[core] Api 2.0/migrate Add operator to new API (#19984)
* Migrate Add operator to new API * Remove `visit_attributes` as it calls base impl * Use shape inference to calculate broadcast shape
This commit is contained in:
parent
aa293c09ac
commit
e7c1344d3c
@ -38,11 +38,6 @@ public:
|
||||
|
||||
std::shared_ptr<Node> clone_with_new_inputs(const OutputVector& new_args) const override;
|
||||
|
||||
bool visit_attributes(AttributeVisitor& visitor) override;
|
||||
|
||||
OPENVINO_SUPPRESS_DEPRECATED_START
|
||||
bool evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const override;
|
||||
OPENVINO_SUPPRESS_DEPRECATED_END
|
||||
bool evaluate(TensorVector& outputs, const TensorVector& inputs) const override;
|
||||
bool has_evaluate() const override;
|
||||
};
|
||||
|
@ -4,30 +4,37 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstddef>
|
||||
|
||||
#include "ngraph/shape_util.hpp"
|
||||
#include "openvino/reference/autobroadcast_binop.hpp"
|
||||
|
||||
namespace ov {
|
||||
namespace reference {
|
||||
template <typename T>
|
||||
void add(const T* arg0, const T* arg1, T* out, size_t count) {
|
||||
for (size_t i = 0; i < count; i++) {
|
||||
out[i] = arg0[i] + arg1[i];
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void add(const T* arg0, const T* arg1, T* out, const size_t count) {
|
||||
std::transform(arg0, std::next(arg0, count), arg1, out, std::plus<T>());
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
/**
|
||||
* @brief Reference implementation of binary elementwise Add operator.
|
||||
*
|
||||
* @param arg0 Pointer to input 0 data.
|
||||
* @param arg1 Pointer to input 1 data.
|
||||
* @param out Pointer to output data.
|
||||
* @param arg_shape0 Input 0 shape.
|
||||
* @param arg_shape1 Input 1 shape.
|
||||
* @param broadcast_spec Broadcast specification mode.
|
||||
*/
|
||||
template <class T>
|
||||
void add(const T* arg0,
|
||||
const T* arg1,
|
||||
T* out,
|
||||
const Shape& arg0_shape,
|
||||
const Shape& arg1_shape,
|
||||
const op::AutoBroadcastSpec& broadcast_spec) {
|
||||
autobroadcast_binop(arg0, arg1, out, arg0_shape, arg1_shape, broadcast_spec, [](T x, T y) -> T {
|
||||
return x + y;
|
||||
});
|
||||
autobroadcast_binop(arg0, arg1, out, arg0_shape, arg1_shape, broadcast_spec, std::plus<T>());
|
||||
}
|
||||
} // namespace reference
|
||||
} // namespace ov
|
||||
|
@ -23,7 +23,8 @@ set_target_properties(${TARGET_NAME} PROPERTIES EXPORT_NAME shape_inference)
|
||||
|
||||
target_include_directories(${TARGET_NAME} PUBLIC
|
||||
$<BUILD_INTERFACE:${SHAPE_INFER_INCLUDE_DIR}>
|
||||
$<BUILD_INTERFACE:${OV_CORE_INCLUDE_PATH}>)
|
||||
$<BUILD_INTERFACE:${OV_CORE_INCLUDE_PATH}>
|
||||
$<BUILD_INTERFACE:$<TARGET_PROPERTY:openvino::core::dev,INTERFACE_INCLUDE_DIRECTORIES>>)
|
||||
|
||||
ov_add_clang_format_target(${TARGET_NAME}_clang FOR_TARGETS ${TARGET_NAME})
|
||||
|
||||
|
@ -411,6 +411,17 @@ ov::optional<TResult> get_input_bounds(const ov::Node* op, size_t port, const IT
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Inference broadcast shape for element wise operator according to broadcast specification stored in operator.
|
||||
*
|
||||
* @param op Pointer to operator.
|
||||
* @param first First input shape.
|
||||
* @param second Second input shape.
|
||||
*
|
||||
* @return Result shape from inputs with applied broadcast specification.
