[IE][TOOLS] Improvements for compile_tool (#2555)
* Split cmd arguments onto sections (common, MYRIAD, FPGA). * Add `-iol` cmd argument as `-iop` analogue for layouts. * Remove limitations over `-ip`, `-op`, `-iop` arguments. Now they supports full meaningfull set of Precision/Layout values and will allow to user set any precision for any input/output. The applicability for this in under user reponsibility and support under plugin reponsibility. * Add VPUX default configuration. * Adjust code style to the project common style. Co-authored-by: Alexander Novak <sasha-novak@yandex.ru>
This commit is contained in:
parent
6f0aaf2bb5
commit
e9fde8f497
@ -1,15 +1,13 @@
|
||||
# Compile Tool {#openvino_inference_engine_tools_compile_tool_README}
|
||||
|
||||
|
||||
The Compile tool is a C++ application that enables you to dump a loaded
|
||||
executable network blob. The tool is delivered as an executable file that can be
|
||||
run on both Linux\* and Windows\*. The tool is located in the `<INSTALLROOT>/deployment_tools/inference_engine/lib/intel64/` directory on
|
||||
Linux and `<INSTALL_DIR\deployment_tools\inference_engine\bin\intel64\Release>`
|
||||
on Windows.
|
||||
The Compile tool is a C++ application that enables you to dump a loaded executable network blob.
|
||||
The tool is delivered as an executable file that can be run on both Linux\* and Windows\*.
|
||||
The tool is located in the `<INSTALLROOT>/deployment_tools/inference_engine/lib/intel64/` directory on Linux
|
||||
and `<INSTALL_DIR\deployment_tools\inference_engine\bin\intel64\Release>` on Windows.
|
||||
|
||||
The workflow of the Compile tool is as follows:
|
||||
1. Upon the start, the tool application reads command-line parameters and loads a network to the
|
||||
Inference Engine device.
|
||||
|
||||
1. Upon the start, the tool application reads command-line parameters and loads a network to the Inference Engine device.
|
||||
2. The application exports a blob with the compiled network and writes it to the output file.
|
||||
|
||||
## Run the Compile Tool
|
||||
@ -19,37 +17,53 @@ Running the application with the `-h` option yields the following usage message:
|
||||
```sh
|
||||
./compile_tool -h
|
||||
Inference Engine:
|
||||
API version ............ <version>
|
||||
Build .................. <build>
|
||||
API version ............ 2.1
|
||||
Build .................. custom_vv/compile-tool_8b57af00330063c7f302aaac4d41805de21fc54a
|
||||
Description ....... API
|
||||
|
||||
compile_tool [OPTIONS]
|
||||
[OPTIONS]:
|
||||
|
||||
Common options:
|
||||
-h Optional. Print the usage message.
|
||||
-m <value> Required. Path to the XML model.
|
||||
-d <value> Required. Target device name.
|
||||
-d <value> Required. Specify a target device for which executable network will be compiled.
|
||||
Use "-d HETERO:<comma-separated_devices_list>" format to specify HETERO plugin.
|
||||
Use "-d MULTI:<comma-separated_devices_list>" format to specify MULTI plugin.
|
||||
The application looks for a suitable plugin for the specified device.
|
||||
-o <value> Optional. Path to the output file. Default value: "<model_xml_file>.blob".
|
||||
-c <value> Optional. Path to the configuration file. Default value: "config".
|
||||
-ip <value> Optional. Specifies precision for all input layers of the network. Supported values: FP32, FP16, U8. Default value: FP16.
|
||||
-op <value> Optional. Specifies precision for all output layers of the network. Supported values: FP32, FP16, U8. Default value: FP16.
|
||||
-c <value> Optional. Path to the configuration file.
|
||||
-ip <value> Optional. Specifies precision for all input layers of the network.
|
||||
-op <value> Optional. Specifies precision for all output layers of the network.
|
||||
-iop "<value>" Optional. Specifies precision for input and output layers by name.
|
||||
By default, all inputs and outputs have the FP16 precision.
|
||||
Available precisions: FP32, FP16, U8.
|
||||
Example: -iop "input:FP16, output:FP16".
|
||||
Notice that quotes are required.
|
||||
Overwrites precision from ip and op options for specified layers.
|
||||
-il <value> Optional. Specifies layout for all input layers of the network.
|
||||
-ol <value> Optional. Specifies layout for all input layers of the network.
|
||||
-iol "<value>" Optional. Specifies layout for input and output layers by name.
|
||||
Example: -iol "input:NCHW, output:NHWC".
|
||||
Notice that quotes are required.
|
||||
Overwrites layout from il and ol options for specified layers.
|
||||
|
||||
VPU options:
|
||||
-VPU_NUMBER_OF_SHAVES <value> Optional. Specifies number of shaves. Should be set with "VPU_NUMBER_OF_CMX_SLICES". Overwrites value from config.
|
||||
-VPU_NUMBER_OF_CMX_SLICES <value> Optional. Specifies number of CMX slices. Should be set with "VPU_NUMBER_OF_SHAVES". Overwrites value from config.
|
||||
-VPU_TILING_CMX_LIMIT_KB <value> Optional. Specifies CMX limit for data tiling in kB. Value should be equal or greater than -1, where -1 means default value of limit. Overwrites value from config.
