[POT] References & golds update (#10937)
* Update references * Update golds & add stats dumping * Statistics_data upd * Enable densenet in nightly * Pylint fixes * Update try-except WA * Update simplified gold
This commit is contained in:
parent
4e8e56e887
commit
e103af056e
@ -328,18 +328,11 @@ class IEEngine(Engine):
|
||||
start_time = time()
|
||||
|
||||
progress_log_fn = logger.info if print_progress else logger.debug
|
||||
try:
|
||||
self._ie.set_property(self._device,
|
||||
{'CPU_THROUGHPUT_STREAMS': 'CPU_THROUGHPUT_AUTO', 'CPU_BIND_THREAD': 'YES'})
|
||||
except AttributeError:
|
||||
self._ie.set_config({'CPU_THROUGHPUT_STREAMS': 'CPU_THROUGHPUT_AUTO', 'CPU_BIND_THREAD': 'YES'},
|
||||
self._device)
|
||||
self._ie.set_property(self._device,
|
||||
{'CPU_THROUGHPUT_STREAMS': 'CPU_THROUGHPUT_AUTO', 'CPU_BIND_THREAD': 'YES'})
|
||||
# Load model to the plugin
|
||||
compiled_model = self._ie.compile_model(model=self._model, device_name=self._device)
|
||||
try:
|
||||
optimal_requests_num = compiled_model.get_property('OPTIMAL_NUMBER_OF_INFER_REQUESTS')
|
||||
except AttributeError:
|
||||
optimal_requests_num = compiled_model.get_metric('OPTIMAL_NUMBER_OF_INFER_REQUESTS')
|
||||
optimal_requests_num = compiled_model.get_property('OPTIMAL_NUMBER_OF_INFER_REQUESTS')
|
||||
requests_num = optimal_requests_num if requests_num == 0 else requests_num
|
||||
logger.debug('Async mode requests number: %d', requests_num)
|
||||
infer_queue = AsyncInferQueue(compiled_model, requests_num)
|
||||
|
@ -9,10 +9,7 @@ from openvino.tools.mo.utils.ir_reader.restore_graph import restore_graph_from_i
|
||||
from openvino.tools.mo.utils.logger import init_logger
|
||||
from openvino.runtime import Core # pylint: disable=E0401,E0611
|
||||
from openvino.runtime.passes import Manager # pylint: disable=E0401,E0611
|
||||
try:
|
||||
from openvino.offline_transformations import apply_pot_transformations # pylint: disable=import-error,no-name-in-module
|
||||
except ImportError:
|
||||
from openvino.offline_transformations_pybind import apply_pot_transformations # pylint: disable=import-error,no-name-in-module
|
||||
from openvino.offline_transformations import apply_pot_transformations # pylint: disable=import-error,no-name-in-module
|
||||
|
||||
from ..graph.passes import ModelPreprocessor, remove_converts, add_removed_converts
|
||||
from ..utils.logger import stdout_redirect
|
||||
|
@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:f5bca6bc4a77e5243ddd35ce69393a917e87b0cea191cc8a47b568fbf5f20156
|
||||
size 149
|
@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:435d88ae844bbc38061be245091e0dcacfe4e18313a58bab426b92410b029257
|
||||
size 10944
|
@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:8d0f8d822be9ea6bdef0d93a5db6e5c5d69a23dd33a475aad103d37705919977
|
||||
size 151
|
@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:258cffcba6f7e01882631a5065933950f0d79da3733c5d61948117dc0e3cff33
|
||||
size 16653
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:17f27b4663444b81c787eb4894da489e9257604b5a05cc0091526651058294e3
|
||||
size 788624
|
||||
oid sha256:f628860a998c6fc0506e94558e1485a8c784aa926eb68e12b79660d1a43c5850
|
||||
size 788680
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:7a6f059e97ba9ef93b35ed94d4c57cd2f8b7bf97e1f5e0ba736e9304426adde3
|
||||
size 785759
|
||||
oid sha256:96988e647b883d2cc3d3fa7bc9f2d93888ced8ffa05e75168bd5cc3eee4b0129
|
||||
size 785763
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:daafd3b3cf95602205c1fa050fa2ca8d47417dbb6b3454097d74e87e85b19426
|
||||
size 785744
|
||||
oid sha256:1dfaccb6a9d8d1004a2cafa1c9e40e915a457b3b7de5bbfcd3282f12e38f77a2
|
||||
size 785749
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:f11af03773ca3c1dbc25b4f700720b24a4791936fedf82cdc1d15e7d4c11197f
|
||||
size 900099
|
||||
oid sha256:9b8ba1d075ecba49ff3b58f98d2b05cb72a2093099dcfe0c9c884ec603595799
|
||||
size 899722
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:fefe0d12e64782cd0f91be812c200afff07d773a98cea7bd070591da7a163037
|
||||
size 947149
|
||||
oid sha256:69eca9d6dfb46c8da845d111a0a81a164ae509aa7a39c2669c8ca0c0d9875c06
|
||||
size 946760
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:99109d6f3216c8c399ee4c2f57c31492ee7e5f6a4ad0f09ba6b7fb68f8af01e1
|
||||
size 943374
|
||||
oid sha256:af1e1cb69f62015c936c5a0295bdd84cc287496325901a3f4eb920ef3def5897
|
||||
size 942973
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:4351ef13001a9bb5196608ed7dc998feebb340d51b963e5ae38ab93759d54f5c
|
||||
size 1173184
|
||||
oid sha256:ba1ab71c22d6f7e4a57320c4dd2f4d455f5c6b58dd80ff0a04b0c5bd874da380
|
||||
size 1172677
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:7708efd55f758249f5924de7f19bc9499765d406b0fcd6d513532c1c1d2d5ba7
|
||||
size 1167494
|
||||
oid sha256:39109ed61b27f1ea9f993e05eefd0302fc2fa24f8a5d05164ae1cec9f3308554
|
||||
size 1167073
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:d4dcda5bdde215f3142520bdb6691fa3600ada38c80f3ca5372ad36c1d1b7545
|
||||
size 1167489
|
||||
oid sha256:b832c6e49ed036981878ebfe1a4d4ed5561efdb113d927c93bb5e2fbb8e911d1
|
||||
size 1167072
|
||||
|
@ -1,3 +0,0 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:bcf3c6909482c5da2dbfe0efc8488ee7ed3bfd1539930363440892754f5d5159
|
||||
size 15310
|
@ -1,3 +0,0 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:2be1fa32c15a87848ff836f6d8e919792baaf4df632e36a7abc594c8f9da0c14
|
||||
size 32638
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:cb5c76c82caec54e07eeac7da41f017707ede198f42ebed7d654021238a5646c
|
||||
size 1141705
|
||||
oid sha256:4daf9a0f4cc705d8c57d7d75ad10f614d8948e1c19bb32a7b3ec2c3925f61bbb
|
||||
size 1114481
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:9ae7b4c9c297bb92b2793b0dd9b7b41ce636524012aab8695fa5a398648a6da3
|
||||
size 494690
|
||||
oid sha256:fa43abc5152a7b1ab5e8eda85473bd8e92316a903e443eb0d0824d07891fdfc5
|
||||
size 490331
|
||||
|
@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:3e344bd08e82f6724c35b18a1ecac544cac637507fe40a179fc1d5f897aa4d6e
|
||||
size 255152
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:4b020df81f26b23e38b72000e3bc67872e8a6dbc30ef2c881131d5b16273db49
|
||||
size 281898
|
||||
oid sha256:271c108b8f91a7c396ba81deba21c4453a5a1491baa5db645b26222c801f9193
|
||||
size 281049
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:6f9fbf518218c6019b4b890b6d17a96b45f57a85dfd1fa0579fc88ef933036d6
|
||||
size 283531
|
||||
oid sha256:0e2e65663a869c63b6f52b8eb6eacb3af95f8a7280881ec5626e9e882d2612ae
|
||||
size 282650
