[VPU] removal deprecated test (#10597)

* [VPU] removal deprecated test

* Adding ie plugin cache reset to avoid myriad device is not opened issue

* Review changes

* Review changes
This commit is contained in:
Aleksandr Korolev 2022-03-21 21:14:41 +03:00 committed by GitHub
parent d84d00e2d6
commit e8288eb31d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 46 additions and 154 deletions

View File

@ -0,0 +1,34 @@
// Copyright (C) 2018-2022 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include <vector>
#include "single_layer_tests/experimental_detectron_roifeatureextractor.hpp"
using namespace ov::test;
using namespace ov::test::subgraph;
namespace {
const std::vector<int64_t> outputSize = {7};
const std::vector<int64_t> samplingRatio = {2};
const std::vector<std::vector<int64_t>> pyramidScales = {
{1, 2, 4, 8},
};
const std::vector<std::vector<InputShape>> staticInputShape = {
static_shapes_to_test_representation({{50, 4}, {1, 256, 160, 160}}),
};
INSTANTIATE_TEST_SUITE_P(smoke_ExperimentalROI_static, ExperimentalDetectronROIFeatureExtractorLayerTest,
::testing::Combine(
::testing::ValuesIn(staticInputShape),
::testing::ValuesIn(outputSize),
::testing::ValuesIn(samplingRatio),
::testing::ValuesIn(pyramidScales),
::testing::Values(false),
::testing::Values(ov::element::Type_t::f16),
::testing::Values(CommonTestUtils::DEVICE_MYRIAD)),
ExperimentalDetectronROIFeatureExtractorLayerTest::getTestCaseName);
} // namespace

View File

@ -12,6 +12,7 @@
#include "common_test_utils/test_constants.hpp"
#include "common_test_utils/common_utils.hpp"
#include "functional_test_utils/plugin_cache.hpp"
#include "functional_test_utils/ov_plugin_cache.hpp"
#include "functional_test_utils/skip_tests_config.hpp"
#include "functional_test_utils/blob_utils.hpp"
@ -130,6 +131,10 @@ public:
std::string deviceName;
void SetUp() override {
// TODO: Remove it after fixing issue 69529
// w/a for myriad (cann't store 2 caches simultaneously)
PluginCache::get().reset();
SKIP_IF_CURRENT_TEST_IS_DISABLED();
OVClassNetworkTest::SetUp();
deviceName = GetParam();

View File

@ -68,6 +68,7 @@ void EltwiseLayerTest::transformInputShapesAccordingEltwise(const ov::PartialSha
}
void EltwiseLayerTest::SetUp() {
// TODO: Remove it after fixing issue 69529
// w/a for myriad (cann't store 2 caches simultaneously)
PluginCache::get().reset();

View File

@ -4,6 +4,7 @@
#include "ngraph_functions/builders.hpp"
#include "functional_test_utils/ov_tensor_utils.hpp"
#include "functional_test_utils/plugin_cache.hpp"
#include "shared_test_classes/single_layer/experimental_detectron_roifeatureextractor.hpp"
namespace ov {
@ -46,6 +47,10 @@ std::string ExperimentalDetectronROIFeatureExtractorLayerTest::getTestCaseName(
}
void ExperimentalDetectronROIFeatureExtractorLayerTest::SetUp() {
// TODO: Remove it after fixing issue 69529
// w/a for myriad (cann't store 2 caches simultaneously)
PluginCache::get().reset();
std::vector<InputShape> inputShapes;
int64_t outputSize, samplingRatio;
std::vector<int64_t> pyramidScales;

View File

@ -30,6 +30,7 @@ PluginCache &PluginCache::get() {
}
std::shared_ptr<InferenceEngine::Core> PluginCache::ie(const std::string &deviceToCheck) {
// TODO: Remove it after fixing issue 69529
// w/a for myriad (cann't store 2 caches simultaneously)
ov::test::utils::PluginCache::get().reset();

View File

@ -1,12 +0,0 @@
// Copyright (C) 2018-2022 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include "myriad_layers_roi_feature_extractor_test.hpp"
INSTANTIATE_TEST_SUITE_P(accuracy, myriadLayersTestsROIFeatureExtractor_smoke,
::testing::Combine(
::testing::ValuesIn(s_ROIFeatureExtractorLayerInput),
::testing::ValuesIn(s_ROIFeatureExtractorLayerParam),
::testing::ValuesIn(s_ROIFeatureExtractorNumROIs))
);

