[VPU] removal deprecated test (#10597)
* [VPU] removal deprecated test * Adding ie plugin cache reset to avoid myriad device is not opened issue * Review changes * Review changes
This commit is contained in:
parent
d84d00e2d6
commit
e8288eb31d
@ -0,0 +1,34 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
#include "single_layer_tests/experimental_detectron_roifeatureextractor.hpp"
|
||||
|
||||
using namespace ov::test;
|
||||
using namespace ov::test::subgraph;
|
||||
|
||||
namespace {
|
||||
|
||||
const std::vector<int64_t> outputSize = {7};
|
||||
const std::vector<int64_t> samplingRatio = {2};
|
||||
|
||||
const std::vector<std::vector<int64_t>> pyramidScales = {
|
||||
{1, 2, 4, 8},
|
||||
};
|
||||
|
||||
const std::vector<std::vector<InputShape>> staticInputShape = {
|
||||
static_shapes_to_test_representation({{50, 4}, {1, 256, 160, 160}}),
|
||||
};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_ExperimentalROI_static, ExperimentalDetectronROIFeatureExtractorLayerTest,
|
||||
::testing::Combine(
|
||||
::testing::ValuesIn(staticInputShape),
|
||||
::testing::ValuesIn(outputSize),
|
||||
::testing::ValuesIn(samplingRatio),
|
||||
::testing::ValuesIn(pyramidScales),
|
||||
::testing::Values(false),
|
||||
::testing::Values(ov::element::Type_t::f16),
|
||||
::testing::Values(CommonTestUtils::DEVICE_MYRIAD)),
|
||||
ExperimentalDetectronROIFeatureExtractorLayerTest::getTestCaseName);
|
||||
} // namespace
|
@ -12,6 +12,7 @@
|
||||
#include "common_test_utils/test_constants.hpp"
|
||||
#include "common_test_utils/common_utils.hpp"
|
||||
|
||||
#include "functional_test_utils/plugin_cache.hpp"
|
||||
#include "functional_test_utils/ov_plugin_cache.hpp"
|
||||
#include "functional_test_utils/skip_tests_config.hpp"
|
||||
#include "functional_test_utils/blob_utils.hpp"
|
||||
@ -130,6 +131,10 @@ public:
|
||||
std::string deviceName;
|
||||
|
||||
void SetUp() override {
|
||||
// TODO: Remove it after fixing issue 69529
|
||||
// w/a for myriad (cann't store 2 caches simultaneously)
|
||||
PluginCache::get().reset();
|
||||
|
||||
SKIP_IF_CURRENT_TEST_IS_DISABLED();
|
||||
OVClassNetworkTest::SetUp();
|
||||
deviceName = GetParam();
|
||||
|
@ -68,6 +68,7 @@ void EltwiseLayerTest::transformInputShapesAccordingEltwise(const ov::PartialSha
|
||||
}
|
||||
|
||||
void EltwiseLayerTest::SetUp() {
|
||||
// TODO: Remove it after fixing issue 69529
|
||||
// w/a for myriad (cann't store 2 caches simultaneously)
|
||||
PluginCache::get().reset();
|
||||
|
||||
|
@ -4,6 +4,7 @@
|
||||
|
||||
#include "ngraph_functions/builders.hpp"
|
||||
#include "functional_test_utils/ov_tensor_utils.hpp"
|
||||
#include "functional_test_utils/plugin_cache.hpp"
|
||||
#include "shared_test_classes/single_layer/experimental_detectron_roifeatureextractor.hpp"
|
||||
|
||||
namespace ov {
|
||||
@ -46,6 +47,10 @@ std::string ExperimentalDetectronROIFeatureExtractorLayerTest::getTestCaseName(
|
||||
}
|
||||
|
||||
void ExperimentalDetectronROIFeatureExtractorLayerTest::SetUp() {
|
||||
// TODO: Remove it after fixing issue 69529
|
||||
// w/a for myriad (cann't store 2 caches simultaneously)
|
||||
PluginCache::get().reset();
|
||||
|
||||