|
||||
MYRIAD-specific options:
|
||||
-VPU_NUMBER_OF_SHAVES <value> Optional. Specifies number of shaves.
|
||||
Should be set with "VPU_NUMBER_OF_CMX_SLICES".
|
||||
Overwrites value from config.
|
||||
|
||||
DLA options:
|
||||
-DLA_ARCH_NAME <value> Optional. Specify architecture name used to compile executable network for FPGA device.
|
||||
-VPU_NUMBER_OF_CMX_SLICES <value> Optional. Specifies number of CMX slices.
|
||||
Should be set with "VPU_NUMBER_OF_SHAVES".
|
||||
Overwrites value from config.
|
||||
-VPU_TILING_CMX_LIMIT_KB <value> Optional. Specifies CMX limit for data tiling.
|
||||
Value should be equal or greater than -1.
|
||||
Overwrites value from config.
|
||||
|
||||
FPGA-specific options:
|
||||
-DLA_ARCH_NAME <value> Optional. Specify architecture name used to compile executable network for FPGA device.
|
||||
```
|
||||
|
||||
Running the application with the empty list of options yields an error message.
|
||||
|
||||
To dump a blob using a trained Faster R-CNN network, use the command below:
|
||||
To dump a blob using a trained network, use the command below:
|
||||
|
||||
```sh
|
||||
./compile_tool -m <path_to_model>/model_name.xml
|
||||
@ -64,7 +78,7 @@ To do that, specify the architecture name of the DLA bitstream using the paramet
|
||||
|
||||
### Export
|
||||
|
||||
To save a blob file from your application, call the `InferenceEngine::ExecutableNetwork::Export()`
|
||||
To save a blob file from your application, call the `InferenceEngine::ExecutableNetwork::Export()`
|
||||
method:
|
||||
|
||||
```cpp
|
||||
@ -75,7 +89,7 @@ executableNetwork.Export(file);
|
||||
|
||||
### Import
|
||||
|
||||
To import a blob with the network into your application, call the
|
||||
To import a blob with the network into your application, call the
|
||||
`InferenceEngine::Core::ImportNetwork` method:
|
||||
|
||||
Example:
|
||||
@ -86,5 +100,5 @@ std::ifstream file{"model_name.blob"};
|
||||
InferenceEngine::ExecutableNetwork = ie.ImportNetwork(file, "MYRIAD", {});
|
||||
```
|
||||
|
||||
> **NOTE**: Prior to the import, models must be converted to the Inference Engine format
|
||||
> **NOTE**: Prior to the import, models must be converted to the Inference Engine format
|
||||
> (\*.xml + \*.bin) using the [Model Optimizer tool](https://software.intel.com/en-us/articles/OpenVINO-ModelOptimizer).
|
||||
|
@ -20,61 +20,88 @@
|
||||
#include <vpu/utils/string.hpp>
|
||||
#include "samples/common.hpp"
|
||||
|
||||
static constexpr char help_message[] = "Optional. Print the usage message.";
|
||||
static constexpr char model_message[] = "Required. Path to the XML model.";
|
||||
static constexpr char targetDeviceMessage[] = "Required. Specify a target device for which executable network will be compiled."
|
||||
"Use \"-d HETERO:<comma-separated_devices_list>\" format to specify HETERO plugin. "
|
||||
"Use \"-d MULTI:<comma-separated_devices_list>\" format to specify MULTI plugin. "
|
||||
"The application looks for a suitable plugin for the specified device.";
|
||||
static constexpr char help_message[] =
|
||||
"Optional. Print the usage message.";
|
||||
|
||||
static constexpr char output_message[] = "Optional. Path to the output file. Default value: \"<model_xml_file>.blob\".";
|
||||
static constexpr char config_message[] = "Optional. Path to the configuration file. Default value: \"config\".";
|
||||
static constexpr char number_of_shaves_message[] = "Optional. Specifies number of shaves."
|
||||
" Should be set with \"VPU_NUMBER_OF_CMX_SLICES\"."
|
||||
" Overwrites value from config.";
|
||||
static constexpr char number_of_cmx_slices_message[] = "Optional. Specifies number of CMX slices."
|
||||
" Should be set with \"VPU_NUMBER_OF_SHAVES\"."
|
||||
" Overwrites value from config.";
|
||||
static constexpr char tiling_cmx_limit_message[] = "Optional. Specifies CMX limit for data tiling."
|
||||
" Value should be equal or greater than -1."
|
||||
" Overwrites value from config.";
|
||||
static constexpr char inputs_precision_message[] = "Optional. Specifies precision for all input layers of the network."
|
||||
" Supported values: FP32, FP16, U8. Default value: FP16.";
|
||||
static constexpr char outputs_precision_message[] = "Optional. Specifies precision for all output layers of the network."
