Docs - benchmarks new solution (#14396)
* add bench csv * Update custom.css * images and scripts
880
docs/_static/benchmarks_files/benchmark-data.csv
vendored
Normal file
@ -0,0 +1,880 @@
|
|||||||
|
Network model,Release,IE-Type,Platform name,Throughput-INT8,Throughput-FP32,Throughput-FP16,Value,Efficiency,Price,TDP,Sockets,Price/socket,TDP/socket,Latency
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
bert-base-cased[124],OV-2022.1.,atom,Intel® Atom™ x5-E3940,0.90,0.44,0.44,0.026,0.095,$34 ,9.5,1,$34 ,9.5,1183.77
|
||||||
|
bert-base-cased[124],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,1.59,0.64,0.64,0.026,0.132,$59 ,12,1,$59 ,12,631.26
|
||||||
|
bert-base-cased[124],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,4.62,3.00,4.74,0.078,0.385,$59 ,12,1,$59 ,12,222.43
|
||||||
|
bert-base-cased[124],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,5.76,2.99,4.61,0.097,0.479,$59 ,12,1,$59 ,12,
|
||||||
|
bert-base-cased[124],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,3.75,1.14,1.14,0.035,0.250,$107 ,15,1,$107 ,15,266.21
|
||||||
|
bert-base-cased[124],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,18.00,6.81,10.60,0.168,1.199,$107 ,15,1,$107 ,15,59.82
|
||||||
|
bert-base-cased[124],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,19.93,7.70,11.21,0.186,1.328,$107 ,15,1,$107 ,15,
|
||||||
|
bert-base-cased[124],OV-2022.1.,core,Intel® Core™ i3-8100,6.80,4.19,4.22,0.058,0.104,$117 ,65,1,$117 ,65,152.39
|
||||||
|
bert-base-cased[124],OV-2022.1.,core,Intel® Core™ i5-8500,10.26,6.44,6.42,0.053,0.157,$192 ,65,1,$192 ,65,104.63
|
||||||
|
bert-base-cased[124],OV-2022.1.,core,Intel® Core™ i7-8700T,11.06,7.19,7.10,0.036,0.316,$303 ,35,1,$303 ,35,98.85
|
||||||
|
bert-base-cased[124],OV-2022.1.,core,Intel® Core™ i9-10920X,48.23,19.67,19.63,0.068,0.292,$700 ,165,1,$700 ,165,21.80
|
||||||
|
bert-base-cased[124],OV-2022.1.,core,Intel® Core™ i9-10900TE,10.62,6.20,6.11,0.023,0.303,$444 ,35,1,$444 ,35,106.09
|
||||||
|
bert-base-cased[124],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,17.87,10.43,10.36,0.034,0.274,$519 ,65,1,$519 ,65,56.79
|
||||||
|
bert-base-cased[124],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,17.60,6.53,10.45,0.033,0.270,$519 ,65,1,$519 ,65,59.90
|
||||||
|
bert-base-cased[124],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,25.42,11.09,15.09,0.048,0.391,$519 ,65,1,$519 ,65,
|
||||||
|
bert-base-cased[124],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,14.79,4.91,4.90,0.034,0.528,$426 ,28,1,$426,28,71.17
|
||||||
|
bert-base-cased[124],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,26.62,10.85,16.56,0.062,0.950,$426 ,28,1,$426,28,39.69
|
||||||
|
bert-base-cased[124],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,24.98,9.61,13.03,0.058,0.892,$426 ,28,1,$426,28,
|
||||||
|
bert-base-cased[124],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,24.92,8.83,8.65,0.063,0.553,$395 ,45,1,$395,45,40.66
|
||||||
|
bert-base-cased[124],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,7.25,3.85,5.32,0.018,0.161,$395 ,45,1,$395,45,398.35
|
||||||
|
bert-base-cased[124],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,20.02,8.35,9.82,0.05,0.444,$395 ,45,1,$395,45,
|
||||||
|
bert-base-cased[124],OV-2022.1.,core,Intel® Core™ i5-10500TE ,9.19,6.07,5.96,0.047,0.262,$195 ,35,1,$195,35,115.68
|
||||||
|
bert-base-cased[124],OV-2022.1.,xeon,Intel® Xeon® W1290P,13.97,9.74,9.71,0.025,0.111,$539 ,125,1,$539,125,61.73
|
||||||
|
bert-base-cased[124],OV-2022.1.,xeon,Intel® Xeon® E-2124G,8.06,5.05,5.07,0.037,0.113,$213 ,71,1,$213 ,71,129.15
|
||||||
|
bert-base-cased[124],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,63.54,19.47,19.37,0.063,0.254,"$2,004 ",250,2,"$1,002 ",125,34.48
|
||||||
|
bert-base-cased[124],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,111.56,41.91,42.78,0.103,0.371,"$2,166 ",300,2,"$1,083 ",150,20.67
|
||||||
|
bert-base-cased[124],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,66.55,18.69,18.75,0.049,0.316,"$2,698 ",210,2,"$1,349 ",105,32.99
|
||||||
|
bert-base-cased[124],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,145.71,59.57,59.99,0.019,0.355,"$14,810 ",410,2,"$7,405 ",205,17.66
|
||||||
|
bert-base-cased[124],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,216.98,85.64,87.03,0.026,0.401,"$16,198 ",540,2,"$8,099 ",270,12.32
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,atom,Intel® Atom™ x5-E3940,0.26,0.13,0.13,0.007,0.027,$34 ,9.5,1,$34 ,9.5,4070.94
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,0.46,0.19,0.19,0.007,0.038,$59 ,12,1,$59 ,12,2236.06
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,1.34,0.78,1.45,0.022,0.111,$59 ,12,1,$59 ,12,756.92
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,1.70,0.91,0.97,0.028,0.141,$59 ,12,1,$59 ,12,
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,1.08,0.30,0.30,0.01,0.072,$107 ,15,1,$107 ,15,922.37
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,5.12,2.13,3.47,0.047,0.341,$107 ,15,1,$107 ,15,202.96
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,5.56,2.30,3.71,0.052,0.370,$107 ,15,1,$107 ,15,
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,core,Intel® Core™ i3-8100,2.00,1.29,1.28,0.017,0.030,$117 ,65,1,$117 ,65,497.65
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,core,Intel® Core™ i5-8500,3.08,1.92,1.92,0.016,0.047,$192 ,65,1,$192 ,65,334.91
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,core,Intel® Core™ i7-8700T,3.41,2.04,2.06,0.011,0.097,$303 ,35,1,$303 ,35,310.37
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,core,Intel® Core™ i9-10920X,14.68,5.14,5.14,0.02,0.088,$700 ,165,1,$700 ,165,69.64
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,core,Intel® Core™ i9-10900TE,3.12,1.92,1.85,0.007,0.089,$444 ,35,1,$444 ,35,341.28
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,6.17,3.03,3.01,0.011,0.094,$519 ,65,1,$519 ,65,182.41
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,5.16,2.00,3.42,0.009,0.079,$519 ,65,1,$519 ,65,199.39
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,7.65,3.17,4.78,0.014,0.117,$519 ,65,1,$519 ,65,
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,4.45,1.39,1.38,0.01,0.158,$426 ,28,1,$426,28,235.85
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,7.73,3.33,5.68,0.018,0.275,$426 ,28,1,$426,28,133.97
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,7.44,2.92,4.02,0.017,0.265,$426 ,28,1,$426,28,
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,8.06,2.45,2.46,0.02,0.179,$395 ,45,1,$395,45,113.05
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,0.96,1.28,1.44,0.002,0.021,$395 ,45,1,$395,45,2746.94
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,4.32,2.34,2.59,0.01,0.096,$395 ,45,1,$395,45,
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,core,Intel® Core™ i5-10500TE ,2.86,1.75,1.74,0.014,0.081,$195 ,35,1,$195,35,360.53
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,xeon,Intel® Xeon® W1290P,4.79,2.74,2.68,0.008,0.038,$539 ,125,1,$539,125,182.12
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,xeon,Intel® Xeon® E-2124G,2.39,1.54,1.53,0.011,0.033,$213 ,71,1,$213 ,71,417.45
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,18.73,4.59,4.57,0.018,0.074,"$2,004 ",250,2,"$1,002 ",125,111.08
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,34.63,11.53,11.75,0.031,0.115,"$2,166 ",300,2,"$1,083 ",150,65.78
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,19.80,4.55,4.54,0.014,0.094,"$2,698 ",210,2,"$1,349 ",105,106.50
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,45.74,13.70,13.70,0.006,0.111,"$14,810 ",410,2,"$7,405 ",205,51.51
|
||||||
|
bert-large-uncased-whole-word-masking-squad-int8-0001 [384],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,74.13,22.95,23.70,0.009,0.137,"$16,198 ",540,2,"$8,099 ",270,36.94
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,atom,Intel® Atom™ x5-E3940,0.11,0.03,0.03,0.003,0.011,$34 ,9.5,1,$34 ,9.5,9780.07
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,0.21,0.05,0.05,0.003,0.017,$59 ,12,1,$59 ,12,5145.02
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,0.31,,0.32,0.005,0.025,$59 ,12,1,$59 ,12,3223.64
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,0.38,,,0.006,0.031,$59 ,12,1,$59 ,12,
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,0.30,0.16,0.16,0.002,0.020,$107 ,15,1,$107 ,15,3289.56
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,1.19,0.38,0.62,0.011,0.079,$107 ,15,1,$107 ,15,883.97
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,1.38,1.38,0.49,0.012,0.092,$107 ,15,1,$107 ,15,
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,core,Intel® Core™ i3-8100,0.73,0.49,0.48,0.006,0.011,$117 ,65,1,$117 ,65,1483.05
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,core,Intel® Core™ i5-8500,1.16,0.74,0.73,0.006,0.017,$192 ,65,1,$192 ,65,978.07
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,core,Intel® Core™ i7-8700T,1.21,0.75,0.76,0.003,0.034,$303 ,35,1,$303 ,35,1033.17
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,core,Intel® Core™ i9-10920X,3.72,1.73,1.72,0.005,0.022,$700 ,165,1,$700 ,165,365.31
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,core,Intel® Core™ i9-10900TE,1.19,0.72,0.72,0.002,0.033,$444 ,35,1,$444 ,35,1009.75
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,2.00,0.96,0.96,0.003,0.030,$519 ,65,1,$519 ,65,905.57
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,0.96,0.33,0.56,0.001,0.014,$519 ,65,1,$519 ,65,1046.95
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,1.65,0.68,0.91,0.003,0.025,$519 ,65,1,$519 ,65,
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,1.30,0.63,0.63,0.003,0.046,$426 ,28,1,$426 ,28,883.95
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,1.53,0.51,0.86,0.003,0.054,$426 ,28,1,$426 ,28,681.36
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,2.16,0.84,1.19,0.005,0.077,$426 ,28,1,$426 ,28,
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,2.13,0.96,0.94,0.005,0.047,$395 ,45,1,$395 ,45,547.35
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,0.31,0.29,0.37,0,0.006,$395 ,45,1,$395 ,45,7239.30
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,1.16,0.67,0.93,0.002,0.025,$395 ,45,1,$395 ,45,
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,core,Intel® Core™ i5-10500TE ,1.00,0.62,0.62,0.005,0.028,$195 ,35,1,$195,35,1212.18
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,xeon,Intel® Xeon® W1290P,1.81,0.96,0.95,0.003,0.014,$539 ,125,1,$539 ,125,709.32
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,xeon,Intel® Xeon® E-2124G,0.86,0.57,0.57,0.004,0.012,$213 ,71,1,$213 ,71,1270.30
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,5.04,2.38,2.37,0.005,0.020,"$2,004 ",250,2,"$1,002 ",125,488.42
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,8.74,3.81,3.81,0.008,0.029,"$2,166 ",300,2,"$1,083 ",150,260.71
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,4.79,2.38,2.37,0.003,0.022,"$2,698 ",210,2,"$1,349 ",105,475.83
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,9.25,4.43,4.51,0.001,0.022,"$14,810 ",410,2,"$7,405 ",205,269.46
|
||||||
|
brain-tumor-segmentation-0001-MXNET [128x128x128],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,17.20,6.69,6.85,0.002,0.031,"$16,198 ",540,2,"$8,099 ",270,157.07
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,atom,Intel® Atom™ x5-E3940,0.18,0.04,0.04,0.005,0.018,$34 ,9.5,1,$34 ,9.5,6061.65
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,0.33,0.07,0.07,0.005,0.027,$59 ,12,1,$59 ,12,3342.69
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,0.60,0.53,0.76,0.01,0.050,$59 ,12,1,$59 ,12,1656.37
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,0.76,0.32,0.36,0.012,0.063,$59 ,12,1,$59 ,12,
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,0.73,0.25,0.25,0.006,0.048,$107 ,15,1,$107 ,15,1451.45
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,1.67,0.98,1.51,0.015,0.111,$107 ,15,1,$107 ,15,585.63
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,2.12,1.10,1.65,0.019,0.141,$107 ,15,1,$107 ,15,
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,core,Intel® Core™ i3-8100,1.53,0.66,0.67,0.013,0.023,$117 ,65,1,$117 ,65,713.94
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,core,Intel® Core™ i5-8500,2.29,0.94,0.97,0.011,0.035,$192 ,65,1,$192 ,65,508.94
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,core,Intel® Core™ i7-8700T,2.59,0.99,0.97,0.008,0.073,$303 ,35,1,$303 ,35,520.43
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,core,Intel® Core™ i9-10920X,8.04,2.51,2.51,0.011,0.048,$700 ,165,1,$700 ,165,172.07
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,core,Intel® Core™ i9-10900TE,2.27,0.87,0.88,0.005,0.064,$444 ,35,1,$444 ,35,517.61
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,3.07,1.11,1.11,0.005,0.047,$519 ,65,1,$519 ,65,396.58
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,1.88,0.86,1.31,0.003,0.028,$519 ,65,1,$519 ,65,532.46
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,2.91,1.14,1.54,0.005,0.044,$519 ,65,1,$519 ,65,
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,2.84,0.90,0.92,0.006,0.101,$426 ,28,1,$426 ,28,400.75
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,2.16,1.40,2.25,0.005,0.077,$426 ,28,1,$426 ,28,462.68
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,3.37,1.61,2.37,0.007,0.120,$426 ,28,1,$426 ,28,
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,4.74,1.23,1.29,0.012,0.105,$395 ,45,1,$395 ,45,249.71
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,0.59,0.39,0.40,0.001,0.013,$395 ,45,1,$395 ,45,1718.04
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,3.18,0.86,0.89,0.008,0.070,$395 ,45,1,$395 ,45,
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,core,Intel® Core™ i5-10500TE ,2.21,0.77,0.77,0.011,0.063,$195 ,35,1,$195,35,595.87
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,xeon,Intel® Xeon® W1290P,3.40,1.02,1.02,0.006,0.027,$539 ,125,1,$539 ,125,341.75
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,xeon,Intel® Xeon® E-2124G,1.77,0.82,0.82,0.008,0.024,$213 ,71,1,$213 ,71,618.94
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,12.17,3.75,3.79,0.012,0.048,"$2,004 ",250,2,"$1,002 ",125,267.16
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,18.72,5.67,5.75,0.017,0.062,"$2,166 ",300,2,"$1,083 ",150,153.53
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,12.50,3.94,3.95,0.009,0.059,"$2,698 ",210,2,"$1,349 ",105,259.23
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,21.63,7.23,7.27,0.0029,0.052,"$14,810 ",410,2,"$7,405 ",205,163.54
|
||||||
|
brain-tumor-segmentation-0002-CF2 [128x128x128],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,32.94,10.04,10.08,0.004,0.061,"$16,198 ",540,2,"$8,099 ",270,120.04
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,atom,Intel® Atom™ x5-E3940,2.58,1.52,1.52,0.075,0.271,$34 ,9.5,1,$34 ,9.5,399.88
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,5.68,3.03,3.02,0.096,0.473,$59 ,12,1,$59 ,12,178.37
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,13.11,7.36,13.54,0.222,1.092,$59 ,12,1,$59 ,12,77.91
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,16.02,7.91,13.77,0.271,1.335,$59 ,12,1,$59 ,12,
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,12.00,4.72,4.74,0.112,0.800,$107 ,15,1,$107 ,15,83.18
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,66.19,17.54,30.25,0.618,4.412,$107 ,15,1,$107 ,15,15.62
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,74.66,18.14,31.04,0.697,4.977,$107 ,15,1,$107 ,15,
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,core,Intel® Core™ i3-8100,24.83,15.21,15.44,0.212,0.381,$117 ,65,1,$117 ,65,40.27
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,core,Intel® Core™ i5-8500,39.99,22.08,22.40,0.208,0.615,$192 ,65,1,$192 ,65,24.32
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,core,Intel® Core™ i7-8700T,43.23,22.74,22.77,0.142,1.235,$303 ,35,1,$303 ,35,25.22
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,core,Intel® Core™ i9-10920X,180.64,42.62,42.63,0.258,1.094,$700 ,165,1,$700 ,165,6.11
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,core,Intel® Core™ i9-10900TE,41.42,19.63,19.78,0.093,1.183,$444 ,35,1,$444 ,35,25.86
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,92.81,25.35,25.18,0.178,1.427,$519 ,65,1,$519 ,65,23.21
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,57.19,20.56,29.02,0.11,0.879,$519 ,65,1,$519 ,65,16.23
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,79.38,31.02,33.57,0.152,1.221,$519 ,65,1,$519 ,65,
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,51.89,16.47,16.60,0.121,1.853,$426 ,28,1,$426 ,28,20.64
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,92.79,24.91,42.14,0.217,3.314,$426 ,28,1,$426 ,28,10.88
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,16.02,7.91,13.77,0.037,0.572,$426 ,28,1,$426 ,28,
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,93.40,26.39,26.46,0.236,2.075,$395 ,45,1,$395 ,45,10.31
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,8.92,6.73,7.88,0.022,0.198,$395 ,45,1,$395 ,45,188.65
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,54.10,23.03,24.02,0.136,1.202,$395 ,45,1,$395 ,45,
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,core,Intel® Core™ i5-10500TE ,38.31,17.94,17.18,0.196,1.094,$195 ,35,1,$195,35,28.92
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,xeon,Intel® Xeon® W1290P,74.23,21.16,21.15,0.137,0.593,$539 ,125,1,$539 ,125,13.60
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,xeon,Intel® Xeon® E-2124G,28.59,18.33,18.60,0.134,0.402,$213 ,71,1,$213 ,71,34.54
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,217.76,77.28,77.86,0.217,0.871,"$2,004 ",250,2,"$1,002 ",125,10.17
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,436.37,142.79,144.49,0.402,1.454,"$2,166 ",300,2,"$1,083 ",150,5.34
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,222.56,81.00,81.22,0.164,1.059,"$2,698 ",210,2,"$1,349 ",105,9.91