std::vector<InputShape> inputShapes;
|
||||
int64_t outputSize, samplingRatio;
|
||||
std::vector<int64_t> pyramidScales;
|
||||
|
@ -30,6 +30,7 @@ PluginCache &PluginCache::get() {
|
||||
}
|
||||
|
||||
std::shared_ptr<InferenceEngine::Core> PluginCache::ie(const std::string &deviceToCheck) {
|
||||
// TODO: Remove it after fixing issue 69529
|
||||
// w/a for myriad (cann't store 2 caches simultaneously)
|
||||
ov::test::utils::PluginCache::get().reset();
|
||||
|
||||
|
@ -1,12 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "myriad_layers_roi_feature_extractor_test.hpp"
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(accuracy, myriadLayersTestsROIFeatureExtractor_smoke,
|
||||
::testing::Combine(
|
||||
::testing::ValuesIn(s_ROIFeatureExtractorLayerInput),
|
||||
::testing::ValuesIn(s_ROIFeatureExtractorLayerParam),
|
||||
::testing::ValuesIn(s_ROIFeatureExtractorNumROIs))
|
||||
);
|
@ -1,142 +0,0 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "myriad_layers_reference_functions.hpp"
|
||||
#include "myriad_layers_tests.hpp"
|
||||
|
||||
using namespace InferenceEngine;
|
||||
|
||||
#define NUM_ELEM_ROIS (4)
|
||||
#define ERROR_BOUND (2.5e-3f)
|
||||
|
||||
struct roi_feature_extractor_param {
|
||||
int in_net_w;
|
||||
int in_net_h;
|
||||
uint32_t output_size;
|
||||
int sampling_ratio;
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, roi_feature_extractor_param const& tst)
|
||||
{
|
||||
return os << "input net width = " << tst.in_net_w
|
||||
<< ", input net height = " << tst.in_net_h
|
||||
<< ", output_size = " << tst.output_size
|
||||
<< ", sampling_ratio = " << tst.sampling_ratio;
|
||||
};
|
||||
};
|
||||
|
||||
PRETTY_PARAM(number_rois, uint32_t);
|
||||
|
||||
using ROIFeatureExtractorTestParams = std::tuple<Dims, roi_feature_extractor_param, number_rois>;
|
||||
|
||||
typedef myriadLayerTestBaseWithParam<ROIFeatureExtractorTestParams> myriadLayersTestsROIFeatureExtractor_smoke;
|
||||
|
||||
static void genROIs(InferenceEngine::Blob::Ptr rois,
|
||||
const roi_feature_extractor_param& params,
|
||||
const uint32_t num_rois) {
|
||||
ie_fp16 *roisBlob_data = rois->buffer().as<ie_fp16*>();
|
||||
const int max_range_width = params.in_net_w * 4 / 5;
|
||||
const int max_range_height = params.in_net_h * 4 / 5;
|
||||
|
||||
for (int i = 0; i < num_rois; i++) {
|
||||
int x0 = std::rand() % max_range_width;
|
||||
int x1 = x0 + (std::rand() % (params.in_net_w - x0 - 1)) + 1;
|
||||
int y0 = std::rand() % max_range_height;
|
||||
int y1 = y0 + (std::rand() % (params.in_net_h - y0 - 1)) + 1;
|
||||
|
||||
roisBlob_data[i * NUM_ELEM_ROIS + 0] = PrecisionUtils::f32tof16(x0);
|
||||
roisBlob_data[i * NUM_ELEM_ROIS + 1] = PrecisionUtils::f32tof16(y0);
|
||||
roisBlob_data[i * NUM_ELEM_ROIS + 2] = PrecisionUtils::f32tof16(x1);
|
||||
roisBlob_data[i * NUM_ELEM_ROIS + 3] = PrecisionUtils::f32tof16(y1);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_P(myriadLayersTestsROIFeatureExtractor_smoke, ROIFeatureExtractor) {
|
||||
tensor_test_params dims_layer_in = std::get<0>(GetParam());
|
||||
roi_feature_extractor_param test_params = std::get<1>(GetParam());
|
||||
const uint32_t num_rois = std::get<2>(GetParam());
|