|
||||
" Supported values: FP32, FP16, U8. Default value: FP16.";
|
||||
static constexpr char iop_message[] = "Optional. Specifies precision for input and output layers by name.\n"
|
||||
" By default, all inputs and outputs have the FP16 precision.\n"
|
||||
" Available precisions: FP32, FP16, U8.\n"
|
||||
static constexpr char model_message[] =
|
||||
"Required. Path to the XML model.";
|
||||
|
||||
static constexpr char targetDeviceMessage[] =
|
||||
"Required. Specify a target device for which executable network will be compiled.\n"
|
||||
" Use \"-d HETERO:<comma-separated_devices_list>\" format to specify HETERO plugin.\n"
|
||||
" Use \"-d MULTI:<comma-separated_devices_list>\" format to specify MULTI plugin.\n"
|
||||
" The application looks for a suitable plugin for the specified device.";
|
||||
|
||||
static constexpr char output_message[] =
|
||||
"Optional. Path to the output file. Default value: \"<model_xml_file>.blob\".";
|
||||
|
||||
static constexpr char config_message[] =
|
||||
"Optional. Path to the configuration file.";
|
||||
|
||||
static constexpr char inputs_precision_message[] =
|
||||
"Optional. Specifies precision for all input layers of the network.";
|
||||
|
||||
static constexpr char outputs_precision_message[] =
|
||||
"Optional. Specifies precision for all output layers of the network.";
|
||||
|
||||
static constexpr char iop_message[] =
|
||||
"Optional. Specifies precision for input and output layers by name.\n"
|
||||
" Example: -iop \"input:FP16, output:FP16\".\n"
|
||||
" Notice that quotes are required.\n"
|
||||
" Overwrites precision from ip and op options for specified layers.";
|
||||
|
||||
static constexpr char inputs_layout_message[] = "Optional. Specifies layout for all input layers of the network."
|
||||
" Supported values: NCHW, NHWC, NC, C.";
|
||||
static constexpr char outputs_layout_message[] = "Optional. Specifies layout for all input layers of the network."
|
||||
" Supported values: NCHW, NHWC, NC, C.";
|
||||
static constexpr char inputs_layout_message[] =
|
||||
"Optional. Specifies layout for all input layers of the network.";
|
||||
|
||||
static constexpr char dla_arch_name[] = "Optional. Specify architecture name used to compile executable network for FPGA device.";
|
||||
static constexpr char outputs_layout_message[] =
|
||||
"Optional. Specifies layout for all input layers of the network.";
|
||||
|
||||
static constexpr char iol_message[] =
|
||||
"Optional. Specifies layout for input and output layers by name.\n"
|
||||
" Example: -iol \"input:NCHW, output:NHWC\".\n"
|
||||
" Notice that quotes are required.\n"
|
||||
" Overwrites layout from il and ol options for specified layers.";
|
||||
|
||||
// MYRIAD-specific
|
||||
static constexpr char number_of_shaves_message[] =
|
||||
"Optional. Specifies number of shaves.\n"
|
||||
" Should be set with \"VPU_NUMBER_OF_CMX_SLICES\".\n"
|
||||
" Overwrites value from config.\n";
|
||||
|
||||
static constexpr char number_of_cmx_slices_message[] =
|
||||
"Optional. Specifies number of CMX slices.\n"
|
||||
" Should be set with \"VPU_NUMBER_OF_SHAVES\".\n"
|
||||
" Overwrites value from config.";
|
||||
|
||||
static constexpr char tiling_cmx_limit_message[] =
|
||||
"Optional. Specifies CMX limit for data tiling.\n"
|
||||
" Value should be equal or greater than -1.\n"
|
||||
" Overwrites value from config.";
|
||||
|
||||
// FPGA-specific
|
||||
static constexpr char dla_arch_name[] =
|
||||
"Optional. Specify architecture name used to compile executable network for FPGA device.";
|
||||
|
||||
DEFINE_bool(h, false, help_message);
|
||||
DEFINE_string(m, "", model_message);
|
||||
DEFINE_string(d, "", targetDeviceMessage);
|
||||
DEFINE_string(o, "", output_message);
|
||||
DEFINE_string(c, "config", config_message);
|
||||
DEFINE_string(c, "", config_message);
|
||||
DEFINE_string(ip, "", inputs_precision_message);
|
||||
DEFINE_string(op, "", outputs_precision_message);
|
||||
DEFINE_string(iop, "", iop_message);
|
||||
DEFINE_string(il, "", inputs_layout_message);
|
||||
DEFINE_string(ol, "", outputs_layout_message);
|
||||
DEFINE_string(iol, "", iol_message);
|
||||
DEFINE_string(VPU_NUMBER_OF_SHAVES, "", number_of_shaves_message);
|
||||
DEFINE_string(VPU_NUMBER_OF_CMX_SLICES, "", number_of_cmx_slices_message);
|
||||
DEFINE_string(VPU_TILING_CMX_LIMIT_KB, "", tiling_cmx_limit_message);
|
||||
DEFINE_string(DLA_ARCH_NAME, "", dla_arch_name);