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,579.44,151.44,150.93,0.078,1.413,"$14,810 ",410,2,"$7,405 ",205,4.34
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,859.31,255.38,256.67,0.106,1.591,"$16,198 ",540,2,"$8,099 ",270,3.09
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,accel,Intel® Neural Compute Stick 2,,,3.50,0.05,1.401,$69 ,2.5,1,$69 ,2.5,
|
||||||
|
deeplabv3-TF [513x513],OV-2022.1.,accel,Intel® Movidius™ VPUs (Uzel* UI-AR8),,,28.21,0.057,0.940,$492 ,30,1,$492 ,30,
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,atom,Intel® Atom™ x5-E3940,12.44,5.34,5.34,0.365,1.309,$34 ,9.5,1,$34 ,9.5,81.58
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,21.77,9.50,9.50,0.369,1.814,$59 ,12,1,$59 ,12,45.12
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,39.91,24.41,40.70,0.676,3.325,$59 ,12,1,$59 ,12,30.57
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,59.04,32.42,49.01,1,4.919,$59 ,12,1,$59 ,12,
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,51.05,15.05,15.08,0.477,3.403,$107 ,15,1,$107 ,15,19.91
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,155.86,60.11,100.73,1.456,10.390,$107 ,15,1,$107 ,15,11.01
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,142.18,62.96,92.63,1.328,9.478,$107 ,15,1,$107 ,15,
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,core,Intel® Core™ i3-8100,105.09,60.65,60.51,0.898,1.616,$117 ,65,1,$117 ,65,9.91
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,core,Intel® Core™ i5-8500,156.53,89.42,91.51,0.815,2.408,$192 ,65,1,$192 ,65,6.80
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,core,Intel® Core™ i7-8700T,168.57,100.42,99.98,0.556,4.816,$303 ,35,1,$303 ,35,6.79
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,core,Intel® Core™ i9-10920X,834.58,246.06,253.76,1.192,5.058,$700 ,165,1,$700 ,165,2.96
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,core,Intel® Core™ i9-10900TE,152.95,84.74,86.45,0.344,4.370,$444 ,35,1,$444 ,35,7.63
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,375.45,143.36,144.57,0.723,5.776,$519 ,65,1,$519 ,65,3.87
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,180.15,59.71,96.90,0.347,2.771,$519 ,65,1,$519 ,65,7.34
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,471.82,141.57,180.65,0.909,7.258,$519 ,65,1,$519 ,65,
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,212.29,64.92,65.87,0.498,7.581,$426 ,28,1,$426 ,28,5.42
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,190.40,87.13,131.90,0.446,6.799,$426 ,28,1,$426 ,28,7.11
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,322.64,110.49,144.78,0.757,11.522,$426 ,28,1,$426 ,28,
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,369.03,114.19,115.47,0.934,8.200,$395 ,45,1,$395 ,45,3.65
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,44.59,31.43,41.58,0.112,0.990,$395 ,45,1,$395 ,45,53.84
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,422.84,138.57,156.94,1.07,9.396,$395 ,45,1,$395 ,45,
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,core,Intel® Core™ i5-10500TE ,150.87,86.29,86.19,0.773,4.310,$195 ,35,1,$195,35,7.56
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,xeon,Intel® Xeon® W1290P,316.70,168.59,168.72,0.587,2.533,$539 ,125,1,$539 ,125,4.06
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,xeon,Intel® Xeon® E-2124G,120.86,70.52,71.67,0.567,1.702,$213 ,71,1,$213 ,71,8.60
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,929.91,274.70,274.87,0.928,3.719,"$2,004 ",250,2,"$1,002 ",125,4.58
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,2147.23,542.17,549.85,1.982,7.157,"$2,166 ",300,2,"$1,083 ",150,2.63
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,975.28,288.38,288.59,0.722,4.644,"$2,698 ",210,2,"$1,349 ",105,4.45
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,2788.90,743.84,737.20,0.376,6.802,"$14,810 ",410,2,"$7,405 ",205,3.24
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,4465.49,1129.94,1145.20,0.551,8.269,"$16,198 ",540,2,"$8,099 ",270,2.38
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,accel,Intel® Neural Compute Stick 2,,,37.61,0.545,15.042,$69 ,2.5,1,$69 ,2.5,
|
||||||
|
densenet-121-tf2 [224x224],OV-2022.1.,accel,Intel® Movidius™ VPUs (Uzel* UI-AR8),,,301.04,0.611,10.034,$492 ,30,1,$492 ,30,
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,atom,Intel® Atom™ x5-E3940,3.78,2.58,2.59,0.111,0.397,$34 ,9.5,1,$34 ,9.5,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,7.07,5.19,5.20,0.119,0.588,$59 ,12,1,$59 ,12,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,22.34,15.37,25.28,0.378,1.861,$59 ,12,1,$59 ,12,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,25.98,16.88,26.11,0.44,2.164,$59 ,12,1,$59 ,12,
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,15.20,7.74,7.81,0.142,1.013,$107 ,15,1,$107 ,15,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,60.90,34.00,58.96,0.569,4.060,$107 ,15,1,$107 ,15,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,50.96,31.56,46.11,0.476,3.397,$107 ,15,1,$107 ,15,
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,core,Intel® Core™ i3-8100,34.59,23.42,23.40,0.295,0.532,$117 ,65,1,$117 ,65,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,core,Intel® Core™ i5-8500,53.14,35.16,34.91,0.276,0.817,$192 ,65,1,$192 ,65,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,core,Intel® Core™ i7-8700T,58.75,36.07,36.06,0.193,1.678,$303 ,35,1,$303 ,35,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,core,Intel® Core™ i9-10920X,175.21,75.59,75.43,0.25,1.061,$700 ,165,1,$700 ,165,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,core,Intel® Core™ i9-10900TE,57.39,32.77,32.76,0.129,1.639,$444 ,35,1,$444 ,35,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,101.85,41.93,41.73,0.196,1.566,$519 ,65,1,$519 ,65,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,70.18,38.19,64.84,0.135,1.079,$519 ,65,1,$519 ,65,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,110.62,45.60,62.77,0.213,1.701,$519 ,65,1,$519 ,65,
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,61.90,32.07,32.58,0.145,2.210,$426 ,28,1,$426 ,28,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,84.46,43.62,71.28,0.198,3.016,$426 ,28,1,$426 ,28,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,97.56,47.65,65.81,0.229,3.484,$426 ,28,1,$426 ,28,
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,103.81,50.76,51.09,0.262,2.306,$395 ,45,1,$395 ,45,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,8.89,12.89,4.32,0.022,0.197,$395 ,45,1,$395 ,45,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,80.70,42.60,44.29,0.204,1.793,$395 ,45,1,$395 ,45,
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,core,Intel® Core™ i5-10500TE ,48.90,27.59,27.42,0.25,1.397,$195 ,35,1,$195,35,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,xeon,Intel® Xeon® W1290P,89.94,35.45,35.55,0.166,0.719,$539 ,125,1,$539 ,125,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,xeon,Intel® Xeon® E-2124G,40.03,29.32,29.22,0.187,0.563,$213 ,71,1,$213 ,71,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,215.40,105.39,105.62,0.214,0.861,"$2,004 ",250,2,"$1,002 ",125,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,379.97,203.36,204.69,0.35,1.266,"$2,166 ",300,2,"$1,083 ",150,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,223.43,107.06,106.63,0.165,1.063,"$2,698 ",210,2,"$1,349 ",105,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,427.06,183.40,182.13,0.057,1.041,"$14,810 ",410,2,"$7,405 ",205,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,752.87,370.27,370.17,0.092,1.394,"$16,198 ",540,2,"$8,099 ",270,0.00
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,accel,Intel® Neural Compute Stick 2,,,3.48,0,1.393,$69 ,2.5,1,$69 ,2.5,
|
||||||
|
efficientdet-d0 [512x512],OV-2022.1.,accel,Intel® Movidius™ VPUs (Uzel* UI-AR8),,,27.54,0,0.918,$492 ,30,1,$492 ,30,
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,atom,Intel® Atom™ x5-E3940,26.70,11.08,10.93,0.785,2.810,$34 ,9.5,1,$34 ,9.5,42.14
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,47.27,19.21,19.07,0.801,3.939,$59 ,12,1,$59 ,12,23.75
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,61.05,61.28,133.10,1.034,5.087,$59 ,12,1,$59 ,12,28.19
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,100.98,77.38,150.03,1.711,8.414,$59 ,12,1,$59 ,12,
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,120.35,34.31,34.26,1.124,8.023,$107 ,15,1,$107 ,15,9.25
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,696.70,151.93,303.49,6.511,46.446,$107 ,15,1,$107 ,15,6.85
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,788.03,179.75,330.33,7.364,52.535,$107 ,15,1,$107 ,15,
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,core,Intel® Core™ i3-8100,236.72,121.61,122.37,2.023,3.641,$117 ,65,1,$117 ,65,5.35
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,core,Intel® Core™ i5-8500,357.39,168.70,168.92,1.861,5.498,$192 ,65,1,$192 ,65,3.94
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,core,Intel® Core™ i7-8700T,379.98,177.07,181.52,1.254,10.856,$303 ,35,1,$303 ,35,3.95
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,core,Intel® Core™ i9-10920X,1833.22,527.48,538.40,2.618,11.110,$700 ,165,1,$700 ,165,2.13
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,core,Intel® Core™ i9-10900TE,352.02,145.02,146.28,0.792,10.057,$444 ,35,1,$444 ,35,4.63
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,856.59,234.39,237.41,1.65,13.178,$519 ,65,1,$519 ,65,2.12
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,579.94,135.51,304.30,1.117,8.922,$519 ,65,1,$519 ,65,4.80
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,1236.73,327.02,460.76,2.382,19.026,$519 ,65,1,$519 ,65,
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,474.89,137.03,138.29,1.114,16.960,$426 ,28,1,$426 ,28,2.79
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,1062.43,235.52,482.81,2.493,37.943,$426 ,28,1,$426 ,28,4.41
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,1063.21,250.66,404.41,2.495,37.971,$426 ,28,1,$426 ,28,
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,832.67,241.21,243.17,2.108,18.503,$395 ,45,1,$395 ,45,1.98
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,206.00,32.44,78.52,0.521,4.577,$395 ,45,1,$395 ,45,15.90
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,860.16,251.55,325.60,2.177,19.114,$395 ,45,1,$395 ,45,
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,core,Intel® Core™ i5-10500TE ,341.81,158.45,158.08,1.752,9.765,$195 ,35,1,$195,35,4.38
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,xeon,Intel® Xeon® W1290P,730.25,307.80,297.72,1.354,5.841,$539 ,125,1,$539 ,125,2.47
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,xeon,Intel® Xeon® E-2124G,270.00,140.03,142.41,1.267,3.802,$213 ,71,1,$213 ,71,4.64
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,2025.25,576.10,577.27,2.021,8.100,"$2,004 ",250,2,"$1,002 ",125,3.02
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,4682.75,1043.83,1055.37,4.323,15.609,"$2,166 ",300,2,"$1,083 ",150,1.58
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,2026.19,602.36,602.83,1.501,9.648,"$2,698 ",210,2,"$1,349 ",105,3.02
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,5230.04,1540.53,1542.79,0.706,12.756,"$14,810 ",410,2,"$7,405 ",205,2.46
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,11009.84,2112.70,2198.93,1.359,20.388,"$16,198 ",540,2,"$8,099 ",270,1.46
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,accel,Intel® Neural Compute Stick 2,,,84.36,1.222,33.743,$69 ,2.5,1,$69 ,2.5,
|
||||||
|
facenet-20180408-102900-TF [160x160],OV-2022.1.,accel,Intel® Movidius™ VPUs (Uzel* UI-AR8),,,674.90,1.371,22.496,$492 ,30,1,$492 ,30,
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,atom,Intel® Atom™ x5-E3940,0.32,0.13,0.13,0.009,0.033,$34 ,9.5,1,$34 ,9.5,3159.99
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,0.58,0.24,0.24,0.009,0.048,$59 ,12,1,$59 ,12,1750.25
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,1.32,0.72,1.64,0.022,0.109,$59 ,12,1,$59 ,12,760.63
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,1.58,0.65,1.29,0.026,0.131,$59 ,12,1,$59 ,12,
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,1.54,0.43,0.43,0.014,0.102,$107 ,15,1,$107 ,15,650.15
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,8.05,1.83,4.15,0.075,0.536,$107 ,15,1,$107 ,15,131.51
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,9.12,2.14,4.20,0.085,0.607,$107 ,15,1,$107 ,15,
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,core,Intel® Core™ i3-8100,2.95,1.53,1.52,0.025,0.045,$117 ,65,1,$117 ,65,346.62
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,core,Intel® Core™ i5-8500,4.65,2.41,2.49,0.024,0.071,$192 ,65,1,$192 ,65,244.83
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,core,Intel® Core™ i7-8700T,4.76,2.56,2.55,0.015,0.136,$303 ,35,1,$303 ,35,271.46
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,core,Intel® Core™ i9-10920X,25.89,7.01,7.20,0.036,0.156,$700 ,165,1,$700 ,165,45.44
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,core,Intel® Core™ i9-10900TE,4.58,2.33,2.37,0.01,0.130,$444 ,35,1,$444 ,35,247.22
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,12.34,3.78,3.80,0.023,0.189,$519 ,65,1,$519 ,65,164.28
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,6.83,1.84,4.06,0.013,0.105,$519 ,65,1,$519 ,65,149.32
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,14.13,2.97,5.69,0.027,0.217,$519 ,65,1,$519 ,65,
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,6.53,1.78,1.79,0.015,0.233,$426 ,28,1,$426 ,28,162.99
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,12.04,3.02,6.61,0.028,0.430,$426 ,28,1,$426 ,28,86.31
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,13.81,3.66,6.08,0.032,0.493,$426 ,28,1,$426 ,28,
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,11.81,3.29,3.32,0.029,0.262,$395 ,45,1,$395 ,45,86.37
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,1.58,1.09,0.39,0.003,0.035,$395 ,45,1,$395 ,45,1877.08
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,7.46,2.68,2.75,0.018,0.165,$395 ,45,1,$395 ,45,
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,core,Intel® Core™ i5-10500TE ,4.22,2.25,2.25,0.021,0.120,$195 ,35,1,$195,35,306.79
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,xeon,Intel® Xeon® W1290P,8.80,4.51,4.52,0.016,0.070,$539 ,125,1,$539 ,125,139.67
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,xeon,Intel® Xeon® E-2124G,3.41,1.77,1.80,0.015,0.047,$213 ,71,1,$213 ,71,300.61
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,27.53,7.84,7.87,0.027,0.110,"$2,004 ",250,2,"$1,002 ",125,80.68
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,,,,0,0.000,"$2,166 ",300,2,"$1,083 ",150,
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,28.76,8.25,8.27,0.021,0.136,"$2,698 ",210,2,"$1,349 ",105,79.03
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,79.68,23.79,23.78,0.01,0.194,"$14,810 ",410,2,"$7,405 ",205,34.45
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,127.60,33.90,34.31,0.015,0.236,"$16,198 ",540,2,"$8,099 ",270,21.94
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,accel,Intel® Neural Compute Stick 2,,,0.44,0.006,0.176,$69 ,2.5,1,$69 ,2.5,
|
||||||
|
faster_rcnn_resnet50_coco-TF [600x1024],OV-2022.1.,accel,Intel® Movidius™ VPUs (Uzel* UI-AR8),,,4.84,0.009,0.161,$492 ,30,1,$492 ,30,
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,atom,Intel® Atom™ x5-E3940,,4.00,4.01,0.118,0.422,$34 ,9.5,1,$34 ,9.5,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,,6.59,6.58,0.111,0.548,$59 ,12,1,$59 ,12,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,,1.70,1.77,0.03,0.147,$59 ,12,1,$59 ,12,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,,6.58,6.77,0.114,0.564,$59 ,12,1,$59 ,12,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,,11.91,11.91,0.111,0.793,$107 ,15,1,$107 ,15,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,,3.45,3.60,0.033,0.240,$107 ,15,1,$107 ,15,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,,8.85,8.94,0.083,0.595,$107 ,15,1,$107 ,15,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,core,Intel® Core™ i3-8100,,41.17,40.81,0.348,0.627,$117 ,65,1,$117 ,65,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,core,Intel® Core™ i5-8500,,55.61,55.30,0.287,0.850,$192 ,65,1,$192 ,65,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,core,Intel® Core™ i7-8700T,,62.56,62.57,0.206,1.787,$303 ,35,1,$303 ,35,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,core,Intel® Core™ i9-10920X,,192.14,197.82,0.282,1.198,$700 ,165,1,$700 ,165,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,core,Intel® Core™ i9-10900TE,,47.27,47.96,0.108,1.370,$444 ,35,1,$444 ,35,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,,90.31,90.68,0.174,1.395,$519 ,65,1,$519 ,65,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,,5.49,6.26,0.012,0.096,$519 ,65,1,$519 ,65,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,,74.09,82.33,0.158,1.266,$519 ,65,1,$519 ,65,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,,50.90,51.65,0.121,1.844,$426 ,28,1,$426 ,28,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,,7.69,7.82,0.018,0.279,$426 ,28,1,$426 ,28,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,,49.31,48.85,0.114,1.744,$426 ,28,1,$426 ,28,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,,86.41,87.06,0.22,1.934,$395 ,45,1,$395 ,45,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,,3.81,3.10,0.007,0.068,$395 ,45,1,$395 ,45,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,,53.43,55.24,0.139,1.227,$395 ,45,1,$395 ,45,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,core,Intel® Core™ i5-10500TE ,,55.56,54.20,0.277,1.548,$195 ,35,1,$195,35,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,xeon,Intel® Xeon® W1290P,,104.19,104.07,0.193,0.832,$539 ,125,1,$539 ,125,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,xeon,Intel® Xeon® E-2124G,,46.50,46.60,0.218,0.656,$213 ,71,1,$213 ,71,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,,207.24,207.80,0.207,0.831,"$2,004 ",250,2,"$1,002 ",125,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,,357.79,367.46,0.339,1.224,"$2,166 ",300,2,"$1,083 ",150,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,,216.07,216.82,0.16,1.032,"$2,698 ",210,2,"$1,349 ",105,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,,555.93,562.78,0.075,1.372,"$14,810 ",410,2,"$7,405 ",205,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,,732.33,737.48,0.091,1.365,"$16,198 ",540,2,"$8,099 ",270,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,accel,Intel® Neural Compute Stick 2,,,#NUM!,#NUM!,#NUM!,$69 ,2.5,1,$69 ,2.5,