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:6ff77d9a841a8d5f85d8cf9d9aba7ceb4110a5d71e370570511bb7c69897c3d0
|
||||
size 388486
|
||||
oid sha256:2869a4285ba05a1d0e3a59cd246976f14835d7daa71c1655199432c55eb13d35
|
||||
size 383952
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:2b430c98eb022f454c6a244997d12f2bc184183f27f3a99bfeafb2217f23dc5e
|
||||
size 224454
|
||||
oid sha256:2194d074fe8bd0f9af9bc9ac032a81aa25f430212e81a1ae58047523a4638ea1
|
||||
size 223310
|
||||
|
@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:97178199c399898b94db5dece4be4f5a80df1a33a6c46d21092da7eb5c56c7dc
|
||||
size 260217
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:ec69d25d8444a6a6d3279a49a44329f232fb38bdb8070d9390f30d7baabcbbe4
|
||||
size 260800
|
||||
oid sha256:9068d0230ba67e41fbbe81d2e6a65b2ded829ada133ea13b440298d1fa653cf7
|
||||
size 256177
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:550e36e68683089a8399b87a0f39a3051e64853a9a0e453abf7be2fb02603080
|
||||
size 273729
|
||||
oid sha256:10af97d1859baacd6072c6362a0de2cf506e57e739feeecca4eb710d18da86e3
|
||||
size 272339
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:f9a59f3c9a5b9a0dc6603bc864c9f4f0458c7bd7f5ab971862a4fd5dea859959
|
||||
size 113934
|
||||
oid sha256:7bc10311127ca297307f145663e6b2b516ae1c6e187603e6a3941df75a8c90cd
|
||||
size 112888
|
||||
|
@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:c023025650f024b5f8ac4d08f24a085c822eaeeaf34de5c5fdf5683d12d89537
|
||||
size 423780
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:edf93c51608af383936da2074835536992cdd42b9c451d68290a808f47e14b2f
|
||||
size 456015
|
||||
oid sha256:cce827274e90ae46c088c3e7a7825657e7bd9fe8451f61d3c587400a820e9fe1
|
||||
size 435555
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:7c74bddf66718cf963c507a3aa0c8f1efe0b5ed08414ea6f5a01efb8dbd106c4
|
||||
size 343757
|
||||
oid sha256:50fbab2ede57a50135d5367ad0b5a85409386a2273564ce831eb7572a33e6f29
|
||||
size 325967
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:60fa89792746c71bbd98ed3ff398dd8c47afd8961d2a31b2ca31433694d96fc9
|
||||
size 9128
|
||||
oid sha256:7928108e04c45c786210abfabca768a8ae7757a0338537e7ebafac11f2fe3c11
|
||||
size 10588
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:126e6adadab8df4ad6765df42fe81aacd27c4e0f3369a8edff817cce00ff6fc8
|
||||
oid sha256:3986916ef8db3e2703c28e80e0d5681f07e591f049b6921b2ee9173c42fa8434
|
||||
size 110104
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:cda1c44e17a7ec33761618d84a61a2b62b8a7a0acf2b2103a842fbc7f546aa4d
|
||||
size 9480
|
||||
oid sha256:5871c9eb1dec0bd660047d35965bf206d06c98fdde02539d32de4ff736efd9fb
|
||||
size 10801
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:31cea44b7bb2341a99553511b0be64495e46381fa494f98971d737aa284339ca
|
||||
oid sha256:073d03757498e3bdba58332dac39ac0bb84535c2fc7f574230be6e8c50e7d1b2
|
||||
size 186664
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:b12673c94c8c6809deca2d5e172923ff8c8576cbf7fb6e4de20302f3e086d303
|
||||
size 9483
|
||||
oid sha256:6c589b748965e1763bd6bbf650ea9e517a79908774abce6d798445ed6faa0bdb
|
||||
size 10804
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:51f06b88c870bd66f700ecdbe994abafd5f1f7a3e9b28cad17332c2223086091
|
||||
size 103689
|
||||
oid sha256:7dabca07167805c3d7286b522fb5fbc880e1a652b7fa41ccd01243aa6aa6003f
|
||||
size 103074
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:d031424b6c9d8cd432712f1afeccdd591262b2f90f04f6c38de1f25780123df1
|
||||
size 121601
|
||||
oid sha256:9015cfdbdd0acf569b83ff38896750b9aba2d4056ad942458e954972b454c1ec
|
||||
size 120908
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:94e83c262b3fb0b6bc0fc6279e1f19fb59c853f261d1b1bbb9334477c837351a
|
||||
size 60629
|
||||
oid sha256:9e8a3afc39f6f4f320a8576831c578568f0d4e80433ff5258cc7eb5e8c9272fd
|
||||
size 60160
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:125a6186628f8fc57de8677667baa554856d883ebd72b367ae6cb2b82b69e425
|
||||
size 108569
|
||||
oid sha256:75b7b8462348bc60384493d9f8094a7ac17240b3aa10c651378308fab0fd1f42
|
||||
size 109305
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:d66145d226fcb4244987b9c2a2296eab5be9c5f7fc936dccfe6c255d6254ae96
|
||||
size 110824
|
||||
oid sha256:f6bf2c492d93d7a2c23b2c3ebd7a76524d04504fffecd41ae694a85844bc226c
|
||||
size 111563
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:c78e42577f381d5cc2d860d8e5ce67d650fc3f3ee9fe2d20cafa1fe4993ad21c
|
||||
size 100679
|
||||
oid sha256:c35dcb3585d82a74d9fd5cbe82940e66b2710786979e51a27bce53e3d66a82fd
|
||||
size 101358
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:3aa2b0d0dec8041537c874d2b4b0a014654f786c9e8b949ffd71f653a5bd1cf2
|
||||
size 76474
|
||||
oid sha256:dfeffb1a15e39d5942ef61d9ece68458a961209831556fa1fe0a3a08ca32c5f1
|
||||
size 76579
|
||||
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:ef30e3f18abcfdd18dd68d02d75bedf9477b10fd2176e1adbd7f4fb4fbb52a43
|
||||
size 54512
|
||||
oid sha256:8024be4a3e32e9567b9fccb4b2001b90e1d2e7cd2a634ea0565cbf845ac476a0
|
||||
size 54066
|
||||
|
@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:670840ab03dbe297d0cc1a7aa8f2586612aa39559df1989ef99ac91fa61c0fa8
|
||||
size 149416
|
@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:e4cbf76076d3f0d315688321182af64c0f5746e6c0d4f17065a3f7c3cda88423
|
||||
size 124297
|
||||
oid sha256:466cb973bbeece0f2fc187e9dd2640ccbde151d82ff52daa1628a5120713af49
|
||||
size 125455
|
||||
|
@ -1 +1 @@
|
||||
{"Conv_0/WithoutBiases/fq_input_0": [-0.29686060547828674, 0.31361883878707886], "Conv_104/WithoutBiases/fq_input_0": [0.0, 0.32660770416259766], "Conv_125/WithoutBiases/fq_input_0": [-0.41168129444122314, 0.48557281494140625], "Conv_28/WithoutBiases/fq_input_0": [-0.8976801037788391, 0.933587372303009], "Conv_17/WithoutBiases/fq_input_0": [0.0, 0.5136048793792725], "Conv_100/WithoutBiases/fq_input_0": [0.0, 0.06661587208509445], "Conv_32/WithoutBiases/fq_input_0": [0.0, 0.1631249487400055], "Add_153/fq_input_0": [-0.2501797378063202, 0.31438517570495605], "Add_153/fq_input_1": [-0.41058793663978577, 0.40103936195373535], "Conv_70/WithoutBiases/fq_input_0": [0.0, 0.0483691431581974], "GlobalAveragePool_167/reduce/fq_input_0": [0.0, 0.8888062238693237], "Conv_22/WithoutBiases/fq_input_0": [0.0, 0.10547154396772385], "Add_95/fq_input_0": [-0.4670479893684387, 0.3776133060455322], "Add_95/fq_input_1": [-0.5320417284965515, 0.29020458459854126], "Add_143/fq_input_0": [-0.26211321353912354, 0.2725977301597595], "Add_143/fq_input_1": [-0.1286502629518509, 0.1493651419878006], "Conv_84/WithoutBiases/fq_input_0": [0.0, 0.20072269439697266], "Conv_96/WithoutBiases/fq_input_0": [-0.55389404296875, 