|
||||
|
||||
static void showUsage() {
|
||||
std::cout << std::endl;
|
||||
std::cout << "compile_tool [OPTIONS]" << std::endl;
|
||||
std::cout << "[OPTIONS]:" << std::endl;
|
||||
std::cout << std::endl;
|
||||
std::cout << " Common options: " << std::endl;
|
||||
std::cout << " -h " << help_message << std::endl;
|
||||
std::cout << " -m <value> " << model_message << std::endl;
|
||||
std::cout << " -d <value> " << targetDeviceMessage << std::endl;
|
||||
@ -82,20 +109,22 @@ static void showUsage() {
|
||||
std::cout << " -c <value> " << config_message << std::endl;
|
||||
std::cout << " -ip <value> " << inputs_precision_message << std::endl;
|
||||
std::cout << " -op <value> " << outputs_precision_message << std::endl;
|
||||
std::cout << " -iop \"<value>\" " << iop_message << std::endl;
|
||||
std::cout << " -iop \"<value>\" " << iop_message << std::endl;
|
||||
std::cout << " -il <value> " << inputs_layout_message << std::endl;
|
||||
std::cout << " -ol <value> " << outputs_layout_message << std::endl;
|
||||
std::cout << " " << std::endl;
|
||||
std::cout << " VPU options: " << std::endl;
|
||||
std::cout << " -iol \"<value>\" " << iol_message << std::endl;
|
||||
std::cout << std::endl;
|
||||
std::cout << " MYRIAD-specific options: " << std::endl;
|
||||
std::cout << " -VPU_NUMBER_OF_SHAVES <value> " << number_of_shaves_message << std::endl;
|
||||
std::cout << " -VPU_NUMBER_OF_CMX_SLICES <value> " << number_of_cmx_slices_message << std::endl;
|
||||
std::cout << " -VPU_TILING_CMX_LIMIT_KB <value> " << tiling_cmx_limit_message << std::endl;
|
||||
std::cout << " DLA options: " << std::endl;
|
||||
std::cout << std::endl;
|
||||
std::cout << " FPGA-specific options: " << std::endl;
|
||||
std::cout << " -DLA_ARCH_NAME <value> " << dla_arch_name << std::endl;
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
static bool parseCommandLine(int *argc, char ***argv, InferenceEngine::Core& ie) {
|
||||
static bool parseCommandLine(int* argc, char*** argv, InferenceEngine::Core& ie) {
|
||||
gflags::ParseCommandLineNonHelpFlags(argc, argv, true);
|
||||
|
||||
if (FLAGS_h) {
|
||||
@ -126,9 +155,10 @@ static bool parseCommandLine(int *argc, char ***argv, InferenceEngine::Core& ie)
|
||||
return true;
|
||||
}
|
||||
|
||||
static std::map<std::string, std::string> parseConfig(const std::string& configName, char comment = '#') {
|
||||
static std::map<std::string, std::string> parseConfigFile(char comment = '#') {
|
||||
std::map<std::string, std::string> config;
|
||||
std::ifstream file{configName};
|
||||
|
||||
std::ifstream file(FLAGS_c);
|
||||
if (file.is_open()) {
|
||||
std::string key, value;
|
||||
while (file >> key >> value) {
|
||||
@ -141,10 +171,13 @@ static std::map<std::string, std::string> parseConfig(const std::string& configN
|
||||
return config;
|
||||
}
|
||||
|
||||
static std::map<std::string, std::string> configure(const std::string &configFile, const std::string &xmlFileName) {
|
||||
auto config = parseConfig(configFile);
|
||||
static std::map<std::string, std::string> configure() {
|
||||
const bool isMYRIAD = FLAGS_d.find("MYRIAD") != std::string::npos;
|
||||
const bool isFPGA = FLAGS_d.find("FPGA") != std::string::npos;
|
||||
|
||||
if (std::string::npos != FLAGS_d.find("MYRIAD")) {
|
||||
auto config = parseConfigFile();
|
||||
|
||||
if (isMYRIAD) {
|
||||
IE_SUPPRESS_DEPRECATED_START
|
||||
config[VPU_MYRIAD_CONFIG_KEY(PLATFORM)] = "VPU_MYRIAD_2480";
|
||||
IE_SUPPRESS_DEPRECATED_END
|
||||
@ -162,7 +195,7 @@ IE_SUPPRESS_DEPRECATED_END
|
||||
}
|
||||
}
|
||||
|
||||
if (std::string::npos != FLAGS_d.find("FPGA")) {
|
||||
if (isFPGA) {
|
||||
if (!FLAGS_DLA_ARCH_NAME.empty()) {
|
||||
config["DLIA_ARCH_NAME"] = FLAGS_DLA_ARCH_NAME;
|
||||
}
|
||||
@ -171,94 +204,68 @@ IE_SUPPRESS_DEPRECATED_END
|
||||
return config;
|
||||
}
|
||||
|
||||
static std::map<std::string, std::string> parsePrecisions(const std::string &iop) {
|
||||
std::string user_input = iop;
|
||||
user_input.erase(std::remove_if(user_input.begin(), user_input.end(), ::isspace), user_input.end());
|
||||
static std::map<std::string, std::string> parseArgMap(std::string argMap) {
|
||||
argMap.erase(std::remove_if(argMap.begin(), argMap.end(), ::isspace), argMap.end());
|
||||
|
||||
std::vector<std::string> inputs;
|
||||
vpu::splitStringList(user_input, inputs, ',');
|
||||
std::vector<std::string> pairs;
|
||||