|
||||||
|
forward-tacotron-duration-prediction [241],OV-2022.1.,accel,Intel® Movidius™ VPUs (Uzel* UI-AR8),,,#NUM!,#NUM!,#NUM!,$492 ,30,1,$492 ,30,
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,atom,Intel® Atom™ x5-E3940,7.06,2.91,2.89,0.207,0.742,$34 ,9.5,1,$34 ,9.5,148.91
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,12.39,5.02,5.03,0.209,1.032,$59 ,12,1,$59 ,12,83.87
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,36.21,18.57,36.13,0.613,3.017,$59 ,12,1,$59 ,12,38.70
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,46.21,22.89,40.15,0.783,3.850,$59 ,12,1,$59 ,12,
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,32.56,8.66,8.66,0.304,2.170,$107 ,15,1,$107 ,15,32.84
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,173.05,43.64,84.94,1.617,11.536,$107 ,15,1,$107 ,15,9.75
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,198.75,51.71,91.38,1.857,13.249,$107 ,15,1,$107 ,15,
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,core,Intel® Core™ i3-8100,64.14,33.14,33.20,0.548,0.986,$117 ,65,1,$117 ,65,16.76
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,core,Intel® Core™ i5-8500,95.62,48.78,50.00,0.498,1.471,$192 ,65,1,$192 ,65,11.29
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,core,Intel® Core™ i7-8700T,101.56,54.39,54.04,0.335,2.901,$303 ,35,1,$303 ,35,11.05
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,core,Intel® Core™ i9-10920X,546.00,144.23,146.83,0.78,3.309,$700 ,165,1,$700 ,165,3.24
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,core,Intel® Core™ i9-10900TE,93.09,46.86,47.24,0.209,2.659,$444 ,35,1,$444 ,35,12.53
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,223.05,75.40,77.44,0.429,3.431,$519 ,65,1,$519 ,65,8.00
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,144.20,39.64,77.77,0.277,2.218,$519 ,65,1,$519 ,65,9.02
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,299.87,71.80,106.36,0.577,4.613,$519 ,65,1,$519 ,65,
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,130.71,35.69,35.95,0.306,4.668,$426 ,28,1,$426 ,28,8.47
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,257.81,67.65,133.95,0.605,9.207,$426 ,28,1,$426 ,28,6.36
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,283.46,71.44,106.64,0.665,10.123,$426 ,28,1,$426 ,28,
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,233.02,62.85,62.77,0.589,5.178,$395 ,45,1,$395 ,45,5.33
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,33.43,11.99,24.94,0.084,0.742,$395 ,45,1,$395 ,45,43.57
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,272.67,71.43,86.81,0.69,6.059,$395 ,45,1,$395 ,45,
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,core,Intel® Core™ i5-10500TE ,90.95,48.20,47.58,0.466,2.598,$195 ,35,1,$195,35,12.32
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,xeon,Intel® Xeon® W1290P,192.39,95.02,94.82,0.356,1.539,$539 ,125,1,$539 ,125,6.11
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,xeon,Intel® Xeon® E-2124G,72.88,37.70,38.01,0.342,1.026,$213 ,71,1,$213 ,71,14.62
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,590.75,158.32,158.12,0.589,2.363,"$2,004 ",250,2,"$1,002 ",125,5.48
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,1418.63,288.35,292.31,1.309,4.728,"$2,166 ",300,2,"$1,083 ",150,2.68
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,619.94,165.66,165.88,0.459,2.952,"$2,698 ",210,2,"$1,349 ",105,5.23
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,1889.52,477.61,478.61,0.255,4.608,"$14,810 ",410,2,"$7,405 ",205,2.84
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,2956.14,598.71,603.56,0.365,5.474,"$16,198 ",540,2,"$8,099 ",270,1.89
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,accel,Intel® Neural Compute Stick 2,,,19.84,0.287,7.937,$69 ,2.5,1,$69 ,2.5,
|
||||||
|
inception-v3-TF [299x299],OV-2022.1.,accel,Intel® Movidius™ VPUs (Uzel* UI-AR8),,,159.42,0.324,5.314,$492 ,30,1,$492 ,30,
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,atom,Intel® Atom™ x5-E3940,3.15,1.37,1.37,0.092,0.332,$34 ,9.5,1,$34 ,9.5,328.44
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,5.62,2.35,2.36,0.095,0.468,$59 ,12,1,$59 ,12,182.64
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,16.98,8.28,16.84,0.287,1.415,$59 ,12,1,$59 ,12,78.54
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,21.32,10.31,18.66,0.361,1.776,$59 ,12,1,$59 ,12,
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,15.58,4.04,4.07,0.145,1.038,$107 ,15,1,$107 ,15,66.37
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,85.93,20.06,40.14,0.803,5.728,$107 ,15,1,$107 ,15,18.49
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,100.57,23.62,43.69,0.939,6.704,$107 ,15,1,$107 ,15,
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,core,Intel® Core™ i3-8100,29.89,15.56,15.54,0.255,0.459,$117 ,65,1,$117 ,65,35.12
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,core,Intel® Core™ i5-8500,45.23,23.02,23.26,0.235,0.695,$192 ,65,1,$192 ,65,23.81
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,core,Intel® Core™ i7-8700T,47.68,25.74,25.78,0.157,1.362,$303 ,35,1,$303 ,35,23.00
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,core,Intel® Core™ i9-10920X,263.56,66.59,67.39,0.376,1.597,$700 ,165,1,$700 ,165,6.91
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,core,Intel® Core™ i9-10900TE,43.70,22.37,22.17,0.084,0.672,$519 ,65,1,$519 ,65,25.13
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,116.52,36.37,36.95,0.224,1.792,$519 ,65,1,$519 ,65,17.16
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,71.41,18.02,36.69,0.137,1.098,$519 ,65,1,$519 ,65,18.83
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,148.94,33.44,52.59,0.212,0.902,$700 ,165,1,$700 ,165,
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,62.83,16.98,17.03,0.147,2.243,$426 ,28,1,$426 ,28,17.14
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,131.01,31.10,62.99,0.307,4.678,$426 ,28,1,$426 ,28,12.31
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,133.75,32.86,51.15,0.313,4.776,$426 ,28,1,$426 ,28,
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,111.19,30.25,29.88,0.281,2.470,$395 ,45,1,$395 ,45,11.28
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,22.81,5.01,15.18,0.057,0.506,$395 ,45,1,$395 ,45,86.96
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,123.44,33.12,43.22,0.312,2.743,$395 ,45,1,$395 ,45,
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,core,Intel® Core™ i5-10500TE ,42.82,22.77,22.50,0.219,1.223,$195 ,35,1,$195,35,25.55
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,xeon,Intel® Xeon® W1290P,91.76,45.03,45.35,0.17,0.734,$539 ,125,1,$539 ,125,12.29
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,xeon,Intel® Xeon® E-2124G,34.21,17.72,17.83,0.16,0.481,$213 ,71,1,$213 ,71,30.78
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,286.57,73.14,72.69,0.285,1.146,"$2,004 ",250,2,"$1,002 ",125,11.53
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,679.85,135.42,137.40,0.627,2.266,"$2,166 ",300,2,"$1,083 ",150,5.68
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,298.41,76.40,76.48,0.221,1.421,"$2,698 ",210,2,"$1,349 ",105,10.92
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,916.61,216.56,216.91,0.123,2.235,"$14,810 ",410,2,"$7,405 ",205,6.49
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,1411.06,280.48,282.92,0.174,2.613,"$16,198 ",540,2,"$8,099 ",270,3.45
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,accel,Intel® Neural Compute Stick 2,,,10.64,0.154,4.256,$69 ,2.5,1,$69 ,2.5,
|
||||||
|
inception-v4-TF [299x299],OV-2022.1.,accel,Intel® Movidius™ VPUs (Uzel* UI-AR8),,,82.06,0.166,2.735,$492 ,30,1,$492 ,30,
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,atom,Intel® Atom™ x5-E3940,0.03,0.02,0.02,0,0.002,$34 ,9.5,1,$34 ,9.5,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,0.05,0.03,0.03,0,0.004,$59 ,12,1,$59 ,12,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,0.15,0.12,0.17,0.002,0.012,$59 ,12,1,$59 ,12,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,0.16,,0.10,0.002,0.013,$59 ,12,1,$59 ,12,
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,0.17,0.05,0.05,0.001,0.011,$107 ,15,1,$107 ,15,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,0.55,0.28,0.55,0.005,0.036,$107 ,15,1,$107 ,15,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,0.68,0.33,0.46,0.006,0.045,$107 ,15,1,$107 ,15,
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,core,Intel® Core™ i3-8100,0.31,0.19,0.19,0.002,0.004,$117 ,65,1,$117 ,65,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,core,Intel® Core™ i5-8500,0.51,0.29,0.30,0.002,0.007,$192 ,65,1,$192 ,65,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,core,Intel® Core™ i7-8700T,0.49,0.31,0.31,0.001,0.014,$303 ,35,1,$303 ,35,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,core,Intel® Core™ i9-10920X,2.37,0.86,0.87,0.003,0.014,$700 ,165,1,$700 ,165,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,core,Intel® Core™ i9-10900TE,0.48,0.26,0.27,0.001,0.013,$444 ,35,1,$444 ,35,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,1.26,0.41,0.42,0.002,0.019,$519 ,65,1,$519 ,65,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,0.46,0.24,0.48,0,0.007,$519 ,65,1,$519 ,65,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,1.15,0.38,0.68,0.002,0.017,$519 ,65,1,$519 ,65,
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,0.71,0.20,0.20,0.001,0.025,$426 ,28,1,$426 ,28,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,0.85,0.44,0.88,0.001,0.030,$426 ,28,1,$426 ,28,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,1.22,0.45,0.62,0.002,0.043,$426 ,28,1,$426 ,28,
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,1.35,0.38,0.38,0.003,0.029,$395 ,45,1,$395 ,45,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,0.18,0.19,0.18,0,0.003,$395 ,45,1,$395 ,45,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,,0.38,0.43,#VALUE!,#VALUE!,$395 ,45,1,$395 ,45,
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,core,Intel® Core™ i5-10500TE ,0.44,0.27,0.27,0.002,0.012,$195 ,35,1,$195,35,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,xeon,Intel® Xeon® W1290P,0.92,0.56,0.56,0.001,0.007,$539 ,125,1,$539 ,125,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,xeon,Intel® Xeon® E-2124G,0.36,0.22,0.22,0.001,0.005,$213 ,71,1,$213 ,71,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,2.92,0.89,0.89,0.002,0.011,"$2,004 ",250,2,"$1,002 ",125,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,6.36,2.16,2.20,0.005,0.021,"$2,166 ",300,2,"$1,083 ",150,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,3.05,0.94,0.94,0.002,0.014,"$2,698 ",210,2,"$1,349 ",105,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,6.54,2.80,2.85,0,0.015,"$14,810 ",410,2,"$7,405 ",205,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,12.51,4.43,4.53,0.001,0.023,"$16,198 ",540,2,"$8,099 ",270,0.00
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,accel,Intel® Neural Compute Stick 2,,,,0,0.000,$69 ,2.5,1,$69 ,2.5,
|
||||||
|
mask_rcnn_resnet50_atrous_coco [800x1365],OV-2022.1.,accel,Intel® Movidius™ VPUs (Uzel* UI-AR8),,,,0,0.000,$492 ,30,1,$492 ,30,
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,atom,Intel® Atom™ x5-E3940,27.58,12.82,12.83,0.811,2.902,$34 ,9.5,1,$34 ,9.5,39.87
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,48.77,23.91,23.96,0.826,4.063,$59 ,12,1,$59 ,12,21.48
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,105.57,59.09,106.13,1.789,8.797,$59 ,12,1,$59 ,12,11.85
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,145.35,78.16,126.64,2.463,12.112,$59 ,12,1,$59 ,12,
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,117.75,39.40,39.56,1.1,7.850,$107 ,15,1,$107 ,15,9.10
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,465.64,152.63,239.48,4.351,31.042,$107 ,15,1,$107 ,15,4.63
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,393.16,163.32,229.86,3.674,26.210,$107 ,15,1,$107 ,15,
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,core,Intel® Core™ i3-8100,238.99,0.19,0.19,2.042,3.676,$117 ,65,1,$117 ,65,4.56
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,core,Intel® Core™ i5-8500,358.58,212.08,213.79,1.867,5.516,$192 ,65,1,$192 ,65,3.10
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,core,Intel® Core™ i7-8700T,395.94,241.12,239.91,1.306,11.312,$303 ,35,1,$303 ,35,3.02
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,core,Intel® Core™ i9-10920X,1993.26,539.91,552.70,2.847,12.080,$700 ,165,1,$700 ,165,0.98
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,core,Intel® Core™ i9-10900TE,360.45,199.83,202.25,0.811,10.298,$444 ,35,1,$444 ,35,3.17
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,902.94,339.07,339.70,1.739,13.891,$519 ,65,1,$519 ,65,1.70
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,508.22,152.05,256.51,0.979,7.818,$519 ,65,1,$519 ,65,3.00
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,1022.87,335.28,411.42,1.97,15.736,$519 ,65,1,$519 ,65,
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,483.77,155.72,157.47,1.135,17.277,$426 ,28,1,$426 ,28,2.28
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,573.63,220.01,318.81,1.346,20.486,$426 ,28,1,$426 ,28,2.48
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,775.53,236.31,323.15,1.82,27.697,$426 ,28,1,$426 ,28,
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,837.20,272.86,302.72,2.119,18.604,$395 ,45,1,$395 ,45,1.53
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,57.80,36.65,53.92,0.146,1.284,$395 ,45,1,$395 ,45,17.98
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,1047.84,204.82,212.93,2.652,23.285,$395 ,45,1,$395 ,45,
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,core,Intel® Core™ i5-10500TE ,355.70,206.93,204.97,1.824,10.162,$195 ,35,1,$195,35,3.35
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,xeon,Intel® Xeon® W1290P,755.73,349.16,350.75,1.402,6.045,$539 ,125,1,$539 ,125,1.60
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,xeon,Intel® Xeon® E-2124G,272.57,169.74,172.71,1.279,3.839,$213 ,71,1,$213 ,71,3.93
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,2130.70,673.20,672.84,2.126,8.522,"$2,004 ",250,2,"$1,002 ",125,1.63
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,4980.98,1320.18,1353.73,4.599,16.603,"$2,166 ",300,2,"$1,083 ",150,0.94
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,2231.51,700.86,699.63,1.654,10.626,"$2,698 ",210,2,"$1,349 ",105,1.57
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,6457.04,1678.26,1663.33,0.871,15.748,"$14,810 ",410,2,"$7,405 ",205,1.00
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,10735.51,2726.20,2783.68,1.325,19.880,"$16,198 ",540,2,"$8,099 ",270,0.77
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,accel,Intel® Neural Compute Stick 2,,,56.69,0.821,22.675,$69 ,2.5,1,$69 ,2.5,
|
||||||
|
mobilenet-ssd-CF [300x300],OV-2022.1.,accel,Intel® Movidius™ VPUs (Uzel* UI-AR8),,,450.44,0.915,15.014,$492 ,30,1,$492 ,30,
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,atom,Intel® Atom™ x5-E3940,77.18,45.34,45.47,2.269,8.124,$34 ,9.5,1,$34 ,9.5,14.31
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,133.01,80.66,80.30,2.254,11.084,$59 ,12,1,$59 ,12,8.01
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,132.32,164.08,364.67,2.242,11.027,$59 ,12,1,$59 ,12,7.40
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,213.56,187.69,341.49,3.619,17.796,$59 ,12,1,$59 ,12,
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,274.13,124.00,124.60,2.561,18.275,$107 ,15,1,$107 ,15,3.98
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,1456.31,352.77,740.11,13.61,97.087,$107 ,15,1,$107 ,15,3.05
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,1611.84,386.01,694.07,15.063,107.455,$107 ,15,1,$107 ,15,
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,core,Intel® Core™ i3-8100,567.17,140.67,138.25,4.847,8.725,$117 ,65,1,$117 ,65,1.94
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,core,Intel® Core™ i5-8500,872.29,583.35,591.11,4.543,13.419,$192 ,65,1,$192 ,65,1.37
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,core,Intel® Core™ i7-8700T,1007.29,665.58,674.81,3.324,28.779,$303 ,35,1,$303 ,35,1.40
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,core,Intel® Core™ i9-10920X,4150.82,1471.14,1482.67,5.929,25.156,$700 ,165,1,$700 ,165,0.68
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,core,Intel® Core™ i9-10900TE,911.51,591.32,585.38,2.052,26.043,$444 ,35,1,$444 ,35,1.53
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,1915.54,962.10,971.90,3.69,29.469,$519 ,65,1,$519 ,65,0.97
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,1294.42,358.44,733.66,2.494,19.914,$519 ,65,1,$519 ,65,1.92
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,2060.02,655.55,830.35,3.969,31.692,$519 ,65,1,$519 ,65,
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,1149.20,481.66,483.89,2.697,41.042,$426 ,28,1,$426 ,28,1.05
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,1916.89,455.95,868.83,4.499,68.460,$426 ,28,1,$426 ,28,1.75
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,2241.37,605.32,881.76,5.261,80.048,$426 ,28,1,$426 ,28,
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,2024.85,822.69,835.78,5.126,44.996,$395 ,45,1,$395 ,45,0.77
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,349.64,111.81,201.45,0.885,7.769,$395 ,45,1,$395 ,45,4.66