0.4478292167186737], "Conv_109/WithoutBiases/fq_input_0": [-1.451535354135558e-06, 0.048821911215782166], "Add_85/fq_input_0": [-0.3977775275707245, 0.38247838616371155], "Add_85/fq_input_1": [-0.2338700145483017, 0.20463626086711884], "Conv_26/WithoutBiases/fq_input_0": [0.0, 0.4129348397254944], "Conv_133/WithoutBiases/fq_input_0": [0.0, 0.376838743686676], "Conv_90/WithoutBiases/fq_input_0": [-1.866259708549478e-06, 0.04625857248902321], "Conv_113/WithoutBiases/fq_input_0": [0.0, 0.36954188346862793], "Conv_9/WithoutBiases/fq_input_0": [-1.0, 0.8613138794898987], "Conv_45/WithoutBiases/fq_input_0": [0.0, 0.26833391189575195], "Conv_61/WithoutBiases/fq_input_0": [0.0, 0.10988587141036987], "Add_124/fq_input_0": [-0.2728601098060608, 0.3069676160812378], "Add_124/fq_input_1": [-0.32439106702804565, 0.2622736096382141], "Conv_94/WithoutBiases/fq_input_0": [0.0, 0.5001694560050964], "Conv_57/WithoutBiases/fq_input_0": [-0.6312736868858337, 0.780785858631134], "Conv_65/WithoutBiases/fq_input_0": [0.0, 0.2538664937019348], "Add_27/fq_input_0": [-0.48581141233444214, 0.482015997171402], "Add_27/fq_input_1": [-0.7506776452064514, 0.7565884590148926], "Conv_36/WithoutBiases/fq_input_0": [0.0, 0.36835718154907227], "Conv_74/WithoutBiases/fq_input_0": [0.0, 0.19867703318595886], "Conv_148/WithoutBiases/fq_input_0": [-4.976692480340716e-07, 0.0461076945066452], "Conv_123/WithoutBiases/fq_input_0": [0.0, 0.305985689163208], "Conv_80/WithoutBiases/fq_input_0": [-9.33129854274739e-07, 0.047954410314559937], "Conv_154/WithoutBiases/fq_input_0": [-0.5123423933982849, 0.6336866617202759], "Conv_129/WithoutBiases/fq_input_0": [-4.147243828356295e-07, 0.08542536944150925], "Conv_51/WithoutBiases/fq_input_0": [-6.220865316208801e-07, 0.07665421813726425], "Conv_142/WithoutBiases/fq_input_0": [0.0, 0.37551385164260864], "Conv_152/WithoutBiases/fq_input_0": [0.0, 0.2836046516895294], "Conv_41/WithoutBiases/fq_input_0": [0.0, 0.07302707433700562], "Conv_13/WithoutBiases/fq_input_0": [0.0, 0.275328129529953], "Conv_163/WithoutBiases/fq_input_0": [-0.22149533033370972, 0.17626036703586578], "Conv_8/WithoutBiases/fq_input_0": [0.0, 0.8888062238693237], "Add_114/fq_input_0": [-0.24599261581897736, 0.28560158610343933], "Add_114/fq_input_1": [-0.17018283903598785, 0.22433193027973175], "Conv_119/WithoutBiases/fq_input_0": [-1.4515354678223957e-06, 0.04821581766009331], "Conv_162/WithoutBiases/fq_input_0": [0.0, 0.18792197108268738], "Conv_138/WithoutBiases/fq_input_0": [-2.488346240170358e-07, 0.04187629744410515], "Add_46/fq_input_0": [-0.4630984663963318, 0.4116430878639221], "Add_46/fq_input_1": [-0.4644157588481903, 0.4128139913082123], "Conv_4/WithoutBiases/fq_input_0": [-1.4930077668395825e-05, 0.14306248724460602], "Add_75/fq_input_0": [-0.4323663115501404, 0.328002005815506], "Add_75/fq_input_1": [-0.2676773965358734, 0.34176671504974365], "Conv_158/WithoutBiases/fq_input_0": [-1.890748717414681e-05, 0.012060894630849361], "Add_56/fq_input_0": [-0.57200026512146, 0.6641020178794861], "Add_56/fq_input_1": [-0.29116690158843994, 0.3174196481704712], "Conv_55/WithoutBiases/fq_input_0": [0.0, 0.26970553398132324], "Reshape_173/fq_input_0": [0.0, 0.6060830354690552]}
|
||||
{"534/fq_input_0": [0.0, 0.049394913017749786], "478/fq_input_0": [-0.015164043754339218, 0.017059549689292908], "478/fq_input_1": [-0.018027909100055695, 0.014575756154954433], "Convolution_1461/fq_input_0": [-0.03508269414305687, 0.04339175671339035], "GroupConvolution_458/fq_input_0": [0.0, 0.015301208011806011], "465/fq_input_0": [-0.013670912012457848, 0.015872159972786903], "465/fq_input_1": [-0.009457818232476711, 0.012467123568058014], "351/fq_input_0": [-0.026998696848750114, 0.02678776904940605], "351/fq_input_1": [-0.041718490421772, 0.04204697906970978], "GroupConvolution_3843/fq_input_0": [-1.0507744718779577e-06, 0.0006702778628095984], "GroupConvolution_1811/fq_input_0": [0.0, 0.002688088221475482], "Convolution_3895/fq_input_0": [0.0, 0.010443663224577904], "Convolution_285/fq_input_0": [0.0, 0.049394913017749786], "GroupConvolution_1134/fq_input_0": [0.0, 0.004058439284563065], "503/fq_input_0": [-0.014566807076334953, 0.015149478800594807], "503/fq_input_1": [-0.007149680983275175, 0.00830090045928955], "Convolution_333/fq_input_0": [-0.0555744506418705, 0.04786704108119011], "Convolution_1863/fq_input_0": [0.0, 0.011041364632546902], "516/fq_input_0": [-0.013903681188821793, 0.017471883445978165], "516/fq_input_1": [-0.022818375378847122, 0.02228771522641182], "Convolution_2992/fq_input_0": [0.0, 0.017005037516355515], "Convolution_3041/fq_input_0": [-0.022879013791680336, 0.02698550373315811], "Convolution_1412/fq_input_0": [0.0, 0.014988739974796772], "440/fq_input_0": [-0.025955941528081894, 0.02098565548658371], "440/fq_input_1": [-0.02956792712211609, 0.01612796075642109], "Convolution_108/fq_input_0": [-0.9615384936332703, 1.0], "GroupConvolution_3166/fq_input_0": [-2.304807722453006e-08, 0.004747476428747177], "Convolution_2089/fq_input_0": [0.0, 0.011155050247907639], "427/fq_input_0": [-0.02210625447332859, 0.021256014704704285], "427/fq_input_1": [-0.012997206300497055, 0.011372555047273636], "GroupConvolution_3617/fq_input_0": [-2.765769302470744e-08, 0.0025624139234423637], "Convolution_3218/fq_input_0": [0.0, 0.020942626520991325], "Convolution_735/fq_input_0": [0.0, 0.022948624566197395], "GroupConvolution_909/fq_input_0": [0.0, 0.009065578691661358], "GroupConvolution_2940/fq_input_0": [-8.066827916763941e-08, 0.0026795677840709686], "GroupConvolution_2489/fq_input_0": [0.0, 0.00370213994756341], "376/fq_input_0": [-0.025736434385180473, 0.022876830771565437], "376/fq_input_1": [-0.02580964006483555, 0.02294190227985382], "389/fq_input_0": [-0.03178860992193222, 0.03690711781382561], "389/fq_input_1": [-0.01618143543601036, 0.01764041744172573], "414/fq_input_0": [-0.02402852103114128, 0.01822853460907936], "414/fq_input_1": [-0.014876025728881359, 0.018993496894836426], "GroupConvolution_233/fq_input_0": [-8.297308227156464e-07, 0.007950618863105774], "Convolution_2364/fq_input_0": [-0.030782364308834076, 0.024887869134545326], "GroupConvolution_683/fq_input_0": [0.0, 0.005861522629857063], "GroupConvolution_3391/fq_input_0": [-1.382884651235372e-08, 0.0023272547405213118], "Convolution_2766/fq_input_0": [0.0, 0.02053709141910076], "Convolution_2541/fq_input_0": [0.0, 0.018151046708226204], "Convolution_2315/fq_input_0": [0.0, 0.027796654030680656], "GroupConvolution_1360/fq_input_0": [-3.457211406043825e-08, 0.004260015673935413], "GroupConvolution_2037/fq_input_0": [-5.18581764197279e-08, 0.0026650403160601854], "Convolution_3669/fq_input_0": [0.0, 0.01576113887131214], "GroupConvolution_1586/fq_input_0": [0.0, 0.006106846034526825], "Convolution_1638/fq_input_0": [0.0, 0.014108488336205482], "Convolution_961/fq_input_0": [0.0, 0.020471246913075447], "Convolution_3943/fq_input_0": [-0.012309478595852852, 0.009795570746064186], "GroupConvolution_2263/fq_input_0": [-1.037163528394558e-07, 0.0025707946624606848], "Convolution_784/fq_input_0": [-0.04988809674978256, 0.05188361927866936], "Convolution_3443/fq_input_0": [0.0, 0.020869001746177673], "Convolution_1186/fq_input_0": [0.0, 0.014912507496774197], "GroupConvolution_2714/fq_input_0": [-8.066827206221205e-08, 0.002713250694796443], "Convolution_510/fq_input_0": [0.0, 0.02854330465197563], "Convolution_3718/fq_input_0": [-0.028473246842622757, 0.035216908901929855], "542/fq_input_0": [0.0, 0.03368273004889488]}
