]), dtype=float_dtype, name="data")
node = ng.log_softmax(data, 1)
assert node.get_type_name() == "LogSoftmax"
assert node.get_output_size() == 1
assert list(node.get_output_shape(0)) == [3, 10]
assert node.get_output_element_type(0) == Type.f32

View File

@ -0,0 +1,72 @@
//*****************************************************************************
// Copyright 2020 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/type_prop.hpp"
using namespace std;
using namespace ngraph;
TEST(type_prop, log_softmax)
{
auto data = make_shared<op::Parameter>(element::f32, Shape{1, 3, 6});
auto log_softmax_func = make_shared<op::v5::LogSoftmax>(data, 1);
EXPECT_EQ(log_softmax_func->get_element_type(), element::f32);
EXPECT_EQ(log_softmax_func->get_shape(), (Shape{1, 3, 6}));
}
TEST(type_prop, log_softmax_incorrect_axis)
{
const auto data = make_shared<op::Parameter>(element::f32, Shape{1, 3, 6});
try
{
auto log_softmax_func = make_shared<op::v5::LogSoftmax>(data, 3);
FAIL() << "LogSoftmax node was created with incorrect axis.";
}
catch (const NodeValidationFailure& error)
{
EXPECT_HAS_SUBSTRING(
error.what(),
std::string("Reduction axis (3) is out of bounds");
}
}
TEST(type_prop, log_softmax_partial)
{
auto data = make_shared<op::Parameter>(element::f32, PartialShape{1, Dimension::dynamic(), 6});
auto log_softmax_func = make_shared<op::v5::LogSoftmax>(data, 1);
EXPECT_EQ(log_softmax_func->get_element_type(), element::f32);
ASSERT_TRUE(log_softmax_func->get_output_partial_shape(0).same_scheme(
(PartialShape{1, Dimension::dynamic(), 6})));
// rank unknown
auto log_softmax_partial = make_shared<op::v5::LogSoftmax>(
make_shared<op::Parameter>(element::f32, PartialShape::dynamic()));
ASSERT_TRUE(
log_softmax_partial->get_output_partial_shape(0).same_scheme(PartialShape::dynamic()));
}
TEST(type_prop, log_softmax_partial_static_rank)
{
auto data = make_shared<op::Parameter>(element::f32, PartialShape{1, Dimension::dynamic(), 6});
auto log_softmax_func = make_shared<op::v5::LogSoftmax>(data, 1);
EXPECT_EQ(log_softmax_func->get_element_type(), element::f32);
ASSERT_TRUE(log_softmax_func->get_output_partial_shape(0).same_scheme(
(PartialShape{1, Dimension::dynamic(), 6})));
ASSERT_TRUE(log_softmax_func->get_output_partial_shape(0).rank().is_static());
}