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,2147.46,605.81,667.71,5.436,47.721,$395 ,45,1,$395 ,45,
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,core,Intel® Core™ i5-10500TE ,908.85,543.99,544.85,4.66,25.967,$195 ,35,1,$195,35,1.54
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,xeon,Intel® Xeon® W1290P,1942.56,923.09,928.32,3.604,15.540,$539 ,125,1,$539 ,125,0.82
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,xeon,Intel® Xeon® E-2124G,661.04,481.08,489.05,3.103,9.310,$213 ,71,1,$213 ,71,1.66
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,4897.96,1836.81,1838.75,4.888,19.591,"$2,004 ",250,2,"$1,002 ",125,1.04
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,10890.22,3353.72,3390.72,10.055,36.300,"$2,166 ",300,2,"$1,083 ",150,0.61
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,5126.92,1912.51,1914.00,3.8,24.413,"$2,698 ",210,2,"$1,349 ",105,1.02
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,13863.76,4183.21,4182.88,1.872,33.814,"$14,810 ",410,2,"$7,405 ",205,0.86
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,23365.55,7221.22,7348.65,2.884,43.269,"$16,198 ",540,2,"$8,099 ",270,0.56
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,accel,Intel® Neural Compute Stick 2,,,77.25,1.119,30.899,$69 ,2.5,1,$69 ,2.5,
|
||||||
|
mobilenet-v2-1.0-224-TF [224x224],OV-2022.1.,accel,Intel® Movidius™ VPUs (Uzel* UI-AR8),,,630.38,1.281,21.012,$492 ,30,1,$492 ,30,
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,atom,Intel® Atom™ x5-E3940,77.82,45.84,45.83,2.288,8.191,$34 ,9.5,1,$34 ,9.5,14.09
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,134.47,83.53,81.50,2.279,11.205,$59 ,12,1,$59 ,12,7.93
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,131.83,166.32,367.84,2.234,10.985,$59 ,12,1,$59 ,12,7.36
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,214.24,199.59,346.55,3.631,17.853,$59 ,12,1,$59 ,12,
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,279.68,126.05,126.67,2.613,18.645,$107 ,15,1,$107 ,15,3.86
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,1497.98,372.60,750.00,13.999,99.865,$107 ,15,1,$107 ,15,3.01
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,1584.52,402.81,702.15,14.808,105.634,$107 ,15,1,$107 ,15,
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,core,Intel® Core™ i3-8100,579.50,460.62,460.80,4.953,8.915,$117 ,65,1,$117 ,65,1.93
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,core,Intel® Core™ i5-8500,871.61,657.32,657.29,4.539,13.409,$192 ,65,1,$192 ,65,1.36
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,core,Intel® Core™ i7-8700T,1013.45,657.28,661.13,3.344,28.955,$303 ,35,1,$303 ,35,1.38
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,core,Intel® Core™ i9-10920X,4375.89,1505.77,1506.35,6.251,26.520,$700 ,165,1,$700 ,165,0.65
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,core,Intel® Core™ i9-10900TE,915.39,565.56,576.50,2.061,26.154,$444 ,35,1,$444 ,35,1.50
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,1966.51,980.74,988.52,3.789,30.254,$519 ,65,1,$519 ,65,0.95
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,1326.07,380.12,756.64,2.555,20.401,$519 ,65,1,$519 ,65,1.92
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,2106.00,662.82,837.30,4.057,32.399,$519 ,65,1,$519 ,65,
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,1167.40,484.55,478.82,2.74,41.692,$426 ,28,1,$426 ,28,1.03
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,1969.21,477.82,873.39,4.622,70.328,$426 ,28,1,$426 ,28,1.72
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,2277.49,655.58,884.36,5.346,81.339,$426 ,28,1,$426 ,28,
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,2020.15,826.33,842.50,5.114,44.892,$395 ,45,1,$395 ,45,0.75
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,262.96,113.19,202.75,0.665,5.843,$395 ,45,1,$395 ,45,14.97
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,2293.72,617.91,705.51,5.806,50.971,$395 ,45,1,$395 ,45,
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,core,Intel® Core™ i5-10500TE ,914.50,525.81,537.98,4.689,26.128,$195 ,35,1,$195,35,1.53
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,xeon,Intel® Xeon® W1290P,1939.96,907.13,948.29,3.599,15.519,$539 ,125,1,$539 ,125,0.79
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,xeon,Intel® Xeon® E-2124G,666.24,558.32,557.55,3.127,9.383,$213 ,71,1,$213 ,71,1.65
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,5003.27,1868.82,1861.44,4.993,20.013,"$2,004 ",250,2,"$1,002 ",125,1.01
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,11256.18,3411.93,3450.36,10.393,37.520,"$2,166 ",300,2,"$1,083 ",150,0.57
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,5266.66,1955.69,1951.97,3.904,25.079,"$2,698 ",210,2,"$1,349 ",105,0.98
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,14583.86,4291.83,4291.03,1.969,35.570,"$14,810 ",410,2,"$7,405 ",205,0.81
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,23891.04,7445.78,7568.25,2.949,44.242,"$16,198 ",540,2,"$8,099 ",270,0.53
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,accel,Intel® Neural Compute Stick 2,,,86.32,1.251,34.528,$69 ,2.5,1,$69 ,2.5,
|
||||||
|
mobilenet-v2-pytorch [224x224],OV-2022.1.,accel,Intel® Movidius™ VPUs (Uzel* UI-AR8),,,691.90,1.406,23.063,$492 ,30,1,$492 ,30,
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,atom,Intel® Atom™ x5-E3940,47.80,41.23,40.76,1.405,5.031,$34 ,9.5,1,$34 ,9.5,28.95
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,91.60,76.70,75.42,1.552,7.633,$59 ,12,1,$59 ,12,14.67
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,4.12,4.19,4.21,0.069,0.343,$59 ,12,1,$59 ,12,268.76
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,67.44,57.54,58.51,1.143,5.620,$59 ,12,1,$59 ,12,
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,169.76,105.20,105.42,1.586,11.317,$107 ,15,1,$107 ,15,7.09
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,7.42,7.37,7.46,0.069,0.494,$107 ,15,1,$107 ,15,130.46
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,81.94,46.20,46.72,0.765,5.462,$107 ,15,1,$107 ,15,
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,core,Intel® Core™ i3-8100,355.78,347.13,343.30,3.04,5.473,$117 ,65,1,$117 ,65,3.59
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,core,Intel® Core™ i5-8500,472.25,475.83,476.48,2.459,7.265,$192 ,65,1,$192 ,65,2.61
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,core,Intel® Core™ i7-8700T,497.35,487.17,487.43,1.641,14.209,$303 ,35,1,$303 ,35,2.58
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,core,Intel® Core™ i9-10920X,1552.25,1134.95,1135.64,2.217,9.407,$700 ,165,1,$700 ,165,1.97
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,core,Intel® Core™ i9-10900TE,449.83,466.79,463.91,1.013,12.852,$444 ,35,1,$444 ,35,2.92
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,789.11,810.23,854.02,1.52,12.140,$519 ,65,1,$519 ,65,2.31
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,18.33,17.15,17.92,0.035,0.281,$519 ,65,1,$519 ,65,84.39
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,776.22,689.21,730.20,1.495,11.941,$519 ,65,1,$519 ,65,
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,614.11,432.73,436.38,1.441,21.932,$426 ,28,1,$426 ,28,2.06
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,18.19,18.00,18.23,0.042,0.649,$426 ,28,1,$426 ,28,76.17
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,563.81,423.99,426.09,1.323,20.135,$426 ,28,1,$426 ,28,
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,1002.47,786.63,787.70,2.537,22.277,$395 ,45,1,$395 ,45,1.68
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,14.08,11.83,11.49,0.035,0.312,$395 ,45,1,$395 ,45,93.61
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,1051.37,752.90,807.00,2.661,23.363,$395 ,45,1,$395 ,45,
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,core,Intel® Core™ i5-10500TE ,404.97,393.29,392.74,2.076,11.570,$195 ,35,1,$195,35,2.90
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,xeon,Intel® Xeon® W1290P,570.47,607.30,612.78,1.058,4.563,$539 ,125,1,$539 ,125,1.68
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,xeon,Intel® Xeon® E-2124G,425.92,424.49,424.68,1.999,5.998,$213 ,71,1,$213 ,71,3.02
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,2411.83,1369.68,1373.11,2.407,9.647,"$2,004 ",250,2,"$1,002 ",125,3.08
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,3728.17,3252.54,3257.56,3.442,12.427,"$2,166 ",300,2,"$1,083 ",150,2.01
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,2495.77,1416.33,1418.77,1.85,11.884,"$2,698 ",210,2,"$1,349 ",105,2.95
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,3655.27,2655.01,2601.29,0.493,8.915,"$14,810 ",410,2,"$7,405 ",205,2.76
|
||||||
|
pp-ocr-rec [32x640],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,4026.54,4047.01,4017.52,0.497,7.456,"$16,198 ",540,2,"$8,099 ",270,2.05
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
pp-yolo [640x640],OV-2022.1.,atom,Intel® Atom™ x5-E3940,0.51,0.27,0.27,0.015,0.053,$34 ,9.5,1,$34 ,9.5,1991.03
|
||||||
|
pp-yolo [640x640],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,0.90,0.46,0.46,0.015,0.075,$59 ,12,1,$59 ,12,1186.45
|
||||||
|
pp-yolo [640x640],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,,,,#VALUE!,#VALUE!,$59 ,12,1,$59 ,12,
|
||||||
|
pp-yolo [640x640],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,,,,#VALUE!,#VALUE!,$59 ,12,1,$59 ,12,
|
||||||
|
pp-yolo [640x640],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,1.86,0.90,0.90,0.017,0.124,$107 ,15,1,$107 ,15,536.37
|
||||||
|
pp-yolo [640x640],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,,,,#VALUE!,#VALUE!,$107 ,15,1,$107 ,15,
|
||||||
|
pp-yolo [640x640],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,,,,#VALUE!,#VALUE!,$107 ,15,1,$107 ,15,
|
||||||
|
pp-yolo [640x640],OV-2022.1.,core,Intel® Core™ i3-8100,4.08,2.27,2.31,0.034,0.062,$117 ,65,1,$117 ,65,234.64
|
||||||
|
pp-yolo [640x640],OV-2022.1.,core,Intel® Core™ i5-8500,6.77,3.67,3.62,0.035,0.104,$192 ,65,1,$192 ,65,142.54
|
||||||
|
pp-yolo [640x640],OV-2022.1.,core,Intel® Core™ i7-8700T,7.61,4.00,3.99,0.025,0.217,$303 ,35,1,$303 ,35,145.72
|
||||||
|
pp-yolo [640x640],OV-2022.1.,core,Intel® Core™ i9-10920X,25.36,13.15,13.39,0.036,0.153,$700 ,165,1,$700 ,165,48.74
|
||||||
|
pp-yolo [640x640],OV-2022.1.,core,Intel® Core™ i9-10900TE,7.17,3.88,3.90,0.016,0.204,$444 ,35,1,$444 ,35,149.73
|
||||||
|
pp-yolo [640x640],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,14.47,6.72,6.75,0.027,0.222,$519 ,65,1,$519 ,65,136.66
|
||||||
|
pp-yolo [640x640],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,,,,#VALUE!,#VALUE!,$519 ,65,1,$519 ,65,
|
||||||
|
pp-yolo [640x640],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,,,,#VALUE!,#VALUE!,$519 ,65,1,$519 ,65,
|
||||||
|
pp-yolo [640x640],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,7.57,3.60,3.62,0.017,0.270,$426 ,28,1,$426 ,28,136.35
|
||||||
|
pp-yolo [640x640],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,,,,#VALUE!,#VALUE!,$426 ,28,1,$426 ,28,
|
||||||
|
pp-yolo [640x640],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,,,,#VALUE!,#VALUE!,$426 ,28,1,$426 ,28,
|
||||||
|
pp-yolo [640x640],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,13.79,6.65,6.56,0.034,0.306,$395 ,45,1,$395 ,45,69.09
|
||||||
|
pp-yolo [640x640],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,,,,#VALUE!,#VALUE!,$395 ,45,1,$395 ,45,
|
||||||
|
pp-yolo [640x640],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,,,,#VALUE!,#VALUE!,$395 ,45,1,$395 ,45,
|
||||||
|
pp-yolo [640x640],OV-2022.1.,core,Intel® Core™ i5-10500TE ,6.60,3.57,3.54,0.033,0.188,$195 ,35,1,$195,35,165.58
|
||||||
|
pp-yolo [640x640],OV-2022.1.,xeon,Intel® Xeon® W1290P,12.94,6.72,6.65,0.024,0.103,$539 ,125,1,$539 ,125,82.04
|
||||||
|
pp-yolo [640x640],OV-2022.1.,xeon,Intel® Xeon® E-2124G,5.16,2.75,2.68,0.024,0.072,$213 ,71,1,$213 ,71,192.03
|
||||||
|
pp-yolo [640x640],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,32.94,16.31,16.39,0.032,0.131,"$2,004 ",250,2,"$1,002 ",125,79.30
|
||||||
|
pp-yolo [640x640],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,61.48,32.67,33.03,0.056,0.204,"$2,166 ",300,2,"$1,083 ",150,45.23
|
||||||
|
pp-yolo [640x640],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,34.42,17.20,17.23,0.025,0.163,"$2,698 ",210,2,"$1,349 ",105,77.29
|
||||||
|
pp-yolo [640x640],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,81.47,44.73,45.17,0.011,0.198,"$14,810 ",410,2,"$7,405 ",205,48.80
|
||||||
|
pp-yolo [640x640],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,119.89,65.33,66.35,0.014,0.222,"$16,198 ",540,2,"$8,099 ",270,35.87
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,atom,Intel® Atom™ x5-E3940,22.88,9.70,9.69,0.672,2.408,$34 ,9.5,1,$34 ,9.5,45.68
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,40.49,16.13,16.22,0.686,3.374,$59 ,12,1,$59 ,12,25.34
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,160.99,60.70,163.95,2.728,13.415,$59 ,12,1,$59 ,12,11.03
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,194.31,72.77,173.30,3.293,16.192,$59 ,12,1,$59 ,12,
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,104.58,28.56,28.61,0.977,6.972,$107 ,15,1,$107 ,15,9.76
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,606.35,162.38,366.06,5.666,40.423,$107 ,15,1,$107 ,15,2.86
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,691.60,187.14,383.72,6.463,46.106,$107 ,15,1,$107 ,15,
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,core,Intel® Core™ i3-8100,207.01,104.96,104.77,1.769,3.184,$117 ,65,1,$117 ,65,5.09
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,core,Intel® Core™ i5-8500,305.39,153.66,156.23,1.59,4.698,$192 ,65,1,$192 ,65,3.44
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,core,Intel® Core™ i7-8700T,334.50,169.86,170.81,1.103,9.557,$303 ,35,1,$303 ,35,3.28
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,core,Intel® Core™ i9-10920X,1764.62,485.44,494.86,2.52,10.694,$700 ,165,1,$700 ,165,0.83
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,core,Intel® Core™ i9-10900TE,294.68,140.07,141.06,0.663,8.419,$444 ,35,1,$444 ,35,3.69
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,726.28,248.43,250.31,1.399,11.173,$519 ,65,1,$519 ,65,2.62
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,496.37,147.00,310.36,0.956,7.636,$519 ,65,1,$519 ,65,2.97
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,923.95,258.88,419.23,1.78,14.214,$519 ,65,1,$519 ,65,
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,483.17,117.35,118.51,1.134,17.256,$426 ,28,1,$426 ,28,2.40
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,923.49,255.46,568.24,2.167,32.981,$426 ,28,1,$426 ,28,1.85
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,945.16,250.57,469.99,2.218,33.755,$426 ,28,1,$426 ,28,
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,861.51,202.47,203.57,2.181,19.144,$395 ,45,1,$395 ,45,1.45
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,96.33,63.17,61.43,0.243,2.140,$395 ,45,1,$395 ,45,4.63
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,1051.87,242.38,360.68,2.662,23.374,$395 ,45,1,$395 ,45,
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,core,Intel® Core™ i5-10500TE ,299.19,150.37,150.75,1.534,8.548,$195 ,35,1,$195,35,3.65
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,xeon,Intel® Xeon® W1290P,644.01,299.03,299.52,1.194,5.152,$539 ,125,1,$539 ,125,1.69
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,xeon,Intel® Xeon® E-2124G,232.46,118.28,119.15,1.091,3.274,$213 ,71,1,$213 ,71,4.39
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,1928.73,512.60,512.39,1.924,7.714,"$2,004 ",250,2,"$1,002 ",125,1.33
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,4564.63,876.49,883.68,4.214,15.215,"$2,166 ",300,2,"$1,083 ",150,0.72
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,1968.41,535.52,535.39,1.459,9.373,"$2,698 ",210,2,"$1,349 ",105,1.28
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,6327.41,1525.04,1527.13,0.854,15.432,"$14,810 ",410,2,"$7,405 ",205,0.75
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,9604.61,1761.35,1764.81,1.185,17.786,"$16,198 ",540,2,"$8,099 ",270,0.46
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,accel,Intel® Neural Compute Stick 2,,,97.80,1.417,39.118,$69 ,2.5,1,$69 ,2.5,
|
||||||
|
resnet-18-pytorch [224x224],OV-2022.1.,accel,Intel® Movidius™ VPUs (Uzel* UI-AR8),,,786.89,1.599,26.229,$492 ,30,1,$492 ,30,
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,atom,Intel® Atom™ x5-E3940,9.37,3.81,3.82,0.275,0.985,$34 ,9.5,1,$34 ,9.5,109.86
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,16.75,6.86,6.83,0.283,1.396,$59 ,12,1,$59 ,12,60.83
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,55.63,24.11,56.09,0.942,4.635,$59 ,12,1,$59 ,12,25.48
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,67.67,29.85,60.46,1.146,5.639,$59 ,12,1,$59 ,12,
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,42.77,12.10,12.10,0.399,2.851,$107 ,15,1,$107 ,15,23.85
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,248.99,60.65,140.50,2.326,16.599,$107 ,15,1,$107 ,15,6.66
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,281.09,69.75,144.24,2.627,18.739,$107 ,15,1,$107 ,15,
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,core,Intel® Core™ i3-8100,85.87,46.73,46.30,0.733,1.321,$117 ,65,1,$117 ,65,12.43
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,core,Intel® Core™ i5-8500,128.09,67.98,68.69,0.667,1.970,$192 ,65,1,$192 ,65,8.81
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,core,Intel® Core™ i7-8700T,138.34,74.24,73.78,0.456,3.952,$303 ,35,1,$303 ,35,8.41
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,core,Intel® Core™ i9-10920X,743.13,192.92,196.93,1.061,4.503,$700 ,165,1,$700 ,165,2.16
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,core,Intel® Core™ i9-10900TE,124.19,61.16,62.35,0.279,3.548,$444 ,35,1,$444 ,35,8.90
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,310.11,109.07,108.49,0.597,4.770,$519 ,65,1,$519 ,65,6.46