|
@ -1 +1 @@
|
||||
{"Conv_0/WithoutBiases/fq_input_0": [-0.31361883878707886, 0.31116870045661926], "Conv_104/WithoutBiases/fq_input_0": [0.0, 0.32405608892440796], "Conv_125/WithoutBiases/fq_input_0": [-0.48557284474372864, 0.44093120098114014], "Conv_28/WithoutBiases/fq_input_0": [-0.9303551316261292, 0.44093120098114014], "Conv_17/WithoutBiases/fq_input_0": [0.0, 0.44093120098114014], "Conv_100/WithoutBiases/fq_input_0": [0.0, 0.06609543412923813], "Conv_32/WithoutBiases/fq_input_0": [0.0, 0.16185052692890167], "Add_153/fq_input_0": [-0.31438517570495605, 0.31192904710769653], "Add_153/fq_input_1": [-0.41001394391059875, 0.4068107008934021], "Conv_70/WithoutBiases/fq_input_0": [0.0, 0.04799125716090202], "GlobalAveragePool_167/reduce/fq_input_0": [0.0, 0.44093120098114014], "Conv_22/WithoutBiases/fq_input_0": [0.0, 0.10464755445718765], "Add_95/fq_input_0": [-0.46598872542381287, 0.44093120098114014], "Add_95/fq_input_1": [-0.527573823928833, 0.44093120098114014], "Add_143/fq_input_0": [-0.27090319991111755, 0.268786758184433], "Add_143/fq_input_1": [-0.1487722098827362, 0.14760993421077728], "Conv_84/WithoutBiases/fq_input_0": [0.0, 0.1991545408964157], "Conv_96/WithoutBiases/fq_input_0": [-0.5527886152267456, 0.44093120098114014], "Conv_109/WithoutBiases/fq_input_0": [0.0, 0.048461753875017166], "Add_85/fq_input_0": [-0.39739876985549927, 0.3942940831184387], "Add_85/fq_input_1": [-0.2338700145483017, 0.23204290866851807], "Conv_26/WithoutBiases/fq_input_0": [0.0, 0.40970879793167114], "Conv_133/WithoutBiases/fq_input_0": [0.0, 0.37389469146728516], "Conv_90/WithoutBiases/fq_input_0": [0.0, 0.045911755412817], "Conv_113/WithoutBiases/fq_input_0": [0.0, 0.3666548430919647], "Conv_9/WithoutBiases/fq_input_0": [-1.0, 0.44093120098114014], "Conv_45/WithoutBiases/fq_input_0": [0.0, 0.2662375569343567], "Conv_61/WithoutBiases/fq_input_0": [0.0, 0.10902738571166992], "Add_124/fq_input_0": [-0.305107444524765, 0.30272376537323], "Add_124/fq_input_1": [-0.32193654775619507, 0.3194214105606079], "Conv_94/WithoutBiases/fq_input_0": [0.0, 0.44093120098114014], "Conv_57/WithoutBiases/fq_input_0": [-0.7807859182357788, 0.44093120098114014], "Conv_65/WithoutBiases/fq_input_0": [0.0, 0.2518831491470337], "Add_27/fq_input_0": [-0.4857995808124542, 0.44093120098114014], "Add_27/fq_input_1": [-0.7565884590148926, 0.44093120098114014], "Conv_36/WithoutBiases/fq_input_0": [0.0, 0.36547940969467163], "Conv_74/WithoutBiases/fq_input_0": [0.0, 0.19712486863136292], "Conv_148/WithoutBiases/fq_input_0": [0.0, 0.045752767473459244], "Conv_123/WithoutBiases/fq_input_0": [0.0, 0.3035951852798462], "Conv_80/WithoutBiases/fq_input_0": [0.0, 0.04758858680725098], "Conv_154/WithoutBiases/fq_input_0": [-0.6302034854888916, 0.44093120098114014], "Conv_129/WithoutBiases/fq_input_0": [0.0, 0.08476486802101135], "Conv_51/WithoutBiases/fq_input_0": [0.0, 0.07606395334005356], "Conv_142/WithoutBiases/fq_input_0": [0.0, 0.3725801408290863], "Conv_152/WithoutBiases/fq_input_0": [0.0, 0.2813889980316162], "Conv_41/WithoutBiases/fq_input_0": [0.0, 0.07245654612779617], "Conv_13/WithoutBiases/fq_input_0": [0.0, 0.2537086009979248], "Conv_163/WithoutBiases/fq_input_0": [-0.22149533033370972, 0.21976490318775177], "Conv_8/WithoutBiases/fq_input_0": [0.0, 0.44093120098114014], "Add_114/fq_input_0": [-0.283370703458786, 0.28115686774253845], "Add_114/fq_input_1": [-0.22433193027973175, 0.22257934510707855], "Conv_119/WithoutBiases/fq_input_0": [0.0, 0.04785932973027229], "Conv_162/WithoutBiases/fq_input_0": [0.0, 0.18645383417606354], "Conv_138/WithoutBiases/fq_input_0": [0.0, 0.041552022099494934], "Add_46/fq_input_0": [-0.4630984663963318, 0.44093120098114014], "Add_46/fq_input_1": [-0.4644157588481903, 0.44093120098114014], "Conv_4/WithoutBiases/fq_input_0": [0.0, 0.14246885478496552], "Add_75/fq_input_0": [-0.432366281747818, 0.4289884567260742], "Add_75/fq_input_1": [-0.34012237191200256, 0.33746516704559326], "Conv_158/WithoutBiases/fq_input_0": [0.0, 0.012117864564061165], "Add_56/fq_input_0": [-0.6641020774841309, 0.44093120098114014], "Add_56/fq_input_1": [-0.31576719880104065, 0.3133002519607544], "Conv_55/WithoutBiases/fq_input_0": [0.0, 0.2675984799861908], "Reshape_173/fq_input_0": [0.0, 0.44093120098114014]}
|
||||
{"534/fq_input_0": [0.0, 0.024504506960511208], "478/fq_input_0": [-0.016956167295575142, 0.016823697835206985], "478/fq_input_1": [-0.017891479656100273, 0.017751703038811684], "Convolution_1461/fq_input_0": [-0.04339175671339035, 0.024504506960511208], "GroupConvolution_458/fq_input_0": [0.0, 0.01409971434623003], "465/fq_input_0": [-0.015748171135783195, 0.015625139698386192], "465/fq_input_1": [-0.012467123568058014, 0.012369723990559578], "351/fq_input_0": [-0.026998037472367287, 0.024504506960511208], "351/fq_input_1": [-0.04204697906970978, 0.024504506960511208], "GroupConvolution_3843/fq_input_0": [0.0, 0.0006734440103173256], "GroupConvolution_1811/fq_input_0": [0.0, 0.002667087595909834], "Convolution_3895/fq_input_0": [0.0, 0.010362071916460991], "Convolution_285/fq_input_0": [0.0, 0.024504506960511208], "GroupConvolution_1134/fq_input_0": [0.0, 0.004026732407510281], "503/fq_input_0": [-0.01505535189062357, 0.014937731437385082], "503/fq_input_1": [-0.008267928846180439, 0.008203336037695408], "Convolution_333/fq_input_0": [-0.0555744469165802, 0.024504506960511208], "Convolution_1863/fq_input_0": [0.0, 0.010955104604363441], "516/fq_input_0": [-0.017471881583333015, 0.017335383221507072], "516/fq_input_1": [-0.022786367684602737, 0.022608349099755287], "Convolution_2992/fq_input_0": [0.0, 0.016872184351086617], "Convolution_3041/fq_input_0": [-0.026985501870512962, 