View File

@ -1,142 +0,0 @@
// Copyright (C) 2018-2022 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include <gtest/gtest.h>
#include "myriad_layers_reference_functions.hpp"
#include "myriad_layers_tests.hpp"
using namespace InferenceEngine;
#define NUM_ELEM_ROIS (4)
#define ERROR_BOUND (2.5e-3f)
struct roi_feature_extractor_param {
int in_net_w;
int in_net_h;
uint32_t output_size;
int sampling_ratio;
friend std::ostream& operator<<(std::ostream& os, roi_feature_extractor_param const& tst)
{
return os << "input net width = " << tst.in_net_w
<< ", input net height = " << tst.in_net_h
<< ", output_size = " << tst.output_size
<< ", sampling_ratio = " << tst.sampling_ratio;
};
};
PRETTY_PARAM(number_rois, uint32_t);
using ROIFeatureExtractorTestParams = std::tuple<Dims, roi_feature_extractor_param, number_rois>;
typedef myriadLayerTestBaseWithParam<ROIFeatureExtractorTestParams> myriadLayersTestsROIFeatureExtractor_smoke;
static void genROIs(InferenceEngine::Blob::Ptr rois,
const roi_feature_extractor_param& params,
const uint32_t num_rois) {
ie_fp16 *roisBlob_data = rois->buffer().as<ie_fp16*>();
const int max_range_width = params.in_net_w * 4 / 5;
const int max_range_height = params.in_net_h * 4 / 5;
for (int i = 0; i < num_rois; i++) {
int x0 = std::rand() % max_range_width;
int x1 = x0 + (std::rand() % (params.in_net_w - x0 - 1)) + 1;
int y0 = std::rand() % max_range_height;
int y1 = y0 + (std::rand() % (params.in_net_h - y0 - 1)) + 1;
roisBlob_data[i * NUM_ELEM_ROIS + 0] = PrecisionUtils::f32tof16(x0);
roisBlob_data[i * NUM_ELEM_ROIS + 1] = PrecisionUtils::f32tof16(y0);
roisBlob_data[i * NUM_ELEM_ROIS + 2] = PrecisionUtils::f32tof16(x1);
roisBlob_data[i * NUM_ELEM_ROIS + 3] = PrecisionUtils::f32tof16(y1);
}
}
TEST_P(myriadLayersTestsROIFeatureExtractor_smoke, ROIFeatureExtractor) {
tensor_test_params dims_layer_in = std::get<0>(GetParam());
roi_feature_extractor_param test_params = std::get<1>(GetParam());
const uint32_t num_rois = std::get<2>(GetParam());
bool use_output_rois = true;
const int levels_num = 4;
_config[InferenceEngine::MYRIAD_DETECT_NETWORK_BATCH] = CONFIG_VALUE(NO);
IN_OUT_desc input_tensors, output_tensors;
input_tensors.push_back({num_rois, NUM_ELEM_ROIS});
for (int i = 0; i < levels_num; i++) {
input_tensors.push_back({1, dims_layer_in.c, dims_layer_in.h / (1 << i), dims_layer_in.w / (1 << i)});
}
output_tensors.push_back({num_rois, dims_layer_in.c, test_params.output_size, test_params.output_size});
// adding output ROIs
if (use_output_rois)
output_tensors.push_back({num_rois, NUM_ELEM_ROIS});
SetInputTensors(input_tensors);
SetOutputTensors(output_tensors);
std::vector<int> pyramid_scales = {4, 8, 16, 32, 64};
std::string pyramid_scales_str = "";
for (auto i = 0; i < pyramid_scales.size(); i++) {
pyramid_scales_str += std::to_string(pyramid_scales[i]);
if (i != pyramid_scales.size() - 1) pyramid_scales_str += ",";
}
std::map<std::string, std::string> layer_params = {
{"output_size", std::to_string(test_params.output_size)},
{"sampling_ratio", std::to_string(test_params.sampling_ratio)},
{"pyramid_scales", pyramid_scales_str},
};
makeSingleLayerNetwork(LayerInitParams("ExperimentalDetectronROIFeatureExtractor").params(layer_params));
/* Input data generating */
for (auto blob : _inputMap) {
if (blob.second == _inputMap.begin()->second) {
genROIs(blob.second, test_params, num_rois);
} else {
GenRandomData(blob.second);
}
}
std::vector<InferenceEngine::Blob::Ptr> refInputBlobs;
std::vector<InferenceEngine::Blob::Ptr> refOutputBlobs;
for (auto blob : _inputMap) {
refInputBlobs.push_back(blob.second);
}
for (auto blob : _outputMap) {
auto refOutputBlob = make_shared_blob<float>({Precision::FP32,
blob.second->getTensorDesc().getDims(),
blob.second->getTensorDesc().getLayout()});
refOutputBlob->allocate();
refOutputBlobs.push_back(refOutputBlob);
}
ref_ROIFeatureExtractor(refInputBlobs,
refOutputBlobs[0],
use_output_rois ? refOutputBlobs[1] : nullptr,
pyramid_scales,
test_params.sampling_ratio,
test_params.output_size,
test_params.output_size);
ASSERT_TRUE(Infer());
auto dst0 = _outputMap.begin()->second;
CompareCommonAbsolute(dst0, refOutputBlobs[0], ERROR_BOUND);
if (use_output_rois) {
auto dst1 = (++_outputMap.begin())->second;
CompareCommonAbsolute(dst1, refOutputBlobs[1], ERROR_BOUND);
}
}
static std::vector<Dims> s_ROIFeatureExtractorLayerInput = {
{{1, 256, 160, 160}},
};
static std::vector<roi_feature_extractor_param> s_ROIFeatureExtractorLayerParam = {
{{640, 640, 7, 2}},
};
static std::vector<number_rois> s_ROIFeatureExtractorNumROIs = {
50
};