|
||||
*/
|
||||
ov::Shape infer_broadcast_shape(const ov::Node* const op, const ov::Shape& first, const ov::Shape& second);
|
||||
} // namespace op
|
||||
|
||||
/**
|
||||
|
16
src/core/shape_inference/src/utils.cpp
Normal file
16
src/core/shape_inference/src/utils.cpp
Normal file
@ -0,0 +1,16 @@
|
||||
// Copyright (C) 2018-2023 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "utils.hpp"
|
||||
|
||||
#include "eltwise_shape_inference.hpp"
|
||||
|
||||
namespace ov {
|
||||
namespace op {
|
||||
|
||||
ov::Shape infer_broadcast_shape(const ov::Node* const op, const ov::Shape& first, const ov::Shape& second) {
|
||||
return eltwise_shape_infer(op, std::vector<ov::PartialShape>{first, second}).front().to_shape();
|
||||
}
|
||||
} // namespace op
|
||||
} // namespace ov
|
@ -2,111 +2,83 @@
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "ngraph/op/add.hpp"
|
||||
#include "openvino/op/add.hpp"
|
||||
|
||||
#include "element_visitor.hpp"
|
||||
#include "itt.hpp"
|
||||
#include "ngraph/runtime/host_tensor.hpp"
|
||||
#include "openvino/reference/add.hpp"
|
||||
#include "utils.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace ngraph;
|
||||
|
||||
OPENVINO_SUPPRESS_DEPRECATED_START
|
||||
namespace ov {
|
||||
namespace op {
|
||||
namespace add {
|
||||
namespace {
|
||||
template <element::Type_t ET>
|
||||
bool evaluate(const HostTensorPtr& arg0,
|
||||
const HostTensorPtr& arg1,
|
||||
const HostTensorPtr& out,
|
||||
const op::AutoBroadcastSpec& broadcast_spec) {
|
||||
ov::reference::add(arg0->get_data_ptr<ET>(),
|
||||
arg1->get_data_ptr<ET>(),
|
||||
out->get_data_ptr<ET>(),
|
||||
arg0->get_shape(),
|
||||
arg1->get_shape(),
|
||||
struct Evaluate : element::NoAction<bool> {
|
||||
using ov::element::NoAction<bool>::visit;
|
||||
|
||||
template <element::Type_t ET>
|
||||
static result_type visit(const Tensor& in0,
|
||||
const Tensor& in1,
|
||||
Tensor& out,
|
||||
const AutoBroadcastSpec& broadcast_spec) {
|
||||
using T = typename element_type_traits<ET>::value_type;
|
||||
reference::add(in0.data<const T>(),
|
||||
in1.data<const T>(),
|
||||
out.data<T>(),
|
||||
in0.get_shape(),
|
||||
in1.get_shape(),
|
||||
broadcast_spec);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool evaluate_add(const HostTensorPtr& arg0,
|
||||
const HostTensorPtr& arg1,
|
||||
const HostTensorPtr& out,
|
||||
const op::AutoBroadcastSpec& broadcast_spec) {
|
||||
bool rc = true;
|
||||
out->set_broadcast(broadcast_spec, arg0, arg1);
|
||||
switch (arg0->get_element_type()) {
|
||||
NGRAPH_TYPE_CASE(evaluate_add, i8, arg0, arg1, out, broadcast_spec);
|
||||
NGRAPH_TYPE_CASE(evaluate_add, i16, arg0, arg1, out, broadcast_spec);
|
||||
NGRAPH_TYPE_CASE(evaluate_add, i32, arg0, arg1, out, broadcast_spec);
|
||||
NGRAPH_TYPE_CASE(evaluate_add, i64, arg0, arg1, out, broadcast_spec);
|
||||
NGRAPH_TYPE_CASE(evaluate_add, u8, arg0, arg1, out, broadcast_spec);
|
||||
NGRAPH_TYPE_CASE(evaluate_add, u16, arg0, arg1, out, broadcast_spec);
|
||||
NGRAPH_TYPE_CASE(evaluate_add, u32, arg0, arg1, out, broadcast_spec);
|
||||
NGRAPH_TYPE_CASE(evaluate_add, u64, arg0, arg1, out, broadcast_spec);
|
||||
NGRAPH_TYPE_CASE(evaluate_add, bf16, arg0, arg1, out, broadcast_spec);
|
||||
NGRAPH_TYPE_CASE(evaluate_add, f16, arg0, arg1, out, broadcast_spec);
|
||||
NGRAPH_TYPE_CASE(evaluate_add, f32, arg0, arg1, out, broadcast_spec);
|
||||
default:
|
||||
rc = false;
|
||||
break;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
} // namespace
|
||||
};
|
||||
} // namespace add
|
||||
|
||||
// ------------------------------- v1 ------------------------------------------
|
||||
|
||||
op::v1::Add::Add(const Output<Node>& arg0, const Output<Node>& arg1, const AutoBroadcastSpec& auto_broadcast)
|
||||
namespace v1 {
|
||||
Add::Add(const Output<Node>& arg0, const Output<Node>& arg1, const AutoBroadcastSpec& auto_broadcast)
|
||||
: BinaryElementwiseArithmetic(arg0, arg1, auto_broadcast) {
|
||||
constructor_validate_and_infer_types();
|
||||
}
|
||||
|
||||
bool op::v1::Add::visit_attributes(AttributeVisitor& visitor) {
|
||||
OV_OP_SCOPE(v1_Add_visit_attributes);
|
||||
BinaryElementwiseArithmetic::visit_attributes(visitor);
|
||||
return true;
|
||||
}
|
||||
|
||||
shared_ptr<Node> op::v1::Add::clone_with_new_inputs(const OutputVector& new_args) const {
|
||||
std::shared_ptr<Node> Add::clone_with_new_inputs(const OutputVector& new_args) const {
|
||||
OV_OP_SCOPE(v1_Add_clone_with_new_inputs);
|
||||
check_new_args_count(this, new_args);
|
||||
return make_shared<op::v1::Add>(new_args.at(0), new_args.at(1), this->get_autob());
|
||||
return std::make_shared<op::v1::Add>(new_args.at(0), new_args.at(1), this->get_autob());
|
||||
}
|
||||
|
||||
bool op::v1::Add::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const {
|
||||
bool Add::evaluate(ov::TensorVector& outputs, const ov::TensorVector& inputs) const {
|
||||
OV_OP_SCOPE(v1_Add_evaluate);
|
||||
return add::evaluate_add(inputs[0], inputs[1], outputs[0], get_autob());
|
||||
OPENVINO_ASSERT(outputs.size() == 1);
|
||||
OPENVINO_ASSERT(inputs.size() == 2);
|
||||
|
||||
outputs[0].set_shape(infer_broadcast_shape(this, inputs[0].get_shape(), inputs[1].get_shape()));
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<bf16, f16, f32, i8, i16, i32, i64, u8, u16, u32, u64>::apply<add::Evaluate>(
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
outputs[0],
|
||||
get_autob());
|
||||
}
|
||||
|
||||
bool op::v1::Add::evaluate(ov::TensorVector& outputs, const ov::TensorVector& inputs) const {
|
||||
OV_OP_SCOPE(v1_Add_evaluate);
|
||||
if (std::none_of(inputs.cbegin(), inputs.cend(), [](const ov::Tensor& t) {
|
||||
return is_vector(t.get_shape()) && t.get_shape().front() == 0;
|
||||
})) {
|
||||
return BinaryElementwiseArithmetic::evaluate(outputs, inputs);
|
||||
} else {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
bool op::v1::Add::has_evaluate() const {
|
||||
bool Add::has_evaluate() const {
|
||||
OV_OP_SCOPE(v1_Add_has_evaluate);
|
||||
switch (get_input_element_type(0)) {
|
||||
case ngraph::element::i8:
|
||||
case ngraph::element::i16:
|
||||
case ngraph::element::i32:
|
||||
case ngraph::element::i64:
|
||||
case ngraph::element::u8:
|
||||
case ngraph::element::u16:
|
||||
case ngraph::element::u32:
|
||||
case ngraph::element::u64:
|
||||
case ngraph::element::bf16:
|
||||
case ngraph::element::f16:
|
||||
case ngraph::element::f32:
|
||||
case element::i8:
|
||||
case element::i16:
|
||||
case element::i32:
|
||||
case element::i64:
|
||||
case element::u8:
|
||||
case element::u16:
|
||||
case element::u32:
|
||||
case element::u64:
|
||||
case element::bf16:
|
||||
case element::f16:
|
||||
case element::f32:
|
||||
return true;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} // namespace v1