0.024504506960511208], "Convolution_1412/fq_input_0": [0.0, 0.014871640130877495], "440/fq_input_0": [-0.025897065177559853, 0.024504506960511208], "440/fq_input_1": [-0.0293196402490139, 0.024504506960511208], "Convolution_108/fq_input_0": [-1.0, 0.024504506960511208], "GroupConvolution_3166/fq_input_0": [0.0, 0.004710768815129995], "Convolution_2089/fq_input_0": [0.0, 0.01106790080666542], "427/fq_input_0": [-0.022085215896368027, 0.021912673488259315], "427/fq_input_1": [-0.01299720536917448, 0.012895665131509304], "GroupConvolution_3617/fq_input_0": [0.0, 0.0025426887441426516], "Convolution_3218/fq_input_0": [0.0, 0.020779011771082878], "Convolution_735/fq_input_0": [0.0, 0.022769339382648468], "GroupConvolution_909/fq_input_0": [0.0, 0.008994753472507], "GroupConvolution_2940/fq_input_0": [0.0, 0.002659756224602461], "GroupConvolution_2489/fq_input_0": [0.0, 0.003673217026516795], "376/fq_input_0": [-0.025736434385180473, 0.024504506960511208], "376/fq_input_1": [-0.02580964006483555, 0.024504506960511208], "389/fq_input_0": [-0.03690711781382561, 0.024504506960511208], "389/fq_input_1": [-0.017548587173223495, 0.0174114890396595], "414/fq_input_0": [-0.02402852289378643, 0.023840798065066338], "414/fq_input_1": [-0.018902117386460304, 0.018754445016384125], "GroupConvolution_233/fq_input_0": [0.0, 0.007917627692222595], "Convolution_2364/fq_input_0": [-0.03072093054652214, 0.024504506960511208], "GroupConvolution_683/fq_input_0": [0.0, 0.00581572949886322], "GroupConvolution_3391/fq_input_0": [0.0, 0.002309233183041215], "Convolution_2766/fq_input_0": [0.0, 0.020376645028591156], "Convolution_2541/fq_input_0": [0.0, 0.018009241670370102], "Convolution_2315/fq_input_0": [0.0, 0.024504506960511208], "GroupConvolution_1360/fq_input_0": [0.0, 0.004227211233228445], "GroupConvolution_2037/fq_input_0": [0.0, 0.0026447095442563295], "Convolution_3669/fq_input_0": [0.0, 0.01563800498843193], "GroupConvolution_1586/fq_input_0": [0.0, 0.006059136241674423], "Convolution_1638/fq_input_0": [0.0, 0.013998265378177166], "Convolution_961/fq_input_0": [0.0, 0.02031131461262703], "Convolution_3943/fq_input_0": [-0.012309477664530277, 0.012213310226798058], "GroupConvolution_2263/fq_input_0": [0.0, 0.00255152047611773], "Convolution_784/fq_input_0": [-0.05170396342873573, 0.024504506960511208], "Convolution_3443/fq_input_0": [0.0, 0.02070596255362034], "Convolution_1186/fq_input_0": [0.0, 0.014796003699302673], "GroupConvolution_2714/fq_input_0": [0.0, 0.0026932351756840944], "Convolution_510/fq_input_0": [0.0, 0.024504506960511208], "Convolution_3718/fq_input_0": [-0.03502354398369789, 0.024504506960511208], "542/fq_input_0": [0.0, 0.024504506960511208]}
|
@ -1 +1 @@
|
||||
{"Conv_0/WithoutBiases/fq_input_0": [-0.31361883878707886, 0.31116870045661926], "Conv_104/WithoutBiases/fq_input_0": [0.0, 0.32405608892440796], "Conv_125/WithoutBiases/fq_input_0": [-0.48557284474372864, 0.4817792773246765], "Conv_28/WithoutBiases/fq_input_0": [-0.9303551316261292, 0.9230867624282837], "Conv_17/WithoutBiases/fq_input_0": [0.0, 0.5095923542976379], "Conv_100/WithoutBiases/fq_input_0": [0.0, 0.06609543412923813], "Conv_32/WithoutBiases/fq_input_0": [0.0, 0.16185052692890167], "Add_153/fq_input_0": [-0.31438517570495605, 0.31192904710769653], "Add_153/fq_input_1": [-0.41001394391059875, 0.4068107008934021], "Conv_70/WithoutBiases/fq_input_0": [0.0, 0.04799125716090202], "GlobalAveragePool_167/reduce/fq_input_0": [0.0, 0.8818624019622803], "Conv_22/WithoutBiases/fq_input_0": [0.0, 0.10464755445718765], "Add_95/fq_input_0": [-0.46598872542381287, 0.46234822273254395], "Add_95/fq_input_1": [-0.527573823928833, 0.5234521627426147], "Add_143/fq_input_0": [-0.27090319991111755, 0.268786758184433], "Add_143/fq_input_1": [-0.1487722098827362, 0.14760993421077728], "Conv_84/WithoutBiases/fq_input_0": [0.0, 0.1991545408964157], "Conv_96/WithoutBiases/fq_input_0": [-0.5527886152267456, 0.5484699606895447], "Conv_109/WithoutBiases/fq_input_0": [0.0, 0.048461753875017166], "Add_85/fq_input_0": [-0.39739876985549927, 0.3942940831184387], "Add_85/fq_input_1": [-0.2338700145483017, 0.23204290866851807], "Conv_26/WithoutBiases/fq_input_0": [0.0, 0.40970879793167114], "Conv_133/WithoutBiases/fq_input_0": [0.0, 0.37389469146728516], "Conv_90/WithoutBiases/fq_input_0": [0.0, 0.045911755412817], "Conv_113/WithoutBiases/fq_input_0": [0.0, 0.3666548430919647], "Conv_9/WithoutBiases/fq_input_0": [-1.0, 0.9921875], "Conv_45/WithoutBiases/fq_input_0": [0.0, 0.2662375569343567], "Conv_61/WithoutBiases/fq_input_0": [0.0, 0.10902738571166992], "Add_124/fq_input_0": [-0.305107444524765, 0.30272376537323], "Add_124/fq_input_1": [-0.32193654775619507, 0.3194214105606079], "Conv_94/WithoutBiases/fq_input_0": [0.0, 0.4962618947029114], "Conv_57/WithoutBiases/fq_input_0": [-0.7807859182357788, 0.7746859788894653], "Conv_65/WithoutBiases/fq_input_0": [0.0, 0.2518831491470337], "Add_27/fq_input_0": [-0.4857995808124542, 0.4820042848587036], "Add_27/fq_input_1": [-0.7565884590148926, 0.7506775856018066], "Conv_36/WithoutBiases/fq_input_0": [0.0, 0.36547940969467163], "Conv_74/WithoutBiases/fq_input_0": [0.0, 0.19712486863136292], "Conv_148/WithoutBiases/fq_input_0": [0.0, 0.045752767473459244], "Conv_123/WithoutBiases/fq_input_0": [0.0, 0.3035951852798462], "Conv_80/WithoutBiases/fq_input_0": [0.0, 0.04758858680725098], "Conv_154/WithoutBiases/fq_input_0": [-0.6302034854888916, 0.6252800226211548], "Conv_129/WithoutBiases/fq_input_0": [0.0, 0.08476486802101135], "Conv_51/WithoutBiases/fq_input_0": [0.0, 0.07606395334005356], "Conv_142/WithoutBiases/fq_input_0": [0.0, 0.3725801408290863], "Conv_152/WithoutBiases/fq_input_0": [0.0, 0.2813889980316162], "Conv_41/WithoutBiases/fq_input_0": [0.0, 0.07245654612779617], "Conv_13/WithoutBiases/fq_input_0": [0.0, 0.2731771469116211], "Conv_163/WithoutBiases/fq_input_0": [-0.22149533033370972, 0.21976490318775177], "Conv_8/WithoutBiases/fq_input_0": [0.0, 0.8818624019622803], "Add_114/fq_input_0": [-0.283370703458786, 0.28115686774253845], "Add_114/fq_input_1": [-0.22433193027973175, 0.22257934510707855], "Conv_119/WithoutBiases/fq_input_0": [0.0, 0.04785932973027229], "Conv_162/WithoutBiases/fq_input_0": [0.0, 0.18645383417606354], "Conv_138/WithoutBiases/fq_input_0": [0.0, 0.041552022099494934], "Add_46/fq_input_0": [-0.4630984663963318, 0.45948052406311035], "Add_46/fq_input_1": [-0.4644157588481903, 0.46078750491142273], "Conv_4/WithoutBiases/fq_input_0": [0.0, 0.14246885478496552], "Add_75/fq_input_0": [-0.432366281747818, 0.4289884567260742], "Add_75/fq_input_1": [-0.34012237191200256, 0.33746516704559326], "Conv_158/WithoutBiases/fq_input_0": [0.0, 0.012117864564061165], "Add_56/fq_input_0": [-0.6641020774841309, 0.6589137315750122], "Add_56/fq_input_1": [-0.31576719880104065, 0.3133002519607544], "Conv_55/WithoutBiases/fq_input_0": [0.0, 0.2675984799861908], "Reshape_173/fq_input_0": [0.0, 0.6013480424880981]}