vpu::splitStringList(argMap, pairs, ',');
|
||||
|
||||
std::map<std::string, std::string> precisions;
|
||||
for (auto &&input : inputs) {
|
||||
std::vector<std::string> precision;
|
||||
vpu::splitStringList(input, precision, ':');
|
||||
if (precision.size() != 2) {
|
||||
throw std::invalid_argument("Invalid precision " + input + ". Expected layer_name : precision_value");
|
||||
std::map<std::string, std::string> parsedMap;
|
||||
for (auto&& pair : pairs) {
|
||||
std::vector<std::string> keyValue;
|
||||
vpu::splitStringList(pair, keyValue, ':');
|
||||
if (keyValue.size() != 2) {
|
||||
throw std::invalid_argument("Invalid key/value pair " + pair + ". Expected <layer_name>:<value>");
|
||||
}
|
||||
|
||||
precisions[precision[0]] = precision[1];
|
||||
parsedMap[keyValue[0]] = keyValue[1];
|
||||
}
|
||||
|
||||
return precisions;
|
||||
return parsedMap;
|
||||
}
|
||||
|
||||
using supported_precisions_t = std::unordered_map<std::string, InferenceEngine::Precision>;
|
||||
using supported_layouts_t = std::unordered_map<std::string, InferenceEngine::Layout>;
|
||||
using matchLayoutToDims_t = std::unordered_map<size_t, size_t>;
|
||||
|
||||
static InferenceEngine::Layout getLayout(const std::string &value,
|
||||
const supported_layouts_t &supported_layouts) {
|
||||
std::string upper_value = value;
|
||||
std::transform(value.begin(), value.end(), upper_value.begin(), ::toupper);
|
||||
auto layout = supported_layouts.find(upper_value);
|
||||
static InferenceEngine::Layout getLayout(std::string value,
|
||||
const supported_layouts_t& supported_layouts) {
|
||||
std::transform(value.begin(), value.end(), value.begin(), ::toupper);
|
||||
|
||||
const auto layout = supported_layouts.find(value);
|
||||
if (layout == supported_layouts.end()) {
|
||||
throw std::logic_error("\"" + value + "\"" + " is not a valid layout.");
|
||||
throw std::logic_error("\"" + value + "\"" + " is not a valid layout");
|
||||
}
|
||||
|
||||
return layout->second;
|
||||
}
|
||||
|
||||
static InferenceEngine::Precision getPrecision(const std::string &value,
|
||||
const supported_precisions_t &supported_precisions,
|
||||
const std::string& error_report = std::string()) {
|
||||
std::string upper_value = value;
|
||||
std::transform(value.begin(), value.end(), upper_value.begin(), ::toupper);
|
||||
auto precision = supported_precisions.find(upper_value);
|
||||
if (precision == supported_precisions.end()) {
|
||||
std::string report = error_report.empty() ? ("") : (" " + error_report);
|
||||
throw std::logic_error("\"" + value + "\"" + " is not a valid precision" + report);
|
||||
}
|
||||
|
||||
return precision->second;
|
||||
}
|
||||
|
||||
static InferenceEngine::Precision getInputPrecision(const std::string &value) {
|
||||
static const supported_precisions_t supported_precisions = {
|
||||
{ "FP32", InferenceEngine::Precision::FP32 },
|
||||
{ "FP16", InferenceEngine::Precision::FP16 },
|
||||
{ "U8", InferenceEngine::Precision::U8 }
|
||||
};
|
||||
return getPrecision(value, supported_precisions, " for input layer");
|
||||
}
|
||||
|
||||
static InferenceEngine::Precision getOutputPrecision(const std::string &value) {
|
||||
static const supported_precisions_t supported_precisions = {
|
||||
{ "FP32", InferenceEngine::Precision::FP32 },
|
||||
{ "FP16", InferenceEngine::Precision::FP16 }
|
||||
};
|
||||
return getPrecision(value, supported_precisions, " for output layer");
|
||||
}
|
||||
|
||||
static InferenceEngine::Layout getLayout(const std::string &value) {
|
||||
static InferenceEngine::Layout getLayout(const std::string& value) {
|
||||
static const supported_layouts_t supported_layouts = {
|
||||
{ "NCDHW", InferenceEngine::Layout::NCDHW },
|
||||
{ "NDHWC", InferenceEngine::Layout::NDHWC },
|
||||
{ "NCHW", InferenceEngine::Layout::NCHW },
|
||||
{ "NHWC", InferenceEngine::Layout::NHWC },
|
||||
{ "CHW", InferenceEngine::Layout::CHW },
|
||||
{ "NC", InferenceEngine::Layout::NC },
|
||||
{ "C", InferenceEngine::Layout::C }
|
||||
{ "C", InferenceEngine::Layout::C },
|
||||
};
|
||||
|
||||
return getLayout(value, supported_layouts);
|
||||
}
|
||||
|
||||
static bool isMatchLayoutToDims(const InferenceEngine::Layout& layout, const size_t dimension) {
|
||||
static bool isMatchLayoutToDims(InferenceEngine::Layout layout, size_t dimension) {
|
||||
static const matchLayoutToDims_t matchLayoutToDims = {
|
||||
{static_cast<size_t>(InferenceEngine::Layout::NCHW), 4 },