||||
|
||||
bool use_output_rois = true;
|
||||
const int levels_num = 4;
|
||||
|
||||
_config[InferenceEngine::MYRIAD_DETECT_NETWORK_BATCH] = CONFIG_VALUE(NO);
|
||||
|
||||
IN_OUT_desc input_tensors, output_tensors;
|
||||
input_tensors.push_back({num_rois, NUM_ELEM_ROIS});
|
||||
for (int i = 0; i < levels_num; i++) {
|
||||
input_tensors.push_back({1, dims_layer_in.c, dims_layer_in.h / (1 << i), dims_layer_in.w / (1 << i)});
|
||||
}
|
||||
output_tensors.push_back({num_rois, dims_layer_in.c, test_params.output_size, test_params.output_size});
|
||||
// adding output ROIs
|
||||
if (use_output_rois)
|
||||
output_tensors.push_back({num_rois, NUM_ELEM_ROIS});
|
||||
|
||||
SetInputTensors(input_tensors);
|
||||
SetOutputTensors(output_tensors);
|
||||
|
||||
std::vector<int> pyramid_scales = {4, 8, 16, 32, 64};
|
||||
std::string pyramid_scales_str = "";
|
||||
for (auto i = 0; i < pyramid_scales.size(); i++) {
|
||||
pyramid_scales_str += std::to_string(pyramid_scales[i]);
|
||||
if (i != pyramid_scales.size() - 1) pyramid_scales_str += ",";
|
||||
}
|
||||
|
||||
std::map<std::string, std::string> layer_params = {
|
||||
{"output_size", std::to_string(test_params.output_size)},
|
||||
{"sampling_ratio", std::to_string(test_params.sampling_ratio)},
|
||||
{"pyramid_scales", pyramid_scales_str},
|
||||
};
|
||||
|
||||
makeSingleLayerNetwork(LayerInitParams("ExperimentalDetectronROIFeatureExtractor").params(layer_params));
|
||||
|
||||
/* Input data generating */
|
||||
for (auto blob : _inputMap) {
|
||||
if (blob.second == _inputMap.begin()->second) {
|
||||
genROIs(blob.second, test_params, num_rois);
|
||||
} else {
|
||||
GenRandomData(blob.second);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<InferenceEngine::Blob::Ptr> refInputBlobs;
|
||||
std::vector<InferenceEngine::Blob::Ptr> refOutputBlobs;
|
||||
for (auto blob : _inputMap) {
|
||||
refInputBlobs.push_back(blob.second);
|
||||
}
|
||||
for (auto blob : _outputMap) {
|
||||
auto refOutputBlob = make_shared_blob<float>({Precision::FP32,
|
||||
blob.second->getTensorDesc().getDims(),
|
||||
blob.second->getTensorDesc().getLayout()});
|
||||
refOutputBlob->allocate();
|
||||
refOutputBlobs.push_back(refOutputBlob);
|
||||
}
|
||||
ref_ROIFeatureExtractor(refInputBlobs,
|
||||
refOutputBlobs[0],
|
||||
use_output_rois ? refOutputBlobs[1] : nullptr,
|
||||
pyramid_scales,
|
||||
test_params.sampling_ratio,
|
||||
test_params.output_size,
|
||||
test_params.output_size);
|
||||
|
||||
ASSERT_TRUE(Infer());
|
||||
|
||||
auto dst0 = _outputMap.begin()->second;
|
||||
CompareCommonAbsolute(dst0, refOutputBlobs[0], ERROR_BOUND);
|
||||
if (use_output_rois) {
|
||||
auto dst1 = (++_outputMap.begin())->second;
|
||||
CompareCommonAbsolute(dst1, refOutputBlobs[1], ERROR_BOUND);
|
||||
}
|
||||
}
|
||||
|
||||
static std::vector<Dims> s_ROIFeatureExtractorLayerInput = {
|
||||
{{1, 256, 160, 160}},
|
||||
};
|
||||
|
||||
static std::vector<roi_feature_extractor_param> s_ROIFeatureExtractorLayerParam = {
|
||||
{{640, 640, 7, 2}},
|
||||
};
|
||||
|
||||
static std::vector<number_rois> s_ROIFeatureExtractorNumROIs = {
|
||||
50
|
||||
};
|
Loading…
Reference in New Issue
Block a user