|
||||
{"534/fq_input_0": [0.0, 0.049009013921022415], "478/fq_input_0": [-0.016956167295575142, 0.016823697835206985], "478/fq_input_1": [-0.017891479656100273, 0.017751703038811684], "Convolution_1461/fq_input_0": [-0.04339175671339035, 0.043052759021520615], "GroupConvolution_458/fq_input_0": [0.0, 0.015181667171418667], "465/fq_input_0": [-0.015748171135783195, 0.015625139698386192], "465/fq_input_1": [-0.012467123568058014, 0.012369723990559578], "351/fq_input_0": [-0.026998037472367287, 0.02678711712360382], "351/fq_input_1": [-0.04204697906970978, 0.041718486696481705], "GroupConvolution_3843/fq_input_0": [0.0, 0.0006734440103173256], "GroupConvolution_1811/fq_input_0": [0.0, 0.002667087595909834], "Convolution_3895/fq_input_0": [0.0, 0.010362071916460991], "Convolution_285/fq_input_0": [0.0, 0.049009013921022415], "GroupConvolution_1134/fq_input_0": [0.0, 0.004026732407510281], "503/fq_input_0": [-0.01505535189062357, 0.014937731437385082], "503/fq_input_1": [-0.008267928846180439, 0.008203336037695408], "Convolution_333/fq_input_0": [-0.0555744469165802, 0.05514027178287506], "Convolution_1863/fq_input_0": [0.0, 0.010955104604363441], "516/fq_input_0": [-0.017471881583333015, 0.017335383221507072], "516/fq_input_1": [-0.022786367684602737, 0.022608349099755287], "Convolution_2992/fq_input_0": [0.0, 0.016872184351086617], "Convolution_3041/fq_input_0": [-0.026985501870512962, 0.026774678379297256], "Convolution_1412/fq_input_0": [0.0, 0.014871640130877495], "440/fq_input_0": [-0.025897065177559853, 0.025694744661450386], "440/fq_input_1": [-0.0293196402490139, 0.029090579599142075], "Convolution_108/fq_input_0": [-1.0, 0.9921875], "GroupConvolution_3166/fq_input_0": [0.0, 0.004710768815129995], "Convolution_2089/fq_input_0": [0.0, 0.01106790080666542], "427/fq_input_0": [-0.022085215896368027, 0.021912673488259315], "427/fq_input_1": [-0.01299720536917448, 0.012895665131509304], "GroupConvolution_3617/fq_input_0": [0.0, 0.0025426887441426516], "Convolution_3218/fq_input_0": [0.0, 0.020779011771082878], "Convolution_735/fq_input_0": [0.0, 0.022769339382648468], "GroupConvolution_909/fq_input_0": [0.0, 0.008994753472507], "GroupConvolution_2940/fq_input_0": [0.0, 0.002659756224602461], "GroupConvolution_2489/fq_input_0": [0.0, 0.003673217026516795], "376/fq_input_0": [-0.025736434385180473, 0.02553536742925644], "376/fq_input_1": [-0.02580964006483555, 0.0256080012768507], "389/fq_input_0": [-0.03690711781382561, 0.036618780344724655], "389/fq_input_1": [-0.017548587173223495, 0.0174114890396595], "414/fq_input_0": [-0.02402852289378643, 0.023840798065066338], "414/fq_input_1": [-0.018902117386460304, 0.018754445016384125], "GroupConvolution_233/fq_input_0": [0.0, 0.007917627692222595], "Convolution_2364/fq_input_0": [-0.03072093054652214, 0.030480923131108284], "GroupConvolution_683/fq_input_0": [0.0, 0.00581572949886322], "GroupConvolution_3391/fq_input_0": [0.0, 0.002309233183041215], "Convolution_2766/fq_input_0": [0.0, 0.020376645028591156], "Convolution_2541/fq_input_0": [0.0, 0.018009241670370102], "Convolution_2315/fq_input_0": [0.0, 0.027579491958022118], "GroupConvolution_1360/fq_input_0": [0.0, 0.004227211233228445], "GroupConvolution_2037/fq_input_0": [0.0, 0.0026447095442563295], "Convolution_3669/fq_input_0": [0.0, 0.01563800498843193], "GroupConvolution_1586/fq_input_0": [0.0, 0.006059136241674423], "Convolution_1638/fq_input_0": [0.0, 0.013998265378177166], "Convolution_961/fq_input_0": [0.0, 0.02031131461262703], "Convolution_3943/fq_input_0": [-0.012309477664530277, 0.012213310226798058], "GroupConvolution_2263/fq_input_0": [0.0, 0.00255152047611773], "Convolution_784/fq_input_0": [-0.05170396342873573, 0.05130002275109291], "Convolution_3443/fq_input_0": [0.0, 0.02070596255362034], "Convolution_1186/fq_input_0": [0.0, 0.014796003699302673], "GroupConvolution_2714/fq_input_0": [0.0, 0.0026932351756840944], "Convolution_510/fq_input_0": [0.0, 0.0283203087747097], "Convolution_3718/fq_input_0": [-0.03502354398369789, 0.03474992513656616], "542/fq_input_0": [0.0, 0.03341958299279213]}
|
File diff suppressed because one or more lines are too long
@ -1,92 +1,92 @@
|
||||
[
|
||||
[
|
||||
[
|
||||
"Add_114"
|
||||
"351"
|
||||
],
|
||||
[
|
||||
"Add_114/fq_input_0",
|
||||
"Add_114/fq_input_1"
|
||||
"351/fq_input_0",
|
||||
"351/fq_input_1"
|
||||
]
|
||||
],
|
||||
[
|
||||
[
|
||||
"Add_124"
|
||||
"376"
|
||||
],
|
||||
[
|
||||
"Add_124/fq_input_0",
|
||||
"Add_124/fq_input_1"
|
||||
"376/fq_input_0",
|
||||
"376/fq_input_1"
|
||||
]
|
||||
],
|
||||
[
|
||||
[
|
||||
"Add_143"
|
||||
"389"
|
||||
],
|
||||
[
|
||||
"Add_143/fq_input_0",
|
||||
"Add_143/fq_input_1"
|
||||
"389/fq_input_0",
|
||||
"389/fq_input_1"
|
||||
]
|
||||
],
|
||||
[
|
||||
[
|
||||
"Add_153"
|
||||
"414"
|
||||
],
|
||||
[
|
||||
"Add_153/fq_input_0",
|
||||
"Add_153/fq_input_1"
|
||||
"414/fq_input_0",
|
||||
"414/fq_input_1"
|
||||
]
|
||||
],
|
||||
[
|
||||
[
|
||||
"Add_27"
|
||||
"427"
|
||||
],
|
||||
[
|
||||
"Add_27/fq_input_0",
|
||||
"Add_27/fq_input_1"
|
||||
"427/fq_input_0",
|
||||
"427/fq_input_1"
|
||||
]
|
||||
],
|
||||
[
|
||||
[
|
||||
"Add_46"
|
||||
"440"
|
||||
],
|
||||
[
|
||||
"Add_46/fq_input_0",
|
||||
"Add_46/fq_input_1"
|
||||
"440/fq_input_0",
|
||||
"440/fq_input_1"
|
||||
]
|
||||
],
|
||||
[
|
||||
[
|
||||
"Add_56"
|
||||
"465"
|
||||
],
|
||||
[
|
||||
"Add_56/fq_input_0",
|
||||
"Add_56/fq_input_1"
|
||||
"465/fq_input_0",
|
||||
"465/fq_input_1"
|
||||
]
|
||||
],
|
||||
[
|
||||
[
|
||||
"Add_75"
|
||||
"478"
|
||||
],
|
||||
[
|
||||
"Add_75/fq_input_0",
|
||||
"Add_75/fq_input_1"
|
||||
"478/fq_input_0",
|
||||
"478/fq_input_1"
|
||||
]
|
||||
],
|
||||
[
|
||||
[
|
||||
"Add_85"
|
||||
"503"
|
||||
],
|
||||
[
|
||||
"Add_85/fq_input_0",
|
||||
"Add_85/fq_input_1"
|
||||
"503/fq_input_0",
|
||||
"503/fq_input_1"
|
||||
]
|
||||
],
|
||||
[
|
||||
[
|
||||
"Add_95"
|
||||
"516"
|
||||
],
|
||||
[
|
||||
"Add_95/fq_input_0",
|
||||
"Add_95/fq_input_1"
|
||||
"516/fq_input_0",
|
||||
"516/fq_input_1"
|
||||
]
|
||||
]
|
||||
]
|
@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:58579dc94614d990c0a13dbe189af561ca0a6a576261096bf2a70fb0cea1221c
|
||||
size 3423642
|