|
||||
{static_cast<size_t>(InferenceEngine::Layout::NHWC), 4 },
|
||||
{static_cast<size_t>(InferenceEngine::Layout::CHW), 3 },
|
||||
{static_cast<size_t>(InferenceEngine::Layout::NC), 2 },
|
||||
{static_cast<size_t>(InferenceEngine::Layout::C), 1 }};
|
||||
{static_cast<size_t>(InferenceEngine::Layout::NCDHW), 5 },
|
||||
{static_cast<size_t>(InferenceEngine::Layout::NDHWC), 5 },
|
||||
{static_cast<size_t>(InferenceEngine::Layout::NCHW), 4 },
|
||||
{static_cast<size_t>(InferenceEngine::Layout::NHWC), 4 },
|
||||
{static_cast<size_t>(InferenceEngine::Layout::CHW), 3 },
|
||||
{static_cast<size_t>(InferenceEngine::Layout::NC), 2 },
|
||||
{static_cast<size_t>(InferenceEngine::Layout::C), 1 }
|
||||
};
|
||||
|
||||
auto dims = matchLayoutToDims.find(static_cast<size_t>(layout));
|
||||
const auto dims = matchLayoutToDims.find(static_cast<size_t>(layout));
|
||||
if (dims == matchLayoutToDims.end()) {
|
||||
throw std::logic_error("Layout is not valid.");
|
||||
}
|
||||
@ -266,6 +273,37 @@ static bool isMatchLayoutToDims(const InferenceEngine::Layout& layout, const siz
|
||||
return dimension == dims->second;
|
||||
}
|
||||
|
||||
static InferenceEngine::Precision getPrecision(std::string value,
|
||||
const supported_precisions_t& supported_precisions) {
|
||||
std::transform(value.begin(), value.end(), value.begin(), ::toupper);
|
||||
|
||||
const auto precision = supported_precisions.find(value);
|
||||
if (precision == supported_precisions.end()) {
|
||||
throw std::logic_error("\"" + value + "\"" + " is not a valid precision");
|
||||
}
|
||||
|
||||
return precision->second;
|
||||
}
|
||||
|
||||
static InferenceEngine::Precision getPrecision(const std::string& value) {
|
||||
static const supported_precisions_t supported_precisions = {
|
||||
{ "FP32", InferenceEngine::Precision::FP32 },
|
||||
{ "FP16", InferenceEngine::Precision::FP16 },
|
||||
{ "BF16", InferenceEngine::Precision::BF16 },
|
||||
{ "U64", InferenceEngine::Precision::U64 },
|
||||
{ "I64", InferenceEngine::Precision::I64 },
|
||||
{ "U32", InferenceEngine::Precision::U32 },
|
||||
{ "I32", InferenceEngine::Precision::I32 },
|
||||
{ "U16", InferenceEngine::Precision::U16 },
|
||||
{ "I16", InferenceEngine::Precision::I16 },
|
||||
{ "U8", InferenceEngine::Precision::U8 },
|
||||
{ "I8", InferenceEngine::Precision::I8 },
|
||||
{ "BOOL", InferenceEngine::Precision::BOOL },
|
||||
};
|
||||
|
||||
return getPrecision(value, supported_precisions);
|
||||
}
|
||||
|
||||
bool isFP16(InferenceEngine::Precision precision) {
|
||||
return precision == InferenceEngine::Precision::FP16;
|
||||
}
|
||||
@ -274,118 +312,149 @@ bool isFP32(InferenceEngine::Precision precision) {
|
||||
return precision == InferenceEngine::Precision::FP32;
|
||||
}
|
||||
|
||||
bool isU8(InferenceEngine::Precision precision) {
|
||||
return precision == InferenceEngine::Precision::U8;
|
||||
}
|
||||
|
||||
bool isFloat(InferenceEngine::Precision precision) {
|
||||
return isFP16(precision) || isFP32(precision);
|
||||
}
|
||||
|
||||
static void setPrecisions(const InferenceEngine::CNNNetwork &network, const std::string &iop) {
|
||||
auto user_precisions_map = parsePrecisions(iop);
|
||||
static void setPrecisions(const InferenceEngine::CNNNetwork& network) {
|
||||
const auto user_precisions_map = parseArgMap(FLAGS_iop);
|
||||
|
||||
auto inputs = network.getInputsInfo();
|
||||
auto outputs = network.getOutputsInfo();
|
||||
|
||||
for (auto &&item : user_precisions_map) {
|
||||
std::string layer_name = item.first;
|
||||
std::string user_precision = item.second;
|
||||
for (auto&& item : user_precisions_map) {
|
||||
const auto& layer_name = item.first;
|
||||
const auto& user_precision = item.second;
|
||||
|
||||
auto input = inputs.find(layer_name);
|
||||
auto output = outputs.find(layer_name);
|
||||
const auto input = inputs.find(layer_name);
|
||||
const auto output = outputs.find(layer_name);
|
||||
|
||||
if (input != inputs.end()) {
|
||||
const auto input_precision = input->second->getPrecision();
|
||||
if ((isFloat(input_precision) && isFloat(getInputPrecision(user_precision))) ||
|
||||
(isFloat(input_precision) && isU8(getInputPrecision(user_precision)))) {
|
||||
input->second->setPrecision(getInputPrecision(user_precision));
|
||||
}
|
||||
input->second->setPrecision(getPrecision(user_precision));
|
||||
} else if (output != outputs.end()) {
|
||||