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,210.65,56.88,122.14,0.405,3.240,$519 ,65,1,$519 ,65,6.02
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,425.72,96.26,153.34,0.82,6.549,$519 ,65,1,$519 ,65,
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,174.85,49.67,49.95,0.41,6.244,$426 ,28,1,$426 ,28,6.12
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,397.21,91.61,168.21,0.932,14.186,$426 ,28,1,$426 ,28,4.51
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,380.85,88.67,152.23,0.894,13.601,$426 ,28,1,$426 ,28,
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,305.96,89.22,99.50,0.774,6.799,$395 ,45,1,$395 ,45,3.77
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,125.37,23.97,62.60,0.317,2.786,$395 ,45,1,$395 ,45,31.46
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,382.59,99.94,135.62,0.968,8.501,$395 ,45,1,$395 ,45,
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,core,Intel® Core™ i5-10500TE ,123.75,65.10,64.76,0.634,3.535,$195 ,35,1,$195,35,9.39
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,xeon,Intel® Xeon® W1290P,264.79,127.53,127.18,0.491,2.118,$539 ,125,1,$539 ,125,4.29
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,xeon,Intel® Xeon® E-2124G,97.30,52.76,53.87,0.456,1.370,$213 ,71,1,$213 ,71,10.79
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,783.43,216.24,216.17,0.781,3.133,"$2,004 ",250,2,"$1,002 ",125,3.51
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,1847.53,417.03,423.60,1.705,6.158,"$2,166 ",300,2,"$1,083 ",150,1.94
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,823.83,225.96,226.26,0.61,3.923,"$2,698 ",210,2,"$1,349 ",105,3.37
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,2495.75,620.29,620.78,0.337,6.087,"$14,810 ",410,2,"$7,405 ",205,1.72
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,3897.47,878.21,890.20,0.481,7.217,"$16,198 ",540,2,"$8,099 ",270,1.15
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,accel,Intel® Neural Compute Stick 2,,,28.97,0.419,11.587,$69 ,2.5,1,$69 ,2.5,
|
||||||
|
resnet-50-PYTORCH [224x224],OV-2022.1.,accel,Intel® Movidius™ VPUs (Uzel* UI-AR8),,,231.07,0.469,7.702,$492 ,30,1,$492 ,30,
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,atom,Intel® Atom™ x5-E3940,9.38,3.82,3.82,0.275,0.987,$34 ,9.5,1,$34 ,9.5,110.31
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,16.71,6.86,6.81,0.283,1.392,$59 ,12,1,$59 ,12,60.77
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,55.81,24.23,56.38,0.945,4.650,$59 ,12,1,$59 ,12,25.41
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,67.71,29.87,59.06,1.147,5.642,$59 ,12,1,$59 ,12,
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,42.54,12.08,12.09,0.397,2.836,$107 ,15,1,$107 ,15,23.97
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,247.15,60.60,140.68,2.309,16.476,$107 ,15,1,$107 ,15,6.73
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,278.70,69.61,144.60,2.604,18.579,$107 ,15,1,$107 ,15,
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,core,Intel® Core™ i3-8100,85.30,46.29,46.16,0.729,1.312,$117 ,65,1,$117 ,65,12.49
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,core,Intel® Core™ i5-8500,138.92,68.24,69.39,0.723,2.137,$192 ,65,1,$192 ,65,8.78
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,core,Intel® Core™ i7-8700T,137.68,74.20,74.13,0.454,3.933,$303 ,35,1,$303 ,35,8.46
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,core,Intel® Core™ i9-10920X,749.03,194.07,197.53,1.07,4.539,$700 ,165,1,$700 ,165,2.21
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,core,Intel® Core™ i9-10900TE,125.00,61.65,74.04,0.281,3.571,$444 ,35,1,$444 ,35,8.64
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,303.66,108.48,109.06,0.585,4.671,$519 ,65,1,$519 ,65,6.45
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,209.93,56.95,122.40,0.404,3.229,$519 ,65,1,$519 ,65,6.03
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,399.96,91.63,155.32,0.77,6.153,$519 ,65,1,$519 ,65,
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,174.10,49.53,49.83,0.408,6.218,$426 ,28,1,$426 ,28,6.17
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,395.65,91.38,169.01,0.928,14.130,$426 ,28,1,$426 ,28,4.60
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,380.93,92.22,148.75,0.894,13.604,$426 ,28,1,$426 ,28,
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,303.86,86.43,86.83,0.769,6.752,$395 ,45,1,$395 ,45,3.79
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,107.26,26.81,65.88,0.271,2.383,$395 ,45,1,$395 ,45,31.75
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,405.96,100.31,133.72,1.027,9.021,$395 ,45,1,$395 ,45,
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,core,Intel® Core™ i5-10500TE ,123.17,64.82,64.71,0.631,3.519,$195 ,35,1,$195,35,9.42
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,xeon,Intel® Xeon® W1290P,261.12,128.00,128.78,0.484,2.088,$539 ,125,1,$539 ,125,4.32
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,xeon,Intel® Xeon® E-2124G,96.70,52.52,53.07,0.453,1.361,$213 ,71,1,$213 ,71,10.85
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,778.61,216.07,215.54,0.777,3.114,"$2,004 ",250,2,"$1,002 ",125,3.57
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,1828.11,417.12,424.47,1.688,6.093,"$2,166 ",300,2,"$1,083 ",150,1.94
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,817.61,226.06,226.21,0.606,3.893,"$2,698 ",210,2,"$1,349 ",105,3.42
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,2487.31,618.30,616.65,0.335,6.066,"$14,810 ",410,2,"$7,405 ",205,1.75
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,3873.21,876.34,887.82,0.478,7.172,"$16,198 ",540,2,"$8,099 ",270,1.18
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,accel,Intel® Neural Compute Stick 2,,,28.52,0.413,11.409,$69 ,2.5,1,$69 ,2.5,
|
||||||
|
resnet-50-TF [224x224],OV-2022.1.,accel,Intel® Movidius™ VPUs (Uzel* UI-AR8),,,231.00,0.469,7.700,$492 ,30,1,$492 ,30,
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,atom,Intel® Atom™ x5-E3940,25.31,11.73,11.75,0.744,2.663,$34 ,9.5,1,$34 ,9.5,43.65
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,44.85,21.65,21.83,0.76,3.737,$59 ,12,1,$59 ,12,23.67
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,89.67,52.84,92.45,1.519,7.472,$59 ,12,1,$59 ,12,13.83
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,126.24,69.84,110.06,2.139,10.519,$59 ,12,1,$59 ,12,
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,107.30,35.29,35.50,1.002,7.153,$107 ,15,1,$107 ,15,10.20
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,335.21,126.87,199.13,3.132,22.347,$107 ,15,1,$107 ,15,5.84
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,300.53,126.12,180.33,2.808,20.035,$107 ,15,1,$107 ,15,
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,core,Intel® Core™ i3-8100,214.55,120.51,123.11,1.833,3.300,$117 ,65,1,$117 ,65,5.04
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,core,Intel® Core™ i5-8500,327.42,186.36,196.35,1.705,5.037,$192 ,65,1,$192 ,65,3.42
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,core,Intel® Core™ i7-8700T,359.53,208.95,206.67,1.186,10.272,$303 ,35,1,$303 ,35,3.35
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,core,Intel® Core™ i9-10920X,1664.78,488.82,499.14,2.378,10.089,$700 ,165,1,$700 ,165,1.15
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,core,Intel® Core™ i9-10900TE,328.48,178.40,180.26,0.739,9.385,$444 ,35,1,$444 ,35,3.51
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,807.32,303.30,306.78,1.555,12.420,$519 ,65,1,$519 ,65,2.91
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,352.49,126.65,201.38,0.679,5.422,$519 ,65,1,$519 ,65,4.02
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,793.25,301.08,367.33,1.528,12.203,$519 ,65,1,$519 ,65,
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,427.98,140.11,143.59,1.004,15.284,$426 ,28,1,$426 ,28,2.58
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,423.06,188.33,268.30,0.993,15.109,$426 ,28,1,$426 ,28,3.25
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,657.85,212.59,282.24,1.544,23.494,$426 ,28,1,$426 ,28,
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,747.93,249.84,254.47,1.893,16.620,$395 ,45,1,$395 ,45,1.73
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,41.60,16.78,18.47,0.105,0.924,$395 ,45,1,$395 ,45,24.77
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,834.51,184.51,192.69,2.112,18.544,$395 ,45,1,$395 ,45,
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,core,Intel® Core™ i5-10500TE ,324.09,172.93,171.99,1.662,9.259,$195 ,35,1,$195,35,3.72
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,xeon,Intel® Xeon® W1290P,682.20,315.53,316.75,1.265,5.457,$539 ,125,1,$539 ,125,1.79
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,xeon,Intel® Xeon® E-2124G,248.55,150.37,152.46,1.166,3.500,$213 ,71,1,$213 ,71,4.34
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,1884.20,602.02,600.37,1.88,7.536,"$2,004 ",250,2,"$1,002 ",125,1.87
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,4185.70,1146.19,1171.79,3.864,13.952,"$2,166 ",300,2,"$1,083 ",150,1.08
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,1976.75,627.11,623.43,1.465,9.413,"$2,698 ",210,2,"$1,349 ",105,1.79
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,5455.71,1508.52,1501.49,0.736,13.306,"$14,810 ",410,2,"$7,405 ",205,1.17
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,8670.98,2442.79,2486.37,1.07,16.057,"$16,198 ",540,2,"$8,099 ",270,0.88
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,accel,Intel® Neural Compute Stick 2,,,43.52,0.63,17.409,$69 ,2.5,1,$69 ,2.5,
|
||||||
|
ssd_mobilenet_v1_coco-TF [300x300],OV-2022.1.,accel,Intel® Movidius™ VPUs (Uzel* UI-AR8),,,349.25,0.709,11.641,$492 ,30,1,$492 ,30,
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,atom,Intel® Atom™ x5-E3940,32.92,18.42,18.51,0.968,3.465,$34 ,9.5,1,$34 ,9.5,35.14
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,57.54,33.27,32.88,0.975,4.794,$59 ,12,1,$59 ,12,18.94
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,86.07,54.21,91.66,1.458,7.172,$59 ,12,1,$59 ,12,15.06
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,129.36,76.83,115.28,2.192,10.780,$59 ,12,1,$59 ,12,
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,121.43,50.32,50.61,1.134,8.095,$107 ,15,1,$107 ,15,9.21
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,311.48,137.64,212.28,2.911,20.765,$107 ,15,1,$107 ,15,7.13
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,292.38,140.92,187.94,2.732,19.491,$107 ,15,1,$107 ,15,
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,core,Intel® Core™ i3-8100,251.49,163.28,162.71,2.149,3.869,$117 ,65,1,$117 ,65,4.43
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,core,Intel® Core™ i5-8500,379.04,249.36,247.89,1.974,5.831,$192 ,65,1,$192 ,65,2.87
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,core,Intel® Core™ i7-8700T,427.17,265.66,266.49,1.409,12.204,$303 ,35,1,$303 ,35,3.02
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,core,Intel® Core™ i9-10920X,1738.83,630.41,630.33,2.484,10.538,$700 ,165,1,$700 ,165,1.36
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,core,Intel® Core™ i9-10900TE,391.56,216.60,222.53,0.881,11.187,$444 ,35,1,$444 ,35,3.21
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,838.25,387.86,392.39,1.615,12.896,$519 ,65,1,$519 ,65,2.15
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,345.51,141.69,225.93,0.665,5.315,$519 ,65,1,$519 ,65,4.96
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,880.61,334.00,413.22,1.696,13.547,$519 ,65,1,$519 ,65,
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,483.16,199.51,199.04,1.134,17.255,$426 ,28,1,$426 ,28,2.41
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,375.57,192.53,268.52,0.881,13.413,$426 ,28,1,$426 ,28,3.96
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,677.79,276.32,343.20,1.591,24.206,$426 ,28,1,$426 ,28,
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,845.36,354.96,358.94,2.14,18.785,$395 ,45,1,$395 ,45,1.70
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,102.78,16.11,16.30,0.26,2.284,$395 ,45,1,$395 ,45,29.20
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,999.39,236.09,245.36,2.53,22.208,$395 ,45,1,$395 ,45,
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,core,Intel® Core™ i5-10500TE ,388.18,215.41,215.32,1.99,11.090,$195 ,35,1,$195,35,3.34
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,xeon,Intel® Xeon® W1290P,782.33,286.02,288.82,1.451,6.258,$539 ,125,1,$539 ,125,1.69
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,xeon,Intel® Xeon® E-2124G,290.61,205.39,205.77,1.364,4.093,$213 ,71,1,$213 ,71,3.79
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,2087.42,771.08,770.62,2.083,8.349,"$2,004 ",250,2,"$1,002 ",125,2.10
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,4397.13,1405.18,1428.03,4.06,14.657,"$2,166 ",300,2,"$1,083 ",150,1.21
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,2189.97,803.63,802.98,1.623,10.428,"$2,698 ",210,2,"$1,349 ",105,2.02
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,5511.60,1722.81,1723.51,0.744,13.442,"$14,810 ",410,2,"$7,405 ",205,1.52
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,8991.54,2843.41,2883.84,1.11,16.650,"$16,198 ",540,2,"$8,099 ",270,1.08
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,accel,Intel® Neural Compute Stick 2,,,27.87,0.403,11.147,$69 ,2.5,1,$69 ,2.5,
|
||||||
|
ssdlite_mobilenet_v2-TF [300x300],OV-2022.1.,accel,Intel® Movidius™ VPUs (Uzel* UI-AR8),,,232.00,0.471,7.733,$492 ,30,1,$492 ,30,
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,atom,Intel® Atom™ x5-E3940,0.18,0.08,0.08,0.005,0.018,$34 ,9.5,1,$34 ,9.5,5642.27
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,0.32,0.13,0.13,0.005,0.026,$59 ,12,1,$59 ,12,3111.43
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,0.95,0.61,1.03,0.016,0.079,$59 ,12,1,$59 ,12,1060.33
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,,,,#VALUE!,#VALUE!,$59 ,12,1,$59 ,12,
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,0.83,0.23,0.23,0.007,0.055,$107 ,15,1,$107 ,15,1198.33
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,5.11,1.44,2.53,0.047,0.340,$107 ,15,1,$107 ,15,212.58
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,,,,#VALUE!,#VALUE!,$107 ,15,1,$107 ,15,
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,core,Intel® Core™ i3-8100,1.62,0.97,0.97,0.013,0.024,$117 ,65,1,$117 ,65,625.10
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,core,Intel® Core™ i5-8500,2.55,1.49,1.51,0.013,0.039,$192 ,65,1,$192 ,65,381.96
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,core,Intel® Core™ i7-8700T,2.64,1.57,1.57,0.008,0.075,$303 ,35,1,$303 ,35,436.74
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,core,Intel® Core™ i9-10920X,14.60,4.02,4.07,0.02,0.088,$700 ,165,1,$700 ,165,73.92
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,core,Intel® Core™ i9-10900TE,2.58,1.47,1.49,0.005,0.073,$444 ,35,1,$444 ,35,429.92
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,7.04,2.26,2.30,0.013,0.108,$519 ,65,1,$519 ,65,254.34
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,4.37,1.27,2.30,0.008,0.067,$519 ,65,1,$519 ,65,233.36
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,,,,#VALUE!,#VALUE!,$519 ,65,1,$519 ,65,
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,3.76,0.94,0.95,0.008,0.134,$426 ,28,1,$426 ,28,287.51
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,7.32,2.19,3.90,0.017,0.261,$426 ,28,1,$426 ,28,143.54
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,,,,#VALUE!,#VALUE!,$426 ,28,1,$426 ,28,
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,6.83,1.75,1.77,0.017,0.151,$395 ,45,1,$395 ,45,143.44
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,0.92,0.30,0.33,0.002,0.020,$395 ,45,1,$395 ,45,1159.28
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,,,,#VALUE!,#VALUE!,$395 ,45,1,$395 ,45,
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,core,Intel® Core™ i5-10500TE ,2.31,1.40,1.40,0.011,0.066,$195 ,35,1,$195,35,491.71
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,xeon,Intel® Xeon® W1290P,5.02,2.99,2.99,0.009,0.040,$539 ,125,1,$539 ,125,226.74
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,xeon,Intel® Xeon® E-2124G,1.86,1.10,1.11,0.008,0.026,$213 ,71,1,$213 ,71,539.22
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,15.52,4.30,4.30,0.015,0.062,"$2,004 ",250,2,"$1,002 ",125,130.59
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,34.19,10.12,10.20,0.031,0.113,"$2,166 ",300,2,"$1,083 ",150,62.19
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,16.23,4.53,4.53,0.012,0.077,"$2,698 ",210,2,"$1,349 ",105,124.63
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,43.79,13.58,13.77,0.005,0.106,"$14,810 ",410,2,"$7,405 ",205,47.45
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,71.32,21.08,21.32,0.008,0.132,"$16,198 ",540,2,"$8,099 ",270,32.75
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,accel,Intel® Neural Compute Stick 2,,,0.69,0.01,0.277,$69 ,2.5,1,$69 ,2.5,
|
||||||
|
ssd-resnet34-1200-onnx [1200x1200],OV-2022.1.,accel,Intel® Movidius™ VPUs (Uzel* UI-AR8),,,4.68,0.009,0.156,$492 ,30,1,$492 ,30,
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,atom,Intel® Atom™ x5-E3940,0.26,0.04,0.13,0.007,0.027,$34 ,9.5,1,$34 ,9.5,3872.45
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,0.48,0.06,0.22,0.008,0.039,$59 ,12,1,$59 ,12,2101.40
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,0.89,0.99,0.91,0.015,0.073,$59 ,12,1,$59 ,12,1128.12
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,1.26,0.48,0.82,0.021,0.104,$59 ,12,1,$59 ,12,
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,1.44,0.29,0.38,0.013,0.095,$107 ,15,1,$107 ,15,693.82
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,8.42,2.49,2.01,0.078,0.561,$107 ,15,1,$107 ,15,119.63
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,9.60,2.75,2.34,0.089,0.640,$107 ,15,1,$107 ,15,
