Added onnx support for C samples (#2747)
* ngraph python sample
This sample demonstrates how to execute an inference using ngraph::Function to create a network
- added sample
- added readme
- added lenet weights
* Added onnx support for C samples
* Revert "ngraph python sample"
This reverts commit 8033292dc3
.
* Added onnx support for C samples
Fixed codestyle mistake
* Removed optional code
Co-authored-by: Alexander Zhogov <alexander.zhogov@intel.com>
This commit is contained in:
parent
d846969a1c
commit
dea5f43c9a
@ -17,6 +17,8 @@ To properly demonstrate this API, it is required to run several networks in pipe
|
|||||||
To run the sample, you can use public or pre-trained models. To download the pre-trained models, use the OpenVINO [Model Downloader](@ref omz_tools_downloader_README) or go to [https://download.01.org/opencv/](https://download.01.org/opencv/).
|
To run the sample, you can use public or pre-trained models. To download the pre-trained models, use the OpenVINO [Model Downloader](@ref omz_tools_downloader_README) or go to [https://download.01.org/opencv/](https://download.01.org/opencv/).
|
||||||
|
|
||||||
> **NOTE**: Before running the sample with a trained model, make sure the model is converted to the Inference Engine format (\*.xml + \*.bin) using the [Model Optimizer tool](../../../../../docs/MO_DG/Deep_Learning_Model_Optimizer_DevGuide.md).
|
> **NOTE**: Before running the sample with a trained model, make sure the model is converted to the Inference Engine format (\*.xml + \*.bin) using the [Model Optimizer tool](../../../../../docs/MO_DG/Deep_Learning_Model_Optimizer_DevGuide.md).
|
||||||
|
>
|
||||||
|
> The sample accepts models in ONNX format (.onnx) that do not require preprocessing.
|
||||||
|
|
||||||
You can do inference of an image using a trained AlexNet network on a GPU using the following command:
|
You can do inference of an image using a trained AlexNet network on a GPU using the following command:
|
||||||
|
|
||||||
|
@ -92,7 +92,7 @@ int main(int argc, char **argv) {
|
|||||||
goto err;
|
goto err;
|
||||||
// -----------------------------------------------------------------------------------------------------
|
// -----------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
// --------------------------- 2. Read IR Generated by ModelOptimizer (.xml and .bin files) ------------
|
// 2. Read a model in OpenVINO Intermediate Representation (.xml and .bin files) or ONNX (.onnx file) format
|
||||||
status = ie_core_read_network(core, input_model, NULL, &network);
|
status = ie_core_read_network(core, input_model, NULL, &network);
|
||||||
if (status != OK)
|
if (status != OK)
|
||||||
goto err;
|
goto err;
|
||||||
|
@ -40,6 +40,8 @@ or go to [https://download.01.org/opencv/](https://download.01.org/opencv/).
|
|||||||
|
|
||||||
> **NOTE**: Before running the sample with a trained model, make sure the model is converted to the
|
> **NOTE**: Before running the sample with a trained model, make sure the model is converted to the
|
||||||
> Inference Engine format (\*.xml + \*.bin) using the [Model Optimizer tool](../../../../../docs/MO_DG/Deep_Learning_Model_Optimizer_DevGuide.md).
|
> Inference Engine format (\*.xml + \*.bin) using the [Model Optimizer tool](../../../../../docs/MO_DG/Deep_Learning_Model_Optimizer_DevGuide.md).
|
||||||
|
>
|
||||||
|
> The sample accepts models in ONNX format (.onnx) that do not require preprocessing.
|
||||||
|
|
||||||
You can perform inference on an NV12 image using a trained AlexNet network on CPU with the following command:
|
You can perform inference on an NV12 image using a trained AlexNet network on CPU with the following command:
|
||||||
```sh
|
```sh
|
||||||
|
@ -152,7 +152,7 @@ int main(int argc, char **argv) {
|
|||||||
goto err;
|
goto err;
|
||||||
// -----------------------------------------------------------------------------------------------------
|
// -----------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
// --------------------------- 2. Read IR Generated by ModelOptimizer (.xml and .bin files) ------------
|
// 2. Read a model in OpenVINO Intermediate Representation (.xml and .bin files) or ONNX (.onnx file) format
|
||||||
status = ie_core_read_network(core, input_model, NULL, &network);
|
status = ie_core_read_network(core, input_model, NULL, &network);
|
||||||
if (status != OK)
|
if (status != OK)
|
||||||
goto err;
|
goto err;
|
||||||
|
@ -40,6 +40,8 @@ Running the application with the empty list of options yields the usage message
|
|||||||
To run the sample, you can use public or pre-trained models. To download the pre-trained models, use the OpenVINO [Model Downloader](@ref omz_tools_downloader_README) or go to [https://download.01.org/opencv/](https://download.01.org/opencv/).
|
To run the sample, you can use public or pre-trained models. To download the pre-trained models, use the OpenVINO [Model Downloader](@ref omz_tools_downloader_README) or go to [https://download.01.org/opencv/](https://download.01.org/opencv/).
|
||||||
|
|
||||||
> **NOTE**: Before running the sample with a trained model, make sure the model is converted to the Inference Engine format (\*.xml + \*.bin) using the [Model Optimizer tool](../../../../../docs/MO_DG/Deep_Learning_Model_Optimizer_DevGuide.md).
|
> **NOTE**: Before running the sample with a trained model, make sure the model is converted to the Inference Engine format (\*.xml + \*.bin) using the [Model Optimizer tool](../../../../../docs/MO_DG/Deep_Learning_Model_Optimizer_DevGuide.md).
|
||||||
|
>
|
||||||
|
> The sample accepts models in ONNX format (.onnx) that do not require preprocessing.
|
||||||
|
|
||||||
For example, to do inference on a CPU with the OpenVINO™ toolkit person detection SSD models, run one of the following commands:
|
For example, to do inference on a CPU with the OpenVINO™ toolkit person detection SSD models, run one of the following commands:
|
||||||
|
|
||||||
|
@ -344,15 +344,10 @@ int main(int argc, char **argv) {
|
|||||||
}
|
}
|
||||||
// -----------------------------------------------------------------------------------------------------
|
// -----------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
// --------------------------- 4. Read IR Generated by ModelOptimizer (.xml and .bin files) ------------
|
// 4. Read a model in OpenVINO Intermediate Representation (.xml and .bin files) or ONNX (.onnx file) format
|
||||||
input_weight = (char *)calloc(strlen(input_model) + 1, sizeof(char));
|
printf("%sLoading network:\n", info);
|
||||||
memcpy(input_weight, input_model, strlen(input_model) - 4);
|
|
||||||
memcpy(input_weight + strlen(input_model) - 4, ".bin", strlen(".bin") + 1);
|
|
||||||
printf("%sLoading network files:\n", info);
|
|
||||||
printf("\t%s\n", input_model);
|
printf("\t%s\n", input_model);
|
||||||
printf("\t%s\n", input_weight);
|
status = ie_core_read_network(core, input_model, NULL, &network);
|
||||||
|
|
||||||
status = ie_core_read_network(core, input_model, input_weight, &network);
|
|
||||||
if (status != OK)
|
if (status != OK)
|
||||||
goto err;
|
goto err;
|
||||||
// -----------------------------------------------------------------------------------------------------
|
// -----------------------------------------------------------------------------------------------------
|
||||||
|
Loading…
Reference in New Issue
Block a user