const auto output_precision = output->second->getPrecision();
|
||||
if (isFloat(output_precision) && isFloat(getOutputPrecision(user_precision))) {
|
||||
output->second->setPrecision(getOutputPrecision(user_precision));
|
||||
}
|
||||
output->second->setPrecision(getPrecision(user_precision));
|
||||
} else {
|
||||
throw std::logic_error(layer_name + " is not an input neither output");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void setDefaultIOPrecisions(InferenceEngine::CNNNetwork &network) {
|
||||
if (std::string::npos != FLAGS_d.find("MYRIAD")) {
|
||||
static void setDefaultIO(InferenceEngine::CNNNetwork& network) {
|
||||
const bool isMYRIAD = FLAGS_d.find("MYRIAD") != std::string::npos;
|
||||
const bool isVPUX = FLAGS_d.find("VPUX") != std::string::npos;
|
||||
|
||||
if (isMYRIAD) {
|
||||
const InferenceEngine::Precision fp16 = InferenceEngine::Precision::FP16;
|
||||
|
||||
for (auto &&layer : network.getInputsInfo()) {
|
||||
if (isFP32(layer.second->getPrecision())) {
|
||||
for (auto&& layer : network.getInputsInfo()) {
|
||||
if (isFloat(layer.second->getPrecision())) {
|
||||
layer.second->setPrecision(fp16);
|
||||
}
|
||||
}
|
||||
|
||||
for (auto &&layer : network.getOutputsInfo()) {
|
||||
if (isFP32(layer.second->getPrecision())) {
|
||||
for (auto&& layer : network.getOutputsInfo()) {
|
||||
if (isFloat(layer.second->getPrecision())) {
|
||||
layer.second->setPrecision(fp16);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void processPrecisions(InferenceEngine::CNNNetwork &network,
|
||||
const std::string &inputs_precision, const std::string &outputs_precision,
|
||||
const std::string &iop) {
|
||||
if (!inputs_precision.empty()) {
|
||||
auto precision = getInputPrecision(inputs_precision);
|
||||
for (auto &&layer : network.getInputsInfo()) {
|
||||
const auto layerPrecision = layer.second->getPrecision();
|
||||
if ((isFloat(layerPrecision) && isFloat(precision)) ||
|
||||
(isFloat(layerPrecision) && isU8(precision))) {
|
||||
layer.second->setPrecision(precision);
|
||||
}
|
||||
if (isVPUX) {
|
||||
const InferenceEngine::Precision u8 = InferenceEngine::Precision::U8;
|
||||
const InferenceEngine::Precision fp32 = InferenceEngine::Precision::FP32;
|
||||
|
||||
for (auto&& layer : network.getInputsInfo()) {
|
||||
layer.second->setPrecision(u8);
|
||||
}
|
||||
}
|
||||
|
||||
if (!outputs_precision.empty()) {
|
||||
auto precision = getOutputPrecision(outputs_precision);
|
||||
for (auto &&layer : network.getOutputsInfo()) {
|
||||
const auto layerPrecision = layer.second->getPrecision();
|
||||
if (isFloat(layerPrecision) && isFloat(precision)) {
|
||||
layer.second->setPrecision(precision);
|
||||
}
|
||||
for (auto&& layer : network.getOutputsInfo()) {
|
||||
layer.second->setPrecision(fp32);
|
||||
}
|
||||
}
|
||||
|
||||
if (!iop.empty()) {
|
||||
setPrecisions(network, iop);
|
||||
}
|
||||
}
|
||||
|
||||
static void processLayout(InferenceEngine::CNNNetwork &network,
|
||||
const std::string &inputs_layout, const std::string &outputs_layout) {
|
||||
if (!inputs_layout.empty()) {
|
||||
auto layout = getLayout(inputs_layout);
|
||||
for (auto &&layer : network.getInputsInfo()) {
|
||||
static void processPrecisions(InferenceEngine::CNNNetwork& network) {
|
||||
if (!FLAGS_ip.empty()) {
|
||||
const auto user_precision = getPrecision(FLAGS_ip);
|
||||
for (auto&& layer : network.getInputsInfo()) {
|
||||
layer.second->setPrecision(user_precision);
|
||||
}
|
||||
}
|
||||
|
||||
if (!FLAGS_op.empty()) {
|
||||
auto user_precision = getPrecision(FLAGS_op);
|
||||
for (auto&& layer : network.getOutputsInfo()) {
|
||||
layer.second->setPrecision(user_precision);
|
||||
}
|
||||
}
|
||||
|
||||
if (!FLAGS_iop.empty()) {
|
||||
setPrecisions(network);
|
||||
}
|
||||
}
|
||||
|
||||
static void setLayouts(const InferenceEngine::CNNNetwork& network) {
|
||||
const auto user_layouts_map = parseArgMap(FLAGS_iol);
|
||||
|
||||
auto inputs = network.getInputsInfo();
|
||||
auto outputs = network.getOutputsInfo();
|
||||
|
||||
for (auto&& item : user_layouts_map) {
|
||||
const auto& layer_name = item.first;
|
||||
const auto& user_layout = getLayout(item.second);
|
||||
|
||||
const auto input = inputs.find(layer_name);
|
||||
const auto output = outputs.find(layer_name);
|
||||
|
||||
if (input != inputs.end()) {
|
||||
if (!isMatchLayoutToDims(user_layout, input->second->getTensorDesc().getDims().size())) {