@ -1,3 +0,0 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:1fb8615789b3270b5273485aed2effc85c33190a298cb14ce60d23153aeb4f31
|
||||
size 3522564
|
@ -1,3 +0,0 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:6dcb89a28b107eed7ad056477918b6ebb80a49addcebf091ab6d2f016a8f0dd0
|
||||
size 4272
|
@ -1,3 +0,0 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:5d97e8abc5cd713e35eb77edaffc244032a66a29559dff2e24568cc10e3e3975
|
||||
size 16357
|
@ -1,3 +0,0 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:aece33cd08decf3b3733372418b4384f8f38253c4cc4a2e89539da6ef1fe5e17
|
||||
size 1656
|
@ -1,3 +0,0 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:fedc87bad1556fab5e1d05acf12e0696b083ae363b566add1d3c9af78e372b76
|
||||
size 14462
|
@ -11,7 +11,7 @@ from openvino.tools.pot.configs.hardware_config import HardwareConfig
|
||||
from openvino.tools.pot.graph.transformer import GraphTransformer
|
||||
from openvino.tools.pot.graph.model_utils import get_nodes_by_type, get_node_by_name
|
||||
from openvino.tools.pot.graph.node_utils import get_node_inputs, get_first_convolutions
|
||||
from tests.utils.path import TEST_ROOT, HARDWARE_CONFIG_PATH
|
||||
from tests.utils.path import HARDWARE_CONFIG_PATH
|
||||
from tests.utils.check_graph import check_model
|
||||
|
||||
CPU_CONFIG_PATH = HARDWARE_CONFIG_PATH / 'cpu.json'
|
||||
@ -86,17 +86,16 @@ def test_build_quantization_graph_with_ignored_params(
|
||||
{
|
||||
'type': 'Convolution',
|
||||
'attributes': {
|
||||
'output': 1280,
|
||||
'group': 1
|
||||
'output': 1280
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
if model_name == 'resnet_example':
|
||||
ignored_params['scope'] = ['Conv_11/WithoutBiases', 'Conv_29/WithoutBiases']
|
||||
ignored_params['scope'] = ['Convolution_283', 'Convolution_724']
|
||||
elif model_name == 'googlenet_example':
|
||||
node_name = 'Conv_10/WithoutBiases'
|
||||
node_name = 'Convolution_289'
|
||||
ignored_params['scope'] = [node_name]
|
||||
elif model_name == 'mtcnn':
|
||||
ignored_params = {
|
||||
@ -160,29 +159,23 @@ def test_build_quantization_graph_with_ignored_agnostic_params(
|
||||
|
||||
|
||||
TEST_MODELS_REMOVAL = [
|
||||
('mobilenetv2_ssd_example', 'caffe', ['Conv_8/WithoutBiases',
|
||||
'Conv_172/WithoutBiases',
|
||||
'Conv_129/WithoutBiases']),
|
||||
('squeezenet1_1_example', 'pytorch', ['Conv_14/WithoutBiases',
|
||||
'Conv_51/WithoutBiases']),
|
||||
('mobilenet_example', 'pytorch', ['Conv_10/WithoutBiases',
|
||||
'Conv_35/WithoutBiases',
|
||||
'Conv_73/WithoutBiases']),
|
||||
('googlenet_example', 'tf', ['Conv_3/WithoutBiases',
|
||||
'Conv_57/WithoutBiases',
|
||||
'Conv_65/WithoutBiases',
|
||||
'Conv_104/WithoutBiases',
|
||||
'Conv_39/WithoutBiases']),
|
||||
('mobilenetv2_ssd_example', 'pytorch', ['Convolution_448',
|
||||
'GroupConvolution_840',
|
||||
'Convolution_1160']),
|
||||
('squeezenet1_1_example', 'pytorch', ['Convolution_150',
|
||||
'Convolution_991']),
|
||||
('mobilenetv2_example', 'pytorch', ['Convolution_521',
|
||||
'GroupConvolution_863',
|
||||
'Convolution_2450']),
|
||||
('googlenet_example', 'pytorch', ['Convolution_190',
|
||||
'Convolution_289',
|
||||
'Convolution_486',
|
||||
'Convolution_1917',
|
||||
'Convolution_2017']),
|
||||
('multiple_out_ports_net', 'tf', ['add_indices'])
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture(scope='module', params=TEST_MODELS_REMOVAL,
|
||||
ids=['{}_{}'.format(m[0], m[1]) for m in TEST_MODELS_REMOVAL])
|
||||
def _params(request):
|
||||
return request.param
|
||||
|
||||
|
||||
def cut_fq_node(model, node_list, graph_transformer, tmp_path):
|
||||
model_ = load_model(model.model_params)
|
||||
quantized_model = graph_transformer.insert_fake_quantize(model_)
|
||||
@ -197,8 +190,10 @@ def cut_fq_node(model, node_list, graph_transformer, tmp_path):
|
||||
check_model(tmp_path, cropped_model, model.model_name + '_cut_fq', model.framework)
|
||||
|
||||
|
||||
def test_cutting_fq_layers(_params, tmp_path, models):
|
||||
model_name, model_framework, node_list = _params
|
||||
@pytest.mark.parametrize(
|
||||
'model_name, model_framework, node_list', TEST_MODELS_REMOVAL,
|
||||
ids=['{}_{}'.format(m[0], m[1]) for m in TEST_MODELS_REMOVAL])
|
||||
def test_cutting_fq_layers(tmp_path, models, model_name, model_framework, node_list):
|
||||
model = models.get(model_name, model_framework, tmp_path)
|
||||
hardware_config = HardwareConfig.from_json(CPU_CONFIG_PATH.as_posix())
|
||||
graph_transformer = GraphTransformer(hardware_config)
|
||||
@ -229,24 +224,26 @@ def test_build_quantization_graph_with_ignored_blocks(tmp_path, models, model_na
|
||||
check_model(tmp_path, quantization_model, model_name + '_ig_pt', model_framework)
|
||||
|
||||
|
||||
def test_multibranch_propagation_without_fq_moving():
|
||||
# TODO: Enable this test after IRReader solve the problem with MaxPool #9613
|
||||
pytest.skip()
|
||||
TEST_CASES_PATH = TEST_ROOT / 'data' / 'test_cases_refs'
|
||||
model_path = (TEST_CASES_PATH / 'test_ig_border_case_without_fq_moving.xml').as_posix()
|
||||
weights_path = (TEST_CASES_PATH / 'test_ig_border_case_without_fq_moving.bin').as_posix()
|
||||
TEST_MODELS_WITHOUT_FQ_MOVING = [
|
||||
('test_multibranch_propogation_without_fq_moving', 'pytorch')
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'model_name, model_framework', TEST_MODELS_WITHOUT_FQ_MOVING,
|
||||
ids=['{}_{}'.format(m[0], m[1]) for m in TEST_MODELS_WITHOUT_FQ_MOVING])
|
||||
def test_multibranch_propagation_without_fq_moving(tmp_path, models, model_name, model_framework):
|
||||
ignored_params = {
|
||||
"scope": ['8/WithoutBiases', '9/WithoutBiases', '10/WithoutBiases', '11/WithoutBiases']
|
||||
"scope": ['Convolution_104', 'Convolution_152', 'Convolution_8', 'Convolution_56']
|
||||
}
|
||||
|
||||
config = Dict({'model': model_path, 'weights': weights_path})
|
||||
model = load_model(config)
|
||||
model = models.get(model_name, model_framework, tmp_path)
|
||||
model = load_model(model.model_params)
|
||||
|
||||
hardware_config = HardwareConfig.from_json((HARDWARE_CONFIG_PATH / 'cpu.json').as_posix())
|
||||
quantized_model = GraphTransformer(hardware_config).insert_fake_quantize(model, ignored_params)
|
||||
|
||||
node = get_node_by_name(quantized_model, '13/WithoutBiases')
|
||||
node = get_node_by_name(quantized_model, 'Convolution_201')
|
||||
for node_input in get_node_inputs(node)[:2]:
|
||||
assert node_input.type == 'FakeQuantize'
|
||||
assert len(get_nodes_by_type(quantized_model, ['FakeQuantize'])) == 2
|
||||
@ -279,19 +276,21 @@ def test_lstm_ends(tmp_path, models):
|
||||
assert sorted(lstm_ends_names) == sorted(lstm_ends_ref[read_value.name])