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,core,Intel® Core™ i3-8100,2.51,1.57,1.57,0.021,0.038,$117 ,65,1,$117 ,65,405.13
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,core,Intel® Core™ i5-8500,3.81,2.35,2.37,0.019,0.058,$192 ,65,1,$192 ,65,274.87
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,core,Intel® Core™ i7-8700T,4.04,2.53,2.53,0.013,0.115,$303 ,35,1,$303 ,35,282.82
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,core,Intel® Core™ i9-10920X,25.90,5.19,6.43,0.036,0.156,$700 ,165,1,$700 ,165,41.59
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,core,Intel® Core™ i9-10900TE,3.44,2.25,2.27,0.007,0.098,$444 ,35,1,$444 ,35,289.29
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,10.30,3.61,3.72,0.019,0.158,$519 ,65,1,$519 ,65,173.60
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,6.71,2.16,1.93,0.012,0.103,$519 ,65,1,$519 ,65,141.75
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,11.12,3.59,3.00,0.021,0.171,$519 ,65,1,$519 ,65,
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,6.33,1.38,1.53,0.014,0.226,$426 ,28,1,$426 ,28,163.50
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,13.22,3.88,2.46,0.031,0.472,$426 ,28,1,$426 ,28,75.98
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,15.55,3.77,3.58,0.036,0.555,$426 ,28,1,$426 ,28,
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,10.88,2.41,2.66,0.027,0.241,$395 ,45,1,$395 ,45,95.93
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,5.98,0.97,0.34,0.015,0.132,$395 ,45,1,$395 ,45,503.29
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,12.22,2.36,1.38,0.03,0.271,$395 ,45,1,$395 ,45,
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,core,Intel® Core™ i5-10500TE ,3.60,2.25,2.27,0.018,0.102,$195 ,35,1,$195,35,319.79
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,xeon,Intel® Xeon® W1290P,7.31,4.63,4.65,0.013,0.058,$539 ,125,1,$539 ,125,157.20
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,xeon,Intel® Xeon® E-2124G,2.87,1.77,1.78,0.013,0.040,$213 ,71,1,$213 ,71,348.86
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,27.25,4.79,6.96,0.027,0.109,"$2,004 ",250,2,"$1,002 ",125,74.37
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,61.65,11.32,16.24,0.056,0.205,"$2,166 ",300,2,"$1,083 ",150,34.96
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,28.56,5.07,7.31,0.021,0.136,"$2,698 ",210,2,"$1,349 ",105,70.88
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,79.57,12.78,21.85,0.01,0.194,"$14,810 ",410,2,"$7,405 ",205,26.77
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,129.09,21.72,33.82,0.015,0.239,"$16,198 ",540,2,"$8,099 ",270,18.97
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,accel,Intel® Neural Compute Stick 2,,,0.79,0.011,0.314,$69 ,2.5,1,$69 ,2.5,
|
||||||
|
unet-camvid-onnx-0001 [368x480],OV-2022.1.,accel,Intel® Movidius™ VPUs (Uzel* UI-AR8),,,6.31,0.012,0.210,$492 ,30,1,$492 ,30,
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,atom,Intel® Atom™ x5-E3940,12.43,6.23,6.23,0.365,1.308,$34 ,9.5,1,$34 ,9.5,82.47
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,22.84,10.36,10.40,0.387,1.903,$59 ,12,1,$59 ,12,44.91
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,65.35,38.16,66.37,1.107,5.446,$59 ,12,1,$59 ,12,16.50
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,84.46,45.27,72.43,1.431,7.038,$59 ,12,1,$59 ,12,
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,58.10,18.09,18.10,0.542,3.873,$107 ,15,1,$107 ,15,17.34
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,313.43,94.92,157.65,2.929,20.895,$107 ,15,1,$107 ,15,4.17
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,353.80,108.49,162.09,3.306,23.586,$107 ,15,1,$107 ,15,
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,core,Intel® Core™ i3-8100,114.51,63.35,63.17,0.978,1.761,$117 ,65,1,$117 ,65,8.99
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,core,Intel® Core™ i5-8500,172.80,93.38,94.56,0.899,2.658,$192 ,65,1,$192 ,65,6.03
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,core,Intel® Core™ i7-8700T,186.33,104.69,105.27,0.614,5.323,$303 ,35,1,$303 ,35,5.75
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,core,Intel® Core™ i9-10920X,964.24,287.79,288.38,1.377,5.843,$700 ,165,1,$700 ,165,1.44
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,core,Intel® Core™ i9-10900TE,170.35,90.17,91.49,0.383,4.867,$444 ,35,1,$444 ,35,6.39
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,363.81,150.91,151.97,0.7,5.597,$519 ,65,1,$519 ,65,4.58
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,258.73,81.00,129.01,0.498,3.980,$519 ,65,1,$519 ,65,4.96
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,556.55,138.56,174.75,1.072,8.562,$519 ,65,1,$519 ,65,
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,244.96,72.29,72.81,0.575,8.748,$426 ,28,1,$426 ,28,4.24
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,451.59,134.96,223.79,1.06,16.128,$426 ,28,1,$426 ,28,2.72
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,529.28,137.91,223.97,1.242,18.902,$426 ,28,1,$426 ,28,
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,431.57,125.60,124.53,1.092,9.590,$395 ,45,1,$395 ,45,2.58
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,148.77,35.96,70.93,0.376,3.306,$395 ,45,1,$395 ,45,9.55
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,511.40,142.17,175.71,1.294,11.364,$395 ,45,1,$395 ,45,
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,core,Intel® Core™ i5-10500TE ,167.33,92.51,91.98,0.858,4.780,$195 ,35,1,$195,35,6.42
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,xeon,Intel® Xeon® W1290P,340.95,172.90,171.18,0.632,2.727,$539 ,125,1,$539 ,125,3.01
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,xeon,Intel® Xeon® E-2124G,129.79,72.42,73.28,0.609,1.828,$213 ,71,1,$213 ,71,7.83
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,1065.19,315.47,315.25,1.063,4.260,"$2,004 ",250,2,"$1,002 ",125,2.33
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,2251.43,541.09,546.18,2.078,7.504,"$2,166 ",300,2,"$1,083 ",150,1.21
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,1112.31,332.17,331.70,0.824,5.296,"$2,698 ",210,2,"$1,349 ",105,2.24
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,3059.17,862.84,866.38,0.413,7.461,"$14,810 ",410,2,"$7,405 ",205,1.23
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,4670.53,1081.70,1076.76,0.576,8.649,"$16,198 ",540,2,"$8,099 ",270,0.80
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,accel,Intel® Neural Compute Stick 2,,,34.02,0.493,13.609,$69 ,2.5,1,$69 ,2.5,
|
||||||
|
yolo-v3-tiny-tf [416x416],OV-2022.1.,accel,Intel® Movidius™ VPUs (Uzel* UI-AR8),,,284.94,0.579,9.498,$492 ,30,1,$492 ,30,
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
||||||
|
begin_rec,,,,,,,,,,,,,,
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,atom,Intel® Atom™ x5-E3940,0.54,0.23,0.23,0.015,0.056,$34 ,9.5,1,$34 ,9.5,1873.72
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,atom,Intel® Atom™ x6425E CPU-only,0.98,0.39,0.39,0.016,0.081,$59 ,12,1,$59 ,12,1029.24
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,atom,Intel® Atom™ x6425E iGPU-only,3.38,1.75,3.43,0.057,0.282,$59 ,12,1,$59 ,12,298.92
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,atom,Intel® Atom™ x6425E CPU+iGPU,4.24,2.00,3.76,0.071,0.353,$59 ,12,1,$59 ,12,
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,atom,Intel® Celeron 6305E CPU-only,2.44,0.75,0.75,0.022,0.162,$107 ,15,1,$107 ,15,408.55
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,atom,Intel® Celeron 6305E iGPU-only,14.53,4.25,7.89,0.135,0.968,$107 ,15,1,$107 ,15,72.14
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,atom,Intel® Celeron 6305E CPU+iGPU,16.00,4.84,8.16,0.149,1.066,$107 ,15,1,$107 ,15,
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,core,Intel® Core™ i3-8100,4.97,2.16,2.16,0.042,0.076,$117 ,65,1,$117 ,65,204.17
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,core,Intel® Core™ i5-8500,7.49,3.32,3.37,0.038,0.115,$192 ,65,1,$192 ,65,139.07
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,core,Intel® Core™ i7-8700T,8.22,3.63,3.63,0.027,0.234,$303 ,35,1,$303 ,35,140.19
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,core,Intel® Core™ i9-10920X,42.27,12.20,12.35,0.06,0.256,$700 ,165,1,$700 ,165,27.01
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,core,Intel® Core™ i9-10900TE,7.66,3.46,3.48,0.017,0.218,$444 ,35,1,$444 ,35,142.65
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,core,Intel® Core™ i9-12900 CPU-only,20.45,5.93,6.00,0.039,0.314,$519 ,65,1,$519 ,65,88.25
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,core-iGPU,Intel® Core™ i9-12900 iGPU-only,12.41,3.86,7.31,0.023,0.190,$519 ,65,1,$519 ,65,82.63
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i9-12900 CPU+iGPU,24.16,6.28,10.34,0.046,0.371,$519 ,65,1,$519 ,65,
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,core,Intel® Core™ i7-1185G7 CPU-only,10.37,3.01,3.51,0.024,0.370,$426 ,28,1,$426 ,28,99.58
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,core-iGPU,Intel® Core™ i7-1185G7 iGPU-only,21.23,6.41,11.70,0.049,0.758,$426 ,28,1,$426 ,28,48.69
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-1185G7 CPU+iGPU,25.55,5.95,8.70,0.059,0.912,$426 ,28,1,$426 ,28,
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,core,Intel® Core™ i7-11800H CPU-only,18.79,5.61,5.55,0.047,0.417,$395 ,45,1,$395 ,45,50.40
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,core-iGPU,Intel® Core™ i7-11800H iGPU-only,6.38,1.75,3.07,0.016,0.141,$395 ,45,1,$395 ,45,445.85
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,core-CPU+iGPU,Intel® Core™ i7-11800H CPU+iGPU,16.54,4.72,5.92,0.041,0.367,$395 ,45,1,$395 ,45,
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,core,Intel® Core™ i5-10500TE ,7.34,3.29,3.25,0.037,0.209,$195 ,35,1,$195,35,156.55
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,xeon,Intel® Xeon® W1290P,15.63,6.61,6.59,0.029,0.125,$539 ,125,1,$539 ,125,71.39
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,xeon,Intel® Xeon® E-2124G,5.61,2.47,2.48,0.026,0.079,$213 ,71,1,$213 ,71,179.13
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,xeon,Intel® Xeon® Silver 4216R,44.69,13.78,13.79,0.044,0.178,"$2,004 ",250,2,"$1,002 ",125,46.64
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,xeon,Intel® Xeon® Silver 4316,100.77,28.50,28.86,0.093,0.335,"$2,166 ",300,2,"$1,083 ",150,23.74
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,xeon,Intel® Xeon® Gold 5218T,47.00,14.50,14.48,0.034,0.223,"$2,698 ",210,2,"$1,349 ",105,44.42
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,xeon,Intel® Xeon® Platinum 8270,128.40,40.81,41.19,0.017,0.313,"$14,810 ",410,2,"$7,405 ",205,19.22
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,xeon,Intel® Xeon® Platinum 8380,209.59,58.74,59.44,0.025,0.388,"$16,198 ",540,2,"$8,099 ",270,12.74
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,accel,Intel® Neural Compute Stick 2,,,1.39,0.02,0.554,$69 ,2.5,1,$69 ,2.5,
|
||||||
|
yolo_v4-tf [608x608],OV-2022.1.,accel,Intel® Movidius™ VPUs (Uzel* UI-AR8),,,11.09,0.022,0.369,$492 ,30,1,$492 ,30,
|
||||||
|
end_rec,,,,,,,,,,,,,,
|
|
597
docs/_static/css/custom.css
vendored
@ -1,4 +1,21 @@
|
|||||||
|
/* misc */
|
||||||
|
/* =================================================== */
|
||||||
|
.switcher-set {
|
||||||
|
margin-bottom:1rem;
|
||||||
|
}
|
||||||
|
main img {
|
||||||
|
cursor: pointer;
|
||||||
|
}
|
||||||
|
.doxyrest-title-code-block {
|
||||||
|
margin-bottom: 0;
|
||||||
|
}
|
||||||
|
main .searchForm {
|
||||||
|
margin-bottom: 2rem;
|
||||||
|
margin-top: 2rem;
|
||||||
|
}
|
||||||
|
|
||||||
/* footer links */
|
/* footer links */
|
||||||
|
/* =================================================== */
|
||||||
footer div.container div.footer-item p a {
|
footer div.container div.footer-item p a {
|
||||||
float: left;
|
float: left;
|
||||||
margin-right: 30px;
|
margin-right: 30px;
|
||||||
@ -10,63 +27,41 @@ footer div.container div.footer-item p:nth-child(2) {
|
|||||||
clear: both;
|
clear: both;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* misc */
|
/* doc version dropdown formatting override */
|
||||||
.switcher-set {
|
/* =================================================== */
|
||||||
margin-bottom:1rem;
|
|
||||||
}
|
|
||||||
|
|
||||||
main img {
|
|
||||||
cursor: pointer;
|
|
||||||
}
|
|
||||||
|
|
||||||
.doxyrest-title-code-block {
|
|
||||||
margin-bottom: 0;
|
|
||||||
}
|
|
||||||
/* doc version dropdown formatting override*/
|
|
||||||
|
|
||||||
[aria-labelledby="version-selector"] {
|
[aria-labelledby="version-selector"] {
|
||||||
min-width: 125px!important;
|
min-width: 125px!important;
|
||||||
overflow-x: hidden!important;
|
overflow-x: hidden!important;
|
||||||
}
|
}
|
||||||
|
|
||||||
.sst-dropdown #version-selector {
|
.sst-dropdown #version-selector {
|
||||||
min-width: 125px!important;
|
min-width: 125px!important;
|
||||||
}
|
}
|
||||||
|
|
||||||
[aria-labelledby="version-selector"] .dropdown-item {
|
[aria-labelledby="version-selector"] .dropdown-item {
|
||||||
padding: 0.25rem 0.5rem!important;
|
padding: 0.25rem 0.5rem!important;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Content in two columns */
|
/* Content in two columns */
|
||||||
|
/* =================================================== */
|
||||||
.row-two-col-content {
|
.row-two-col-content {
|
||||||
display: flex;
|
display: flex;
|
||||||
}
|
}
|
||||||
|
|
||||||
.column-two-col-content {
|
.column-two-col-content {
|
||||||
flex: 50%;
|
flex: 50%;
|
||||||
padding-right: 10px!important;
|
padding-right: 10px!important;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* code reference text formatting override */
|
/* code reference text formatting override */
|
||||||
|
/* =================================================== */
|
||||||
code {
|
code {
|
||||||
color: black !important;
|
color: black !important;
|
||||||
font-weight: bold;
|
font-weight: bold;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Performance Benchmark Graphs */
|
|
||||||
|
|
||||||
.chart {
|
|
||||||
height: 500px;
|
|
||||||
padding:0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Table Sort Button */
|
/* Table Sort Button */
|
||||||
|
/* =================================================== */
|
||||||
.sort-header {
|
.sort-header {
|
||||||
cursor: pointer;
|
cursor: pointer;
|
||||||
}
|
}
|
||||||
|
|
||||||
.sort-btn {
|
.sort-btn {
|
||||||
content: "";
|
content: "";
|
||||||
background-image:url('media/arrow-small-opposite-v.svg');
|
background-image:url('media/arrow-small-opposite-v.svg');
|
||||||
@ -79,29 +74,23 @@ code {
|
|||||||
position:relative;
|
position:relative;
|
||||||
top:0.5rem;
|
top:0.5rem;
|
||||||
}
|
}
|
||||||
|
|
||||||
.sort-btn.sort-active.ascending,
|
.sort-btn.sort-active.ascending,
|
||||||
.sort-btn.sort-active {
|
.sort-btn.sort-active {
|
||||||
background-size: 100% 70%;
|
background-size: 100% 70%;
|
||||||
}
|
}
|
||||||
|
|
||||||
.sort-btn.sort-active.ascending {
|
.sort-btn.sort-active.ascending {
|
||||||
background-image: url('media/union-down.svg');
|
background-image: url('media/union-down.svg');
|
||||||
}
|
}
|
||||||
|
|
||||||
.sort-btn.sort-active {
|
.sort-btn.sort-active {
|
||||||
background-image: url('media/union-up.svg');
|
background-image: url('media/union-up.svg');
|
||||||
}
|
}
|
||||||
|
|
||||||
div.highlight {
|
div.highlight {
|
||||||
margin-bottom: 1.15rem;
|
margin-bottom: 1.15rem;
|
||||||
}
|
}
|
||||||
|
|
||||||
.highlight .err {
|
.highlight .err {
|
||||||
border:none;
|
border:none;
|
||||||
color:inherit;
|
color:inherit;
|
||||||
}
|
}
|
||||||
|
|
||||||
.opt-notice-wrapper {
|
.opt-notice-wrapper {
|
||||||
position: fixed;
|
position: fixed;
|
||||||
bottom:0;
|
bottom:0;
|
||||||
@ -111,7 +100,6 @@ div.highlight {
|
|||||||
padding: 1rem;
|
padding: 1rem;
|
||||||
z-index: 1000;
|
z-index: 1000;
|
||||||
}
|
}
|
||||||
|
|
||||||
.opt-notice {
|
.opt-notice {
|
||||||
margin-bottom: 0;
|
margin-bottom: 0;
|
||||||
position: absolute;
|
position: absolute;
|
||||||
@ -123,6 +111,7 @@ div.highlight {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/* Transition banner */
|
/* Transition banner */
|
||||||
|
/* =================================================== */
|
||||||
.transition-banner {
|
.transition-banner {
|
||||||
top: 60px;
|
top: 60px;
|
||||||
background: #76CEFF;
|
background: #76CEFF;
|
||||||
@ -147,7 +136,6 @@ div.highlight {
|
|||||||
color: #000;
|
color: #000;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@media (max-width: 720px) {
|
@media (max-width: 720px) {
|
||||||
.transition-banner {
|
.transition-banner {
|
||||||
margin-top: 2rem;
|
margin-top: 2rem;
|
||||||
@ -155,12 +143,543 @@ div.highlight {
|
|||||||
}
|
}
|
||||||
|
|
||||||
@media (min-width: 1200px) {
|
@media (min-width: 1200px) {
|
||||||
.container, .container-lg, .container-md, .container-sm, .container-xl {
|
.container,
|
||||||
|
.container-lg,
|
||||||
|
.container-md,
|
||||||
|
.container-sm,
|
||||||
|
.container-xl {
|
||||||
max-width: 1800px;
|
max-width: 1800px;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
main .searchForm {
|
|
||||||
margin-bottom: 2rem;
|
/* Performance Benchmark Graphs */
|
||||||
margin-top: 2rem;
|
/* =================================================== */
|
||||||
|
.configure-graphs-header {
|
||||||
|
padding-left: 16px;
|
||||||
}
|
}
|
||||||
|
.configure-graphs-header h3 {
|
||||||
|
float: left;
|
||||||
|
}
|
||||||
|
.header-inactive {
|
||||||
|
color: lightgray;
|
||||||
|
}
|
||||||
|
.configure-graphs-btn {
|
||||||
|
padding: 4px 20px;
|
||||||
|
background-color: #0054AE;
|
||||||
|
border-color: #0054AE;
|
||||||
|
color: #fefefe;
|
||||||
|
}
|
||||||
|
.graph-chart-title-header {
|
||||||
|
font-size: 1.4rem;
|
||||||
|
line-height: 2rem;
|
||||||
|
color: #0054AE;
|
||||||
|
padding: 12px 0;
|
||||||
|
margin: 0;
|
