[tests] resolve skipped HF tests: 1st batch (#21305)
* initial * some corrections for the first batch * corrected classes for generate, corrected xfail * leave only models with correct example input * remove an obsolete line * Update tests/model_hub_tests/torch_tests/test_hf_transformers.py Co-authored-by: Maxim Vafin <maxim.vafin@intel.com> * update musicgen * cleanup test_hf_transformers.py * typo fix * Update tests/model_hub_tests/torch_tests/test_hf_transformers.py * Update tests/model_hub_tests/torch_tests/test_hf_transformers.py * move to up: corrected xfail * revert back accidentally deleted elif * Update tests/model_hub_tests/torch_tests/test_hf_transformers.py * Update tests/model_hub_tests/torch_tests/test_hf_transformers.py --------- Co-authored-by: Maxim Vafin <maxim.vafin@intel.com>
This commit is contained in:
parent
df03b0437a
commit
d5d9fd11b3
@ -74,8 +74,8 @@ facebook/flava-image-codebook,flava_image_codebook,skip,Load problem
|
|||||||
facebook/m2m100_418M,m2m_100
|
facebook/m2m100_418M,m2m_100
|
||||||
facebook/mask2former-swin-base-coco-panoptic,mask2former
|
facebook/mask2former-swin-base-coco-panoptic,mask2former
|
||||||
facebook/maskformer-swin-base-coco,maskformer
|
facebook/maskformer-swin-base-coco,maskformer
|
||||||
facebook/mms-tts-eng,vits,skip,Load problem
|
facebook/mms-tts-eng,vits,xfail,Accuracy failed: results cannot be broadcasted
|
||||||
facebook/musicgen-small,musicgen,skip,Load problem
|
facebook/musicgen-small,musicgen
|
||||||
facebook/opt-125m,opt
|
facebook/opt-125m,opt
|
||||||
facebook/rag-token-nq,rag,skip,Load problem
|
facebook/rag-token-nq,rag,skip,Load problem
|
||||||
facebook/sam-vit-large,sam,xfail,No node with name original_sizes
|
facebook/sam-vit-large,sam,xfail,No node with name original_sizes
|
||||||
@ -104,7 +104,7 @@ google/mobilebert-uncased,mobilebert
|
|||||||
google/mobilenet_v1_0.75_192,mobilenet_v1
|
google/mobilenet_v1_0.75_192,mobilenet_v1
|
||||||
google/mt5-base,mt5
|
google/mt5-base,mt5
|
||||||
google/owlvit-base-patch32,owlvit
|
google/owlvit-base-patch32,owlvit
|
||||||
google/pix2struct-docvqa-base,pix2struct,skip,Load problem
|
google/pix2struct-docvqa-base,pix2struct
|
||||||
google/realm-orqa-nq-openqa,realm,skip,Load problem
|
google/realm-orqa-nq-openqa,realm,skip,Load problem
|
||||||
google/reformer-crime-and-punishment,reformer,xfail,Tracing problem
|
google/reformer-crime-and-punishment,reformer,xfail,Tracing problem
|
||||||
google/tapas-large-finetuned-wtq,tapas
|
google/tapas-large-finetuned-wtq,tapas
|
||||||
|
@ -88,6 +88,26 @@ class TestTransformersModel(TestTorchConvertModel):
|
|||||||
|
|
||||||
model = VIT_GPT2_Model(model)
|
model = VIT_GPT2_Model(model)
|
||||||
example = (encoded_input.pixel_values,)
|
example = (encoded_input.pixel_values,)
|
||||||
|
elif 'pix2struct' in mi.tags:
|
||||||
|
from transformers import AutoProcessor, Pix2StructForConditionalGeneration
|
||||||
|
model = Pix2StructForConditionalGeneration.from_pretrained(name)
|
||||||
|
processor = AutoProcessor.from_pretrained(name)
|
||||||
|
|
||||||
|
import requests
|
||||||
|
from PIL import Image
|
||||||
|
image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
|
||||||
|
image = Image.open(requests.get(image_url, stream=True).raw)
|
||||||
|
question = "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"
|
||||||
|
inputs = processor(images=image, text=question, return_tensors="pt")
|
||||||
|
example = dict(inputs)
|
||||||
|
|
||||||
|
class DecoratorModelForSeq2SeqLM(torch.nn.Module):
|
||||||
|
def __init__(self, model):
|
||||||
|
super().__init__()
|
||||||
|
self.model = model
|
||||||
|
def forward(self, flattened_patches, attention_mask):
|
||||||
|
return self.model.generate(flattened_patches=flattened_patches, attention_mask=attention_mask)
|
||||||
|
model = DecoratorModelForSeq2SeqLM(model)
|
||||||
elif "mms-lid" in name:
|
elif "mms-lid" in name:
|
||||||
# mms-lid model config does not have auto_model attribute, only direct loading available
|
# mms-lid model config does not have auto_model attribute, only direct loading available
|
||||||
from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor
|
from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor
|
||||||
@ -149,6 +169,27 @@ class TestTransformersModel(TestTorchConvertModel):
|
|||||||
0, 255, [16, 3, 224, 224]).to(torch.float32))
|
0, 255, [16, 3, 224, 224]).to(torch.float32))
|
||||||
inputs = processor(video, return_tensors="pt")
|
inputs = processor(video, return_tensors="pt")
|
||||||
example = dict(inputs)
|
example = dict(inputs)
|
||||||
|
elif 'text-to-speech' in mi.tags:
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(name)
|
||||||
|
text = "some example text in the English language"
|
||||||
|
inputs = tokenizer(text, return_tensors="pt")
|
||||||
|
example = dict(inputs)
|
||||||
|
elif 'musicgen' in mi.tags:
|
||||||
|
from transformers import AutoProcessor, AutoModelForTextToWaveform
|
||||||
|
processor = AutoProcessor.from_pretrained(name)
|
||||||
|
model = AutoModelForTextToWaveform.from_pretrained(name, torchscript=True)
|
||||||
|
|
||||||
|
inputs = processor(
|
||||||
|
text=["80s pop track with bassy drums and synth"],
|
||||||
|
padding=True,
|
||||||
|
return_tensors="pt",
|
||||||
|
)
|
||||||
|
example = dict(inputs)
|
||||||
|
# works for facebook/musicgen-small
|
||||||
|
pad_token_id = model.generation_config.pad_token_id
|
||||||
|
example["decoder_input_ids"] = torch.ones(
|
||||||
|
(inputs.input_ids.shape[0] * model.decoder.num_codebooks, 1), dtype=torch.long) * pad_token_id
|
||||||
else:
|
else:
|
||||||
try:
|
try:
|
||||||
if auto_model == "AutoModelForCausalLM":
|
if auto_model == "AutoModelForCausalLM":
|
||||||
|
Loading…
Reference in New Issue
Block a user