|
||||
|
||||
|
||||
def test_multibranch_propagation_with_fq_moving():
|
||||
# TODO: Enable this test after IRReader solve the problem with MaxPool #9613
|
||||
pytest.skip()
|
||||
TEST_CASES_PATH = TEST_ROOT / 'data' / 'test_cases_refs'
|
||||
model_path = (TEST_CASES_PATH / 'test_ig_border_case_with_fq_moving.xml').as_posix()
|
||||
weights_path = (TEST_CASES_PATH / 'test_ig_border_case_with_fq_moving.bin').as_posix()
|
||||
TEST_MODELS_WITHOUT_FQ_MOVING = [
|
||||
('test_multibranch_propogation_with_fq_moving', 'pytorch')
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'model_name, model_framework', TEST_MODELS_WITHOUT_FQ_MOVING,
|
||||
ids=['{}_{}'.format(m[0], m[1]) for m in TEST_MODELS_WITHOUT_FQ_MOVING])
|
||||
def test_multibranch_propagation_with_fq_moving(tmp_path, models, model_name, model_framework):
|
||||
ignored_params = {
|
||||
"scope": ['8/WithoutBiases', '9/WithoutBiases', '10/WithoutBiases', '11/WithoutBiases']
|
||||
"scope": ['Convolution_104', 'Convolution_152', 'Convolution_8', 'Convolution_56']
|
||||
}
|
||||
|
||||
config = Dict({'model': model_path, 'weights': weights_path})
|
||||
model = load_model(config)
|
||||
model = models.get(model_name, model_framework, tmp_path)
|
||||
model = load_model(model.model_params)
|
||||
|
||||
hardware_config = HardwareConfig.from_json((HARDWARE_CONFIG_PATH / 'cpu.json').as_posix())
|
||||
quantized_model = GraphTransformer(hardware_config).insert_fake_quantize(model, ignored_params)
|
||||
@ -309,19 +308,15 @@ def test_multibranch_propagation_with_fq_moving():
|
||||
|
||||
|
||||
MODELS_FOR_FIRST_CONV_TEST = [
|
||||
('1_input_model', 'onnx', ['Conv_3/WithoutBiases']),
|
||||
('3_inputs_model', 'onnx', ['Conv_3/WithoutBiases', 'Conv_5/WithoutBiases', 'Conv_7/WithoutBiases']),
|
||||
('1_input_model', 'onnx', ['Convolution_19']),
|
||||
('3_inputs_model', 'onnx', ['Convolution_172', 'Convolution_123', 'Convolution_27']),
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture(scope='module', params=MODELS_FOR_FIRST_CONV_TEST,
|
||||
ids=['{}_{}'.format(m[0], m[1]) for m in MODELS_FOR_FIRST_CONV_TEST])
|
||||
def _params(request):
|
||||
return request.param
|
||||
|
||||
|
||||
def test_first_convolutions_search(_params, tmp_path, models):
|
||||
model_name, model_framework, first_convs_ref = _params
|
||||
@pytest.mark.parametrize(
|
||||
'model_name, model_framework, first_convs_ref', MODELS_FOR_FIRST_CONV_TEST,
|
||||
ids=['{}_{}'.format(m[0], m[1]) for m in MODELS_FOR_FIRST_CONV_TEST])
|
||||
def test_first_convolutions_search(tmp_path, models, model_name, model_framework, first_convs_ref):
|
||||
model = models.get(model_name, model_framework, tmp_path)
|
||||
model = load_model(model.model_params)
|
||||
input_nodes = get_nodes_by_type(model, ['Parameter'])
|
||||
|
@ -35,9 +35,9 @@ TEST_MODELS_DEFAULT = [
|
||||
('googlenet-v3-pytorch', 'pytorch', 'FP32', {
|
||||
'performance': {'accuracy@top1': 0.77562, 'accuracy@top5': 0.9363},
|
||||
'mixed': {'accuracy@top1': 0.77562, 'accuracy@top5': 0.9363}}),
|
||||
# ('densenet-121', 'caffe', 'FP32', {
|
||||
# 'performance': {'accuracy@top1': 0.73908, 'accuracy@top5': 0.91728},
|
||||
# 'mixed': {'accuracy@top1': 0.7389, 'accuracy@top5': 0.91714}}),
|
||||
('densenet-121', 'caffe', 'FP32', {
|
||||
'performance': {'accuracy@top1': 0.73908, 'accuracy@top5': 0.91728},
|
||||
'mixed': {'accuracy@top1': 0.7389, 'accuracy@top5': 0.91714}}),
|
||||
('mobilenet-ssd', 'caffe', 'FP32', {
|
||||
'performance': {'map': 0.666},
|
||||
'mixed': {'map': 0.664}}),
|
||||
|
@ -23,8 +23,8 @@ from .utils.config import get_engine_config, merge_configs, \
|
||||
get_dataset_info, PATHS2DATASETS_CONFIG, make_algo_config
|
||||
|
||||
TEST_MODELS = [
|
||||
('mobilenet-v2-pytorch', 'pytorch', 'DefaultQuantization', 'performance', 300, {'accuracy@top1': 0.731,
|
||||
'accuracy@top5': 0.907},
|
||||
('mobilenet-v2-pytorch', 'pytorch', 'DefaultQuantization', 'performance', 300, {'accuracy@top1': 0.737,
|
||||
'accuracy@top5': 0.909},
|
||||
{}, 'CPU'),
|
||||
|
||||
('mobilenet-v2-pytorch', 'pytorch', 'DefaultQuantization', 'mixed', 300, {'accuracy@top1': 0.731,
|
||||
@ -173,7 +173,7 @@ SIMPLIFIED_TEST_MODELS = [
|
||||
('mobilenet-v2-pytorch', 'pytorch', 'DefaultQuantization', 'performance',
|
||||
{'accuracy@top1': 0.701, 'accuracy@top5': 0.91}, []),
|
||||
('mobilenet-v2-pytorch', 'pytorch', 'DefaultQuantization', 'performance',
|
||||
{'accuracy@top1': 0.707, 'accuracy@top5': 0.904}, ['--input_shape=[1,3,?,?]'])
|
||||
{'accuracy@top1': 0.709, 'accuracy@top5': 0.906}, ['--input_shape=[1,3,?,?]'])
|
||||
]
|
||||
|
||||
|
||||
|
@ -105,4 +105,4 @@ def test_statistics_collector_subsets(tmp_path, models, model_name, model_framew
|
||||
ir_name = f'{model_name}_stat_{type_max}_{type_min}' if type_min is not None \
|
||||
else f'{model_name}_stat_mean'
|
||||
check_model(tmp_path, model_with_nodes, ir_name, model_framework)
|
||||
assert len(set(nodes_names[model.name])) == add_output_nodes
|
||||
assert len(set(nodes_names[model.models[0]['model'].name])) == add_output_nodes
|
||||
|
@ -2,6 +2,9 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import json
|
||||
import os
|
||||
|
||||
from copy import copy
|
||||
from pathlib import Path
|
||||
import pytest
|
||||
import numpy as np
|
||||
@ -54,11 +57,20 @@ def test_statistics_collector_subsets(tmp_path, models, model_name, model_framew
|
||||
out = {'MinMaxQuantization': collector.get_statistics_for_algorithm('MinMaxQuantization'),
|
||||
'BiasCorrection': collector.get_statistics_for_algorithm('BiasCorrection')}
|
||||
|
||||
refs_file = Path(__file__).parent / 'data/test_cases_refs/statistics_data.txt'
|
||||
refs_file = Path(__file__).parent / 'data/test_cases_refs/statistics_data.json'
|
||||
local_path = os.path.join(tmp_path, '{}_{}.json'.format(model_name, 'statistics_data'))
|
||||
local_file = open(local_path, 'w')
|
||||
|
||||
with open(refs_file.as_posix()) as file:
|
||||
refs = json.loads(json.load(file))
|
||||
refs = json.load(file)
|
||||
|
||||
eps = 1e-3
|
||||
local_out = copy(out)
|
||||
for algo_name, algo_val in local_out.items():
|
||||
for node_name, node_val in algo_val.items():
|
||||
for stats_name, stats_val in node_val.items():
|
||||
local_out[algo_name][node_name][stats_name] = [v.tolist() for v in stats_val]
|
||||
json.dump(local_out, local_file)
|
||||
for algo_name, algo_val in out.items():
|
||||
for node_name, node_val in algo_val.items():
|
||||
for stats_name, stats_val in node_val.items():
|
||||
|
Loading…
Reference in New Issue
Block a user