||||||
|
}
|
||||||
|
.empty-chart-container {
|
||||||
|
height: 80px;
|
||||||
|
line-height: 80px;
|
||||||
|
width: 100%;
|
||||||
|
text-align: center;
|
||||||
|
background-color: #f3f3f3;
|
||||||
|
border-radius: 5px;
|
||||||
|
}
|
||||||
|
.graph-chart-title {
|
||||||
|
vertical-align: middle;
|
||||||
|
padding: 12px 0;
|
||||||
|
}
|
||||||
|
.chart-column-header-container {
|
||||||
|
padding-top: 8px;
|
||||||
|
display: flex;
|
||||||
|
flex-direction: row;
|
||||||
|
width: 100%;
|
||||||
|
}
|
||||||
|
.chart-column-title {
|
||||||
|
min-width: 20%;
|
||||||
|
flex-grow: 0 1;
|
||||||
|
}
|
||||||
|
.chart-column-title .icon {
|
||||||
|
margin-top: 6px;
|
||||||
|
margin-right: 8px;
|
||||||
|
flex-grow: 0;
|
||||||
|
float: left;
|
||||||
|
}
|
||||||
|
.chart-column-title .chart-header {
|
||||||
|
flex-grow: 1;
|
||||||
|
float: left;
|
||||||
|
}
|
||||||
|
.chart-column-title .title {
|
||||||
|
font-size: 1rem;
|
||||||
|
font-weight: 400;
|
||||||
|
}
|
||||||
|
.chart-column-title .subtitle {
|
||||||
|
font-size: .8rem;
|
||||||
|
color: gray;
|
||||||
|
}
|
||||||
|
.chart-labels-container {
|
||||||
|
width: 18%;
|
||||||
|
}
|
||||||
|
.chart-labels-container .title {
|
||||||
|
text-align: right;
|
||||||
|
text-overflow: ellipsis;
|
||||||
|
overflow: hidden;
|
||||||
|
white-space: nowrap;
|
||||||
|
display: block;
|
||||||
|
font-size: .8rem;
|
||||||
|
line-height: 3.42rem;
|
||||||
|
color: gray;
|
||||||
|
}
|
||||||
|
.chevron-right-btn {
|
||||||
|
content: url('media/chevron-right.svg');
|
||||||
|
vertical-align: middle;
|
||||||
|
padding-left: 8px;
|
||||||
|
}
|
||||||
|
.chevron-down-btn {
|
||||||
|
content: url('media/chevron-down.svg');
|
||||||
|
vertical-align: middle;
|
||||||
|
padding-left: 8px;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
.chart {
|
||||||
|
height: 500px;
|
||||||
|
padding:0;
|
||||||
|
}
|
||||||
|
|
||||||
|
.chart-placeholder {
|
||||||
|
overflow-y: scroll;
|
||||||
|
}
|
||||||
|
|
||||||
|
.build-benchmark-section {
|
||||||
|
background-color: #f9f9f9;
|
||||||
|
padding: 10px 30px 80px 30px;
|
||||||
|
display: flex;
|
||||||
|
flex-wrap: wrap;
|
||||||
|
}
|
||||||
|
|
||||||
|
.build-benchmark-section .title {
|
||||||
|
flex-grow: 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
.build-benchmark-section h3 {
|
||||||
|
margin-top: 1rem;
|
||||||
|
}
|
||||||
|
|
||||||
|
.build-benchmark-section .btn-container {
|
||||||
|
display: block;
|
||||||
|
width: max-content;
|
||||||
|
align-self: center;
|
||||||
|
}
|
||||||
|
|
||||||
|
.build-benchmark-section img {
|
||||||
|
padding-top: 20px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.platform-configurations {
|
||||||
|
font-size: larger;
|
||||||
|
display: flex;
|
||||||
|
flex-wrap: wrap;
|
||||||
|
}
|
||||||
|
|
||||||
|
.platform-configurations div {
|
||||||
|
margin-bottom: 30px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.platform-configurations a {
|
||||||
|
padding-right: 24px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.platform-configurations a img {
|
||||||
|
padding-right: 24px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.efficiency-icon {
|
||||||
|
content: url('media/icon-efficiency.svg');
|
||||||
|
}
|
||||||
|
.latency-icon {
|
||||||
|
content: url('media/icon-latency.svg');
|
||||||
|
}
|
||||||
|
.throughput-icon {
|
||||||
|
content: url('media/icon-throughput.svg');
|
||||||
|
}
|
||||||
|
.value-icon {
|
||||||
|
content: url('media/icon-value.svg');
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Modal */
|
||||||
|
|
||||||
|
/* The Close Button */
|
||||||
|
.modal-close {
|
||||||
|
color: #aaaaaa;
|
||||||
|
float: right;
|
||||||
|
font-size: 28px;
|
||||||
|
line-height: 24px;
|
||||||
|
padding-right: 4px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.modal-close:hover,
|
||||||
|
.modal-close:focus {
|
||||||
|
color: #000;
|
||||||
|
text-decoration: none;
|
||||||
|
cursor: pointer;
|
||||||
|
}
|
||||||
|
|
||||||
|
.clear-all-btn {
|
||||||
|
float: right;
|
||||||
|
cursor: pointer;
|
||||||
|
line-height: 4rem;
|
||||||
|
}
|
||||||
|
|
||||||
|
.clear-all-btn-content {
|
||||||
|
border: 1.5px solid black;
|
||||||
|
padding: 6px 10px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.edit-settings-btn {
|
||||||
|
float: right;
|
||||||
|
color: #0054AE;
|
||||||
|
font-size: 1.05rem;
|
||||||
|
cursor: pointer;
|
||||||
|
line-height: 4rem;
|
||||||
|
display: none;
|
||||||
|
}
|
||||||
|
|
||||||
|
.edit-settings-text {
|
||||||
|
vertical-align: middle;
|
||||||
|
}
|
||||||
|
|
||||||
|
.edit-settings-icon {
|
||||||
|
vertical-align: middle;
|
||||||
|
content: url('media/edit-settings.svg');
|
||||||
|
}
|
||||||
|
|
||||||
|
.modal {
|
||||||
|
display: block;
|
||||||
|
position: fixed;
|
||||||
|
z-index: 1100;
|
||||||
|
left: 0;
|
||||||
|
top: 0;
|
||||||
|
width: 100%;
|
||||||
|
height: 100%;
|
||||||
|
background-color: rgb(0, 0, 0);
|
||||||
|
background-color: rgba(0, 0, 0, 0.4);
|
||||||
|
}
|
||||||
|
|
||||||
|
.modal .models-column-one label {
|
||||||
|
word-break: break-word;
|
||||||
|
}
|
||||||
|
|
||||||
|
.modal-content {
|
||||||
|
overflow: auto;
|
||||||
|
background-color: #fefefe;
|
||||||
|
margin: 3% auto;
|
||||||
|
padding: 36px;
|
||||||
|
border: 1px solid #888;
|
||||||
|
width: 95%;
|
||||||
|
max-height: 90%;
|
||||||
|
}
|
||||||
|
|
||||||
|
.modal-content h2 {
|
||||||
|
margin: 0 0 1rem;
|
||||||
|
}
|
||||||
|
|
||||||
|
.modal-content h3 {
|
||||||
|
margin-top: 20px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.modal-line-divider {
|
||||||
|
width: 100%;
|
||||||
|
border-bottom: 1px solid lightgray;
|
||||||
|
padding-bottom: 1px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.modal-header-grid-container {
|
||||||
|
display: grid;
|
||||||
|
padding: 12px 64px 2px 16px;
|
||||||
|
grid-template-columns: 40% 20% 20% 10% 10%;
|
||||||
|
column-gap: 16px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.modal-content-grid-container {
|
||||||
|
display: grid;
|
||||||
|
padding-left: 24px;
|
||||||
|
padding-right: 64px;
|
||||||
|
padding-top: 8px;
|
||||||
|
grid-template-columns: 20% 20% 20% 20% 10% 10%;
|
||||||
|
column-gap: 12px;
|
||||||
|
font-size: .78rem;
|
||||||
|
}
|
||||||
|
|
||||||
|
.modal-content-grid-container .column {
|
||||||
|
min-width: 100px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.modal-content-grid-container label {
|
||||||
|
margin-bottom: 0;
|
||||||
|
padding-right: 4px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.modal-content-grid-container input {
|
||||||
|
background-color: #0054AE;
|
||||||
|
display: inline-block;
|
||||||
|
vertical-align: top;
|
||||||
|
margin-top: 4px;
|
||||||
|
margin-left: -14px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.modal-header-grid-item h5 {
|
||||||
|
font-weight: 530;
|
||||||
|
margin: 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
.modal-grid-item h5 {
|
||||||
|
margin: 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
.modal-build-graphs-btn {
|
||||||
|
margin-bottom: 10px;
|
||||||
|
margin-right: 3px;
|
||||||
|
padding: 4px 16px;
|
||||||
|
float: right;
|
||||||
|
border-color: #0054AE;
|
||||||
|
background-color: #0054AE;
|
||||||
|
color: #fff;
|
||||||
|
}
|
||||||
|
.modal-build-graphs-btn:disabled {
|
||||||
|
border-color: #8C8C8C;
|
||||||
|
background-color: lightgray;
|
||||||
|
}
|
||||||
|
|
||||||
|
.modal-footer {
|
||||||
|
display: none;
|
||||||
|
padding: 0;
|
||||||
|
border: none;
|
||||||
|
width: 100%;
|
||||||
|
position: relative;
|
||||||
|
bottom: -16px;
|
||||||
|
left: 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
.benchmark-graph-results-header {
|
||||||
|
padding-left: 16px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.graph-row {
|
||||||
|
display: flex;
|
||||||
|
padding-top: 10px;
|
||||||
|
padding-bottom: 20px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.graph-row-first-column {
|
||||||
|
width: 32%;
|
||||||
|
}
|
||||||
|
|
||||||
|
.graph-row-column {
|
||||||
|
width: 20%;
|
||||||
|
}
|
||||||
|
|
||||||
|
.close-btn {
|
||||||
|
padding: 4px 16px;
|
||||||
|
border-color: #0054AE;
|
||||||
|
background-color: #0054AE;
|
||||||
|
color: #fefefe;
|
||||||
|
float: right;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* content formatting for the pages */
|
||||||
|
.picker-options {
|
||||||
|
margin: 15px 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
.picker-options .option {
|
||||||
|
padding: 10px;
|
||||||
|
font-size: medium;
|
||||||
|
font-weight: bold;
|
||||||
|
cursor: pointer;
|
||||||
|
}
|
||||||
|
|
||||||
|
.picker-options .option.selected {
|
||||||
|
border-bottom: 2px solid #0068B5;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
.picker-options .option.throughput::before {
|
||||||
|
content: url('media/icon-throughput.svg');
|
||||||
|
}
|
||||||
|
|
||||||
|
.picker-options .option.value::before {
|
||||||
|
content: url('media/icon-value.svg');
|
||||||
|
}
|
||||||
|
|
||||||
|
.picker-options .option.efficiency::before {
|
||||||
|
content: url('media/icon-efficiency.svg');
|
||||||
|
}
|
||||||
|
|
||||||
|
.picker-options .option.latency::before {
|
||||||
|
content: url('media/icon-latency.svg');
|
||||||
|
}
|
||||||
|
|
||||||
|
.picker-options p.selected {
|
||||||
|
display: block;
|
||||||
|
}
|
||||||
|
|
||||||
|
.picker-options p {
|
||||||
|
padding: 10px 0;
|
||||||
|
display: none;
|
||||||
|
border-top: #888 1px solid;
|
||||||
|
margin-top: 7px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.selectable-box-container {
|
||||||
|
display: flex;
|
||||||
|
flex-direction: row;
|
||||||
|
padding: 0 0 8px 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
.selectable-box {
|
||||||
|
border: 1px solid gray;
|
||||||
|
cursor: pointer;
|
||||||
|
flex-grow: 0;
|
||||||
|
font-size: .8rem;
|
||||||
|
font-weight: 600;
|
||||||
|
padding: 3px 10px;
|
||||||
|
color: black;
|
||||||
|
background-color: #fff;
|
||||||
|
}
|
||||||
|
|
||||||
|
.selectable-box.selected {
|
||||||
|
color: #fff;
|
||||||
|
background-color: #0054AE;
|
||||||
|
border-color:#0068B5;
|
||||||
|
}
|
||||||
|
|
||||||
|
.checkmark-container {
|
||||||
|
display: block;
|
||||||
|
position: relative;
|
||||||
|
padding-left: 20px;
|
||||||
|
margin-bottom: 12px;
|
||||||
|
cursor: pointer;
|
||||||
|
-webkit-user-select: none;
|
||||||
|
-moz-user-select: none;
|
||||||
|
-ms-user-select: none;
|
||||||
|
user-select: none;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Hide the browser's default checkbox */
|
||||||
|
.checkmark-container input {
|
||||||
|
position: absolute;
|
||||||
|
opacity: 0;
|
||||||
|
cursor: pointer;
|
||||||
|
height: 0;
|
||||||
|
width: 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Create a custom checkbox */
|
||||||
|
.checkmark {
|
||||||
|
position: absolute;
|
||||||
|
top: 2px;
|
||||||
|
left: 0;
|
||||||
|
height: 15px;
|
||||||
|
width: 15px;
|
||||||
|
border: #0054AE 2px solid;
|
||||||
|
}
|
||||||
|
|
||||||
|
.checkmark.radiobutton {
|
||||||
|
border-radius: 50%;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* On mouse-over, add a grey background color */
|
||||||
|
.checkmark-container:hover input ~ .checkmark {
|
||||||
|
background-color: #ccc;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* When the checkbox is checked, add a blue background */
|
||||||
|
.checkmark-container input:checked ~ .checkmark {
|
||||||
|
background-color: #0054AE;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Create the checkmark/indicator (hidden when not checked) */
|
||||||
|
.checkmark:after {
|
||||||
|
content: "";
|
||||||
|
position: absolute;
|
||||||
|
display: none;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Show the checkmark when checked */
|
||||||
|
.checkmark-container input:checked ~ .checkmark:after {
|
||||||
|
display: block;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Style the checkmark/indicator */
|
||||||
|
.checkmark-container .checkmark:after {
|
||||||
|
left: 3px;
|
||||||
|
top: 0;
|
||||||
|
width: 5px;
|
||||||
|
height: 9px;
|
||||||
|
border: solid white;
|
||||||
|
border-width: 0 2px 2px 0;
|
||||||
|
-webkit-transform: rotate(45deg);
|
||||||
|
-ms-transform: rotate(45deg);
|
||||||
|
transform: rotate(45deg);
|
||||||
|
}
|
||||||
|
|
||||||
|
.checkmark-container .checkmark.radiobutton:after {
|
||||||
|
border-radius: 50%;
|
||||||
|
top: 3px;
|
||||||
|
left: 3px;
|
||||||
|
width: 5px;
|
||||||
|
height: 5px;
|
||||||
|
background: white;
|
||||||
|
-webkit-transform: none;
|
||||||
|
-ms-transform: none;
|
||||||
|
transform: none;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#performance-information-frequently-asked-questions section h2 {
|
||||||
|
cursor: pointer;
|
||||||
|
color: #0054AE;
|
||||||
|
font-size: larger;
|
||||||
|
margin-top: 12px;
|
||||||
|
}
|
||||||
|
|
||||||
|
#performance-information-frequently-asked-questions table tr:nth-child(even),
|
||||||
|
table#model-accuracy-and-perf-int8-fp32-table tr:nth-child(even),
|
||||||
|
table#model-accuracy-and-perf-int8-fp32-table .light-header {
|
||||||
|
background-color: #f9f9f9;
|
||||||
|
}
|
||||||
|
|
||||||
|
table#model-accuracy-and-perf-int8-fp32-table tr.header {
|
||||||
|
background-color: #e9eaeb;
|
||||||
|
}
|
||||||
|
|
||||||
|
table#model-accuracy-and-perf-int8-fp32-table td.data {
|
||||||
|
border-left: #e9eaeb solid 1px;
|
||||||
|
}
|
||||||
|
|
||||||
|
#performance-information-frequently-asked-questions table {
|
||||||
|
overflow: auto;
|
||||||
|
}
|
||||||
|
|
||||||
|
#performance-information-frequently-asked-questions table thead {
|
||||||
|
background-color: #e9eaeb;
|
||||||
|
}
|
||||||
|
|
||||||
|
#performance-information-frequently-asked-questions section h2::before {
|
||||||
|
content: url('media/chevron-right.svg');
|
||||||
|
vertical-align: -10px;
|
||||||
|
margin-left: -32px;
|
||||||
|
}
|
||||||
|
|
||||||
|
#performance-information-frequently-asked-questions section h2.expanded::before {
|
||||||
|
content: url('media/chevron-down.svg');
|
||||||
|
vertical-align: -10px;
|
||||||
|
}
|
||||||
|
|
||||||
|
#performance-information-frequently-asked-questions section p,
|
||||||
|
#performance-information-frequently-asked-questions section table {
|
||||||
|
display: none;
|
||||||
|
padding-left: 30px;
|
||||||
|
}
|
3
docs/_static/css/media/chevron-down.svg
vendored
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
<svg width="32" height="32" viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||||
|
<path d="M16.0001 18.5829L9.5656 12.1484C9.37034 11.9531 9.05376 11.9531 8.8585 12.1484L8.15139 12.8555C7.95613 13.0508 7.95613 13.3674 8.15139 13.5626L15.6465 21.0577C15.6952 21.1064 15.7515 21.143 15.8115 21.1674C15.9922 21.2408 16.2071 21.2043 16.3536 21.0577L23.8487 13.5627C24.044 13.3674 24.044 13.0508 23.8487 12.8555L23.1416 12.1484C22.9463 11.9532 22.6297 11.9532 22.4345 12.1484L16.0001 18.5829Z" fill="#0054AE"/>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 527 B |
3
docs/_static/css/media/chevron-right.svg
vendored
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
<svg width="32" height="32" viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||||
|
<path d="M18.5838 15.999L12.1493 22.4335C11.9541 22.6287 11.9541 22.9453 12.1493 23.1406L12.8565 23.8477C13.0517 24.043 13.3683 24.043 13.5636 23.8477L21.0586 16.3526C21.1074 16.3039 21.1439 16.2476 21.1683 16.1875C21.2418 16.0069 21.2052 15.792 21.0587 15.6455L13.5636 8.15039C13.3683 7.95513 13.0518 7.95513 12.8565 8.15039L12.1494 8.8575C11.9541 9.05276 11.9541 9.36934 12.1494 9.56461L18.5838 15.999Z" fill="#0054AE"/>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 526 B |
4
docs/_static/css/media/edit-settings.svg
vendored
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
<svg width="24" height="24" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||||
|
<path fill-rule="evenodd" clip-rule="evenodd" d="M9.375 15.0009C9.16789 15.0009 9 14.833 9 14.6259L9 10.6559C9 10.5564 9.03951 10.461 9.10984 10.3907L19.2345 0.266085C19.3809 0.119638 19.6183 0.119639 19.7648 0.266085L23.7348 4.23612C23.8813 4.38257 23.8813 4.62 23.7348 4.76645L13.6102 14.8911C13.5399 14.9614 13.4445 15.0009 13.345 15.0009H9.375ZM11.25 11.4325L11.25 12.7509H12.5684L13.317 12.0023L11.9986 10.6839L11.25 11.4325ZM20.818 4.50129L14.908 10.4113L13.5896 9.09292L19.4996 3.1829L20.818 4.50129Z" fill="#0054AE"/>
|
||||||
|
<path d="M11.625 5.25055C11.8321 5.25055 12 5.08266 12 4.87555V3.37555C12 3.16845 11.8321 3.00055 11.625 3.00055H3.375C3.16789 3.00055 3 3.16845 3 3.37555V20.6256C3 20.8327 3.16789 21.0006 3.375 21.0006H20.625C20.8321 21.0006 21 20.8327 21 20.6256V12.3756C21 12.1684 20.8321 12.0006 20.625 12.0006H19.125C18.9179 12.0006 18.75 12.1684 18.75 12.3756V18.7506H5.25V5.25055H11.625Z" fill="#0054AE"/>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 1.0 KiB |
6
docs/_static/css/media/icon-efficiency.svg
vendored
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
<svg width="16" height="16" id="Layer_1" data-name="Layer 1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 16 16">
|
||||||
|
<defs>
|
||||||
|
<style>.cls-1{fill:#2b2c30;fill-rule:evenodd;}</style>
|
||||||
|
</defs>
|
||||||
|
<path class="cls-1" d="M12.11,7.2a.48.48,0,0,0,.07-.55.51.51,0,0,0-.46-.29H9.07L11.13,1.7a.49.49,0,0,0-.06-.47A.52.52,0,0,0,10.64,1h-4a.22.22,0,0,0-.21.15L3.79,8.83a.47.47,0,0,0,.09.45.51.51,0,0,0,.4.19H6.93l-2,6.25ZM7.6,11l.77-2.6L5,8.5,7.15,2H9.86L7.44,7.4l3.29-.07Z" />
|
||||||
|
</svg>
|
After Width: | Height: | Size: 476 B |
6
docs/_static/css/media/icon-latency.svg
vendored
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
<svg width="16" height="16" id="Layer_1" data-name="Layer 1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 16 16">
|
||||||
|
<defs>
|
||||||
|
<style>.cls-1{fill:#2b2c30;fill-rule:evenodd;}</style>