|
||||
} // namespace op
|
||||
} // namespace ov
|
||||
|
@ -7,7 +7,7 @@
|
||||
#include "element_visitor.hpp"
|
||||
#include "itt.hpp"
|
||||
#include "openvino/reference/mod.hpp"
|
||||
#include "shape_util.hpp"
|
||||
#include "utils.hpp"
|
||||
|
||||
namespace ov {
|
||||
namespace op {
|
||||
@ -49,7 +49,7 @@ bool Mod::evaluate(ov::TensorVector& outputs, const ov::TensorVector& inputs) co
|
||||
OPENVINO_ASSERT(outputs.size() == 1);
|
||||
OPENVINO_ASSERT(inputs.size() == 2);
|
||||
|
||||
outputs[0].set_shape(ov::util::get_broadcast_shape(inputs[0].get_shape(), inputs[1].get_shape(), get_autob()));
|
||||
outputs[0].set_shape(infer_broadcast_shape(this, inputs[0].get_shape(), inputs[1].get_shape()));
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<i8, i16, i32, i64, u8, u16, u32, u64>::apply<mod::Evaluate>(inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
|
@ -8,7 +8,7 @@
|
||||
#include "itt.hpp"
|
||||
#include "openvino/op/logical_xor.hpp"
|
||||
#include "openvino/reference/xor.hpp"
|
||||
#include "shape_util.hpp"
|
||||
#include "utils.hpp"
|
||||
|
||||
namespace ov {
|
||||
namespace op {
|
||||
@ -37,18 +37,17 @@ bool input_supported_type(const element::Type& et) {
|
||||
return et == element::boolean;
|
||||
}
|
||||
|
||||
bool evaluate(TensorVector& outputs, const TensorVector& inputs, const AutoBroadcastSpec& broadcast_spec) {
|
||||
bool evaluate(const Node* const op, TensorVector& outputs, const TensorVector& inputs) {
|
||||
OPENVINO_ASSERT(outputs.size() == 1);
|
||||
OPENVINO_ASSERT(inputs.size() == 2);
|
||||
|
||||
outputs[0].set_shape(ov::util::get_broadcast_shape(inputs[0].get_shape(), inputs[1].get_shape(), broadcast_spec));
|
||||
|
||||
outputs[0].set_shape(infer_broadcast_shape(op, inputs[0].get_shape(), inputs[1].get_shape()));
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<boolean>::apply<logxor::Evaluate>(inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
outputs[0],
|
||||
broadcast_spec);
|
||||
op->get_autob());
|
||||
}
|
||||
} // namespace
|
||||
} // namespace logxor
|
||||
@ -68,7 +67,7 @@ std::shared_ptr<Node> Xor::clone_with_new_inputs(const OutputVector& new_args) c
|
||||
bool Xor::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
OV_OP_SCOPE(v0_Xor_evaluate);
|
||||
|
||||
return logxor::evaluate(outputs, inputs, get_autob());
|
||||
return logxor::evaluate(this, outputs, inputs);
|
||||
}
|
||||
|
||||
bool Xor::has_evaluate() const {
|
||||
@ -92,7 +91,7 @@ std::shared_ptr<Node> LogicalXor::clone_with_new_inputs(const OutputVector& new_
|
||||
bool LogicalXor::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
OV_OP_SCOPE(v1_LogicalXor_evaluate);
|
||||
|
||||
return logxor::evaluate(outputs, inputs, get_autob());
|
||||
return logxor::evaluate(this, outputs, inputs);
|
||||
}
|
||||
|
||||
bool LogicalXor::has_evaluate() const {
|
||||
|
@ -3847,7 +3847,7 @@ public:
|
||||
const ov::op::AutoBroadcastSpec& auto_broadcast = ov::op::AutoBroadcastSpec(ov::op::AutoBroadcastType::NUMPY))
|
||||
: ov::op::v1::Add(arg0, arg1, auto_broadcast) {
|
||||
ON_CALL(*this, evaluate).WillByDefault([this](ov::TensorVector& outputs, const ov::TensorVector& inputs) {
|
||||
return ov::Node::evaluate(outputs, inputs);
|
||||
return ov::op::v1::Add::evaluate(outputs, inputs);
|
||||
});
|
||||
}
|
||||
MOCK_METHOD(bool,
|
||||
|
Loading…
Reference in New Issue
Block a user