|
||||
throw std::logic_error(item.second + " layout is not applicable to " + layer_name);
|
||||
}
|
||||
|
||||
input->second->setLayout(user_layout);
|
||||
} else if (output != outputs.end()) {
|
||||
if (!isMatchLayoutToDims(user_layout, output->second->getTensorDesc().getDims().size())) {
|
||||
throw std::logic_error(item.second + " layout is not applicable to " + layer_name);
|
||||
}
|
||||
|
||||
output->second->setLayout(user_layout);
|
||||
} else {
|
||||
throw std::logic_error(layer_name + " is not an input neither output");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void processLayout(InferenceEngine::CNNNetwork& network) {
|
||||
if (!FLAGS_il.empty()) {
|
||||
const auto layout = getLayout(FLAGS_il);
|
||||
for (auto&& layer : network.getInputsInfo()) {
|
||||
if (isMatchLayoutToDims(layout, layer.second->getTensorDesc().getDims().size())) {
|
||||
layer.second->setLayout(layout);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!outputs_layout.empty()) {
|
||||
auto layout = getLayout(outputs_layout);
|
||||
for (auto &&layer : network.getOutputsInfo()) {
|
||||
if (!FLAGS_ol.empty()) {
|
||||
const auto layout = getLayout(FLAGS_ol);
|
||||
for (auto&& layer : network.getOutputsInfo()) {
|
||||
if (isMatchLayoutToDims(layout, layer.second->getTensorDesc().getDims().size())) {
|
||||
layer.second->setLayout(layout);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!FLAGS_iol.empty()) {
|
||||
setLayouts(network);
|
||||
}
|
||||
}
|
||||
|
||||
std::string getFileNameFromPath(const std::string& path,
|
||||
#if defined(_WIN32)
|
||||
const std::string sep = "\\") {
|
||||
const std::string& sep = "\\") {
|
||||
#else
|
||||
const std::string sep = "/") {
|
||||
const std::string& sep = "/") {
|
||||
#endif
|
||||
auto pos = path.rfind(sep);
|
||||
const auto pos = path.rfind(sep);
|
||||
if (std::string::npos == pos) {
|
||||
return path;
|
||||
} else {
|
||||
@ -395,10 +464,12 @@ std::string getFileNameFromPath(const std::string& path,
|
||||
|
||||
using TimeDiff = std::chrono::milliseconds;
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
int main(int argc, char* argv[]) {
|
||||
TimeDiff loadNetworkTimeElapsed {0};
|
||||
|
||||
try {
|
||||
std::cout << "Inference Engine: " << InferenceEngine::GetInferenceEngineVersion() << std::endl;
|
||||
std::cout << std::endl;
|
||||
|
||||
InferenceEngine::Core ie;
|
||||
|
||||
@ -408,26 +479,37 @@ int main(int argc, char *argv[]) {
|
||||
|
||||
auto network = ie.ReadNetwork(FLAGS_m);
|
||||
|
||||
setDefaultIOPrecisions(network);
|
||||
processPrecisions(network, FLAGS_ip, FLAGS_op, FLAGS_iop);
|
||||
processLayout(network, FLAGS_il, FLAGS_ol);
|
||||
setDefaultIO(network);
|
||||
processPrecisions(network);
|
||||
processLayout(network);
|
||||
|
||||
std::cout << "Network inputs:" << std::endl;
|
||||
for (auto&& layer : network.getInputsInfo()) {
|
||||
std::cout << " " << layer.first << " : " << layer.second->getPrecision() << " / " << layer.second->getLayout() << std::endl;
|
||||
}
|
||||
std::cout << "Network outputs:" << std::endl;
|
||||
for (auto&& layer : network.getOutputsInfo()) {
|
||||
std::cout << " " << layer.first << " : " << layer.second->getPrecision() << " / " << layer.second->getLayout() << std::endl;
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
auto timeBeforeLoadNetwork = std::chrono::steady_clock::now();
|
||||
auto executableNetwork = ie.LoadNetwork(network, FLAGS_d, configure(FLAGS_c, FLAGS_m));
|
||||
auto executableNetwork = ie.LoadNetwork(network, FLAGS_d, configure());
|
||||
loadNetworkTimeElapsed = std::chrono::duration_cast<TimeDiff>(std::chrono::steady_clock::now() - timeBeforeLoadNetwork);
|
||||
|
||||
std::string outputName = FLAGS_o;
|
||||
if (outputName.empty()) {
|
||||
outputName = getFileNameFromPath(fileNameNoExt(FLAGS_m)) + ".blob";
|
||||
}
|
||||
|
||||
std::ofstream outputFile{outputName};
|
||||
if (!outputFile) {
|
||||
if (!outputFile.is_open()) {
|
||||
std::cout << "Output file " << outputName << " can't be opened for writing" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
} else {
|
||||
executableNetwork.Export(outputFile);
|
||||
}
|
||||
} catch (const std::exception &error) {
|
||||
} catch (const std::exception& error) {
|
||||
std::cerr << error.what() << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
} catch (...) {
|
||||
|
Loading…
Reference in New Issue
Block a user