|
||||||
|
</defs>
|
||||||
|
<path class="cls-1" d="M12.75,1a.25.25,0,0,1,.25.25v.5a.25.25,0,0,1-.25.25H12V3A5.93,5.93,0,0,1,9.66,8,5.91,5.91,0,0,1,12,13h0v1h.75a.25.25,0,0,1,.25.25v.5a.25.25,0,0,1-.25.25H3.25A.25.25,0,0,1,3,14.75v-.5A.25.25,0,0,1,3.25,14H4V13A5.91,5.91,0,0,1,6.34,8,5.93,5.93,0,0,1,4,3V2H3.25A.25.25,0,0,1,3,1.75v-.5A.25.25,0,0,1,3.25,1ZM5,13.06A5.68,5.68,0,0,1,6,9.74,2.55,2.55,0,0,1,8,8.53a2.55,2.55,0,0,1,2,1.21,5.68,5.68,0,0,1,1,3.32V14H5ZM5,2V3A5.74,5.74,0,0,0,6,6.33a2.56,2.56,0,0,0,2,1.2,2.56,2.56,0,0,0,2-1.2A5.74,5.74,0,0,0,11,3V2Z" />
|
||||||
|
</svg>
|
After Width: | Height: | Size: 737 B |
14
docs/_static/css/media/icon-pdf.svg
vendored
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
<svg width="41" height="48" viewBox="0 0 41 48" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||||
|
<g clip-path="url(#clip0_5571_85767)">
|
||||||
|
<path d="M4.7976 0H0V4.7976H4.7976V0Z" fill="#00C7FD"/>
|
||||||
|
<path d="M31.1844 12.0176H9.59521V15.6158H31.1844V12.0176Z" fill="#0054AE"/>
|
||||||
|
<path d="M31.1844 32.4082H9.59521V36.0064H31.1844V32.4082Z" fill="#0054AE"/>
|
||||||
|
<path d="M31.1844 22.2129H9.59521V25.8111H31.1844V22.2129Z" fill="#0054AE"/>
|
||||||
|
<path d="M31.5442 47.9995H2.3988C1.7626 47.9995 1.15246 47.7467 0.702593 47.2969C0.252731 46.847 0 46.2369 0 45.6007V7.21984H4.7976V43.2018H29.6252L35.982 37.0849V4.82104H7.1964V0.0234375H38.3808C39.017 0.0234375 39.6272 0.276167 40.077 0.72603C40.5269 1.17589 40.7796 1.78604 40.7796 2.42224V39.1479L31.5442 47.9995Z" fill="#0054AE"/>
|
||||||
|
</g>
|
||||||
|
<defs>
|
||||||
|
<clipPath id="clip0_5571_85767">
|
||||||
|
<rect width="40.7796" height="48" fill="white"/>
|
||||||
|
</clipPath>
|
||||||
|
</defs>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 879 B |
8
docs/_static/css/media/icon-throughput.svg
vendored
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
<svg width="16" height="16" id="Layer_1" data-name="Layer 1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 16 16">
|
||||||
|
<defs>
|
||||||
|
<style>.cls-1{fill:#2b2c30;}</style>
|
||||||
|
</defs>
|
||||||
|
<path class="cls-1" d="M8.5,12.5H1.75a.25.25,0,0,1-.25-.25v-.5a.25.25,0,0,1,.25-.25H8.5V9.75a.26.26,0,0,1,.43-.18l2.49,2.25a.24.24,0,0,1,0,.36L8.93,14.43a.26.26,0,0,1-.43-.18Z" />
|
||||||
|
<path class="cls-1" d="M11.5,8.5H1.75a.25.25,0,0,1-.25-.25v-.5a.25.25,0,0,1,.25-.25H11.5V5.75a.26.26,0,0,1,.43-.18l2.49,2.25a.24.24,0,0,1,0,.36l-2.49,2.25a.26.26,0,0,1-.43-.18Z" />
|
||||||
|
<path class="cls-1" d="M1.75,4.5H8.5V6.25a.26.26,0,0,0,.43.18l2.49-2.25a.24.24,0,0,0,0-.36L8.93,1.57a.26.26,0,0,0-.43.18V3.5H1.75a.25.25,0,0,0-.25.25v.5A.25.25,0,0,0,1.75,4.5Z" />
|
||||||
|
</svg>
|
After Width: | Height: | Size: 730 B |
6
docs/_static/css/media/icon-value.svg
vendored
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
<svg width="16" height="16" id="Layer_1" data-name="Layer 1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 16 16">
|
||||||
|
<defs>
|
||||||
|
<style>.cls-1{fill:#2b2c30;}</style>
|
||||||
|
</defs>
|
||||||
|
<path class="cls-1" d="M8.74,7.22H8.68V3.54h.08a4.26,4.26,0,0,1,2.53,1.3h0a.28.28,0,0,0,.38,0l.38-.38a.28.28,0,0,0,0-.38h0l0,0A5.05,5.05,0,0,0,8.76,2.5H8.68V1.25A.25.25,0,0,0,8.43,1h-.5a.26.26,0,0,0-.26.25V2.48H7.6c-2.1.17-3.5,1.39-3.5,3S5.21,8.08,7.61,8.29h.06v3.93H7.59A5.21,5.21,0,0,1,4.52,10.6h0l0,0h0a.26.26,0,0,0-.36,0L3.74,11a.28.28,0,0,0,0,.38l0,0h0A5.64,5.64,0,0,0,7.6,13.23h.07v1.51a.26.26,0,0,0,.26.25h.5a.25.25,0,0,0,.25-.25V13.24h.08c2.1-.2,3.57-1.49,3.57-3.15C12.33,8.27,11.26,7.42,8.74,7.22ZM7.6,7.2C6,7,5.25,6.5,5.25,5.41s.94-1.76,2.35-1.9h.07v3.7Zm1.16,5H8.68V8.29h.08c1.68.16,2.44.74,2.44,1.89S10.19,12.05,8.76,12.22Z" />
|
||||||
|
</svg>
|
After Width: | Height: | Size: 825 B |
19
docs/_static/css/media/icon-xls.svg
vendored
Normal file
@ -0,0 +1,19 @@
|
|||||||
|
<svg width="41" height="48" viewBox="0 0 41 48" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||||
|
<g clip-path="url(#clip0_5571_85779)">
|
||||||
|
<path d="M4.7976 0H0V4.7976H4.7976V0Z" fill="#00C7FD"/>
|
||||||
|
<path d="M31.5442 47.9995H2.3988C1.7626 47.9995 1.15246 47.7467 0.702593 47.2969C0.252731 46.847 0 46.2369 0 45.6007V7.21984H4.7976V43.2018H29.6252L35.982 37.0849V4.82104H7.1964V0.0234375H38.3808C39.017 0.0234375 39.6272 0.276167 40.077 0.72603C40.5269 1.17589 40.7796 1.78604 40.7796 2.42224V39.1479L31.5442 47.9995Z" fill="#0054AE"/>
|
||||||
|
<path d="M31.75 32.4277H22V35.9992H31.75V32.4277Z" fill="#0054AE"/>
|
||||||
|
<path d="M18.75 25.2852H9V28.8566H18.75V25.2852Z" fill="#0054AE"/>
|
||||||
|
<path d="M31.75 25.2852H22V28.8566H31.75V25.2852Z" fill="#0054AE"/>
|
||||||
|
<path d="M18.75 18.1426H9V21.714H18.75V18.1426Z" fill="#0054AE"/>
|
||||||
|
<path d="M31.75 18.1426H22V21.714H31.75V18.1426Z" fill="#0054AE"/>
|
||||||
|
<path d="M18.75 11H9V14.5714H18.75V11Z" fill="#0054AE"/>
|
||||||
|
<path d="M31.75 11H22V14.5714H31.75V11Z" fill="#0054AE"/>
|
||||||
|
<path d="M18.75 32.4277H9V35.9992H18.75V32.4277Z" fill="#0054AE"/>
|
||||||
|
</g>
|
||||||
|
<defs>
|
||||||
|
<clipPath id="clip0_5571_85779">
|
||||||
|
<rect width="40.7796" height="48" fill="white"/>
|
||||||
|
</clipPath>
|
||||||
|
</defs>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 1.1 KiB |
14
docs/_static/css/media/pdf-icon.svg
vendored
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
<svg width="41" height="48" viewBox="0 0 41 48" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||||
|
<g clip-path="url(#clip0_5571_85767)">
|
||||||
|
<path d="M4.7976 0H0V4.7976H4.7976V0Z" fill="#00C7FD"/>
|
||||||
|
<path d="M31.1844 12.0176H9.59521V15.6158H31.1844V12.0176Z" fill="#0054AE"/>
|
||||||
|
<path d="M31.1844 32.4082H9.59521V36.0064H31.1844V32.4082Z" fill="#0054AE"/>
|
||||||
|
<path d="M31.1844 22.2129H9.59521V25.8111H31.1844V22.2129Z" fill="#0054AE"/>
|
||||||
|
<path d="M31.5442 47.9995H2.3988C1.7626 47.9995 1.15246 47.7467 0.702593 47.2969C0.252731 46.847 0 46.2369 0 45.6007V7.21984H4.7976V43.2018H29.6252L35.982 37.0849V4.82104H7.1964V0.0234375H38.3808C39.017 0.0234375 39.6272 0.276167 40.077 0.72603C40.5269 1.17589 40.7796 1.78604 40.7796 2.42224V39.1479L31.5442 47.9995Z" fill="#0054AE"/>
|
||||||
|
</g>
|
||||||
|
<defs>
|
||||||
|
<clipPath id="clip0_5571_85767">
|
||||||
|
<rect width="40.7796" height="48" fill="white"/>
|
||||||
|
</clipPath>
|
||||||
|
</defs>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 879 B |
19
docs/_static/css/media/xls-icon.svg
vendored
Normal file
@ -0,0 +1,19 @@
|
|||||||
|
<svg width="41" height="48" viewBox="0 0 41 48" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||||
|
<g clip-path="url(#clip0_5571_85779)">
|
||||||
|
<path d="M4.7976 0H0V4.7976H4.7976V0Z" fill="#00C7FD"/>
|
||||||
|
<path d="M31.5442 47.9995H2.3988C1.7626 47.9995 1.15246 47.7467 0.702593 47.2969C0.252731 46.847 0 46.2369 0 45.6007V7.21984H4.7976V43.2018H29.6252L35.982 37.0849V4.82104H7.1964V0.0234375H38.3808C39.017 0.0234375 39.6272 0.276167 40.077 0.72603C40.5269 1.17589 40.7796 1.78604 40.7796 2.42224V39.1479L31.5442 47.9995Z" fill="#0054AE"/>
|
||||||
|
<path d="M31.75 32.4277H22V35.9992H31.75V32.4277Z" fill="#0054AE"/>
|
||||||
|
<path d="M18.75 25.2852H9V28.8566H18.75V25.2852Z" fill="#0054AE"/>
|
||||||
|
<path d="M31.75 25.2852H22V28.8566H31.75V25.2852Z" fill="#0054AE"/>
|
||||||
|
<path d="M18.75 18.1426H9V21.714H18.75V18.1426Z" fill="#0054AE"/>
|
||||||
|
<path d="M31.75 18.1426H22V21.714H31.75V18.1426Z" fill="#0054AE"/>
|
||||||
|
<path d="M18.75 11H9V14.5714H18.75V11Z" fill="#0054AE"/>
|
||||||
|
<path d="M31.75 11H22V14.5714H31.75V11Z" fill="#0054AE"/>
|
||||||
|
<path d="M18.75 32.4277H9V35.9992H18.75V32.4277Z" fill="#0054AE"/>
|
||||||
|
</g>
|
||||||
|
<defs>
|
||||||
|
<clipPath id="clip0_5571_85779">
|
||||||
|
<rect width="40.7796" height="48" fill="white"/>
|
||||||
|
</clipPath>
|
||||||
|
</defs>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 1.1 KiB |
64
docs/_static/html/modal.html
vendored
Normal file
@ -0,0 +1,64 @@
|
|||||||
|
<div>
|
||||||
|
<div style="width: 100%">
|
||||||
|
<span style="float: left"><h2>Benchmark Graph Builder</h2></span>
|
||||||
|
<span class="modal-close">×</span>
|
||||||
|
</div>
|
||||||
|
<div class="modal-line-divider"></div>
|
||||||
|
<div id="configure-graphs-header" class="configure-graphs-header">
|
||||||
|
<div class="edit-settings-btn">
|
||||||
|
<div class="edit-settings-text">Edit Settings
|
||||||
|
<span class="edit-settings-icon"></span>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
<span class="clear-all-btn">
|
||||||
|
<span class="clear-all-btn-content">Clear All</span>
|
||||||
|
</span>
|
||||||
|
<h3>STEP 1: Configure Graphs</h3>
|
||||||
|
</div>
|
||||||
|
<div class="configure-graphs-content">
|
||||||
|
<div class="modal-header-grid-container">
|
||||||
|
<div class="modal-header-grid-item">
|
||||||
|
<h5>Models</h5>
|
||||||
|
<div class="modal-line-divider"></div>
|
||||||
|
</div>
|
||||||
|
<div class="modal-header-grid-item">
|
||||||
|
<h5>Platform Type</h5>
|
||||||
|
<div class="modal-line-divider"></div>
|
||||||
|
</div>
|
||||||
|
<div class="modal-header-grid-item">
|
||||||
|
<h5>Platforms</h5>
|
||||||
|
<div class="modal-line-divider"></div>
|
||||||
|
</div>
|
||||||
|
<div class="modal-header-grid-item">
|
||||||
|
<h5>Parameters</h5>
|
||||||
|
<div class="modal-line-divider"></div>
|
||||||
|
</div>
|
||||||
|
<div class="modal-header-grid-item">
|
||||||
|
<h5>Precision</h5>
|
||||||
|
<div class="modal-line-divider"></div>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
<div class="modal-content-grid-container">
|
||||||
|
<div class="models-column-one column"></div>
|
||||||
|
<div class="models-column-two column"></div>
|
||||||
|
<div class="ietype-column column"></div>
|
||||||
|
<div class="client-platform-column column">
|
||||||
|
</div>
|
||||||
|
<div class="kpi-column column"></div>
|
||||||
|
<div class="precisions-column column">
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
<div class="modal-content-footer">
|
||||||
|
<button id="modal-build-graphs-btn" disabled="disabled" class="modal-build-graphs-btn">Build Graphs</button>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
<div class="modal-line-divider"></div>
|
||||||
|
<div class="benchmark-graph-results-header">
|
||||||
|
<h3 class="header-inactive">STEP 2: Benchmark Graph Results</h3>
|
||||||
|
</div>
|
||||||
|
<div class="chart-placeholder"></div>
|
||||||
|
<div class="modal-line-divider"></div>
|
||||||
|
<div class="modal-footer">
|
||||||
|
<button class="close-btn">Close</button>
|
||||||
|
</div>
|
||||||
|
</div>
|
3
docs/_static/images/sample-graph-image.png
vendored
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
version https://git-lfs.github.com/spec/v1
|
||||||
|
oid sha256:64e64059e7416353cfd2ad836a36c12071804addf4fb165f0cf5150aa7658fa4
|
||||||
|
size 123996
|
36
docs/_static/js/custom.js
vendored
@ -46,6 +46,8 @@ $(document).ready(function () {
|
|||||||
}
|
}
|
||||||
addLegalNotice();
|
addLegalNotice();
|
||||||
updateSearchForm();
|
updateSearchForm();
|
||||||
|
initBenchmarkPickers(); // included with the new benchmarks page
|
||||||
|
initCollapsibleHeaders(); // included with the new benchmarks page
|
||||||
createSphinxTabSets();
|
createSphinxTabSets();
|
||||||
});
|
});
|
||||||
|
|
||||||
@ -283,3 +285,37 @@ function init_switchers() {
|
|||||||
$('main').prepend(switcherPanel);
|
$('main').prepend(switcherPanel);
|
||||||
switcherAnchors.remove();
|
switcherAnchors.remove();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// initBenchmarkPickers and initCollapsibleHeaders included with the new benchmarks page
|
||||||
|
function initBenchmarkPickers() {
|
||||||
|
$('.picker-options .option').on('click', function(event) {
|
||||||
|
const selectedOption = $(this).data('option');
|
||||||
|
$('.picker-options .selectable').each(function() {
|
||||||
|
$(this).removeClass('selected');
|
||||||
|
const toSelect = this.classList.contains(selectedOption);
|
||||||
|
if(toSelect) {
|
||||||
|
$(this).addClass('selected');
|
||||||
|
}
|
||||||
|
});
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
function initCollapsibleHeaders() {
|
||||||
|
$('#performance-information-frequently-asked-questions section').on('click', function() {
|
||||||
|
console.log($(this).find('p, table').length);
|
||||||
|
if(!$(this).find('table, p').is(':visible')) {
|
||||||
|
resetCollapsibleHeaders();
|
||||||
|
$(this).find('table, p').css('display', 'block');
|
||||||
|
$(this).find('h2').addClass('expanded')
|
||||||
|
$(this).find('h2').get(0).scrollIntoView();
|
||||||
|
} else {
|
||||||
|
resetCollapsibleHeaders();
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
function resetCollapsibleHeaders() {
|
||||||
|
$('#performance-information-frequently-asked-questions section').find('h2').removeClass('expanded');
|
||||||
|
$('#performance-information-frequently-asked-questions section p, #performance-information-frequently-asked-questions section table').hide();
|
||||||
|
}
|
||||||
|
}
|
937
docs/_static/js/graphs.js
vendored
@ -1,119 +1,613 @@
|
|||||||
$(document).ready(function () {
|
class Filter {
|
||||||
var chartBlock = $('.chart-block');
|
|
||||||
chartBlock.each(function () {
|
|
||||||
var url = $(this).data('loadcsv');
|
|
||||||
Papa.parse(url, {
|
|
||||||
download: true,
|
|
||||||
complete: renderData($(this))
|
|
||||||
})
|
|
||||||
});
|
|
||||||
|
|
||||||
function getLabels(data, ieType) {
|
// param: GraphData[], networkModels[]
|
||||||
return data
|
static FilterByNetworkModel(graphDataArr, networkModels) {
|
||||||
.filter((item) => item[1] === ieType)
|
// This is a bit obtuse, collect all options from all models
|
||||||
.map((item) => item[2]);
|
// Some of them might return dupes, so convert them to a map, and get unique objects based on names
|
||||||
|
const optionMap = new Map();
|
||||||
|
networkModels.map((model) => graphDataArr.filter((graphData => graphData.networkModel === model)))
|
||||||
|
.flat(1)
|
||||||
|
.forEach(item => optionMap.set(item.platformName, item));
|
||||||
|
// convert the option map back to an array with just the values
|
||||||
|
return Array.from(optionMap.values());
|
||||||
}
|
}
|
||||||
|
|
||||||
var CONFIG = {
|
// param: GraphData[], ieType
|
||||||
core: {
|
static FilterByIeType(graphDataArr, value) {
|
||||||
throughput: {
|
return graphDataArr.filter((data) => data.ieType.includes(value));
|
||||||
chartTitle: 'Throughput (higher is better)',
|
}
|
||||||
datasets: [{ data: null, color: '#00C7FD', label: 'FPS (INT8)' }, { data: null, color: '#0068B5', label: 'FPS (FP32)' }],
|
|
||||||
},
|
// param: GraphData[], clientPlatforms[]
|
||||||
latency: {
|
static FilterByClientPlatforms(graphDataArr, platformsArr) {
|
||||||
chartTitle: 'Latency (lower is better)',
|
return graphDataArr.filter((data) => platformsArr.includes(data.platformName));
|
||||||
datasets: [{ data: null, color: '#8F5DA2', label: 'Milliseconds' }],
|
}
|
||||||
},
|
|
||||||
value: {
|
// param: GraphData[], coreTypes[]
|
||||||
chartTitle: 'Value (higher is better)',
|
static FilterByCoreTypes(graphDataArr, coreTypes) {
|
||||||
datasets: [{ data: null, color: '#00C7FD', label: 'FPS/$ (INT8)' }],
|
if (coreTypes) {
|
||||||
},
|
return graphDataArr.filter((data) => coreTypes.includes(data.ieType));
|
||||||
efficiency: {
|
}
|
||||||
chartTitle: 'Efficiency (higher is better)',
|
return graphDataArr;
|
||||||
datasets: [{ data: null, color: '#00C7FD', label: 'FPS/TDP (INT8)' }],
|
}
|
||||||
|
|
||||||
|
// param: GraphData[] (of one networkModel), key (throughput, latency, efficiency, value)
|
||||||
|
static getKpiData(graphDataArr, key) {
|
||||||
|
return graphDataArr.map((data) => {
|
||||||
|
return data[key];
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
class ExcelDataTransformer {
|
||||||
|
|
||||||
|
static transform(csvdata) {
|
||||||
|
const entries = csvdata.filter((entry) => {
|
||||||
|
return !entry.includes('begin_rec') && !entry.includes('end_rec');
|
||||||
|
});
|
||||||
|
// do other purging and data massaging here
|
||||||
|
|
||||||
|
// else generate
|
||||||
|
return entries.map((entry) => {
|
||||||
|
return new GraphData(new ExcelData(entry));
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
class ExcelData {
|
||||||
|
constructor(csvdataline) {
|
||||||
|
if (!csvdataline) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
this.networkModel = csvdataline[0];
|
||||||
|
this.release = csvdataline[1];
|
||||||
|
this.ieType = csvdataline[2];
|
||||||
|
this.platformName = csvdataline[3];
|
||||||
|
this.throughputInt8 = csvdataline[4];
|
||||||
|
this.throughputFP16 = csvdataline[5];
|
||||||
|
this.throughputFP32 = csvdataline[6];
|
||||||
|
this.value = csvdataline[7];
|
||||||
|
this.efficiency = csvdataline[8];
|
||||||
|
this.price = csvdataline[9];
|
||||||
|
this.tdp = csvdataline[10];
|
||||||
|
this.sockets = csvdataline[11];
|
||||||
|
this.pricePerSocket = csvdataline[12];
|
||||||
|
this.tdpPerSocket = csvdataline[13];
|
||||||
|
this.latency = csvdataline[14];
|
||||||
|
}
|
||||||
|
networkModel = '';
|
||||||
|
release = '';
|
||||||
|
ieType = '';
|
||||||
|
platformName = '';
|
||||||
|
throughputInt8 = '';
|
||||||
|
throughputFP16 = '';
|
||||||
|
throughputFP32 = '';
|
||||||
|
value = '';
|
||||||
|
efficiency = '';
|
||||||
|
price = '';
|
||||||
|
tdp = '';
|
||||||
|
sockets = '';
|
||||||
|
pricePerSocket = '';
|
||||||
|
tdpPerSocket = '';
|
||||||
|
latency = '';
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class GraphData {
|
||||||
|
constructor(excelData) {
|
||||||
|
if (!excelData) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
this.networkModel = excelData.networkModel;
|
||||||
|
this.release = excelData.release;
|
||||||
|
this.ieType = excelData.ieType;
|
||||||
|
this.platformName = excelData.platformName;
|
||||||
|
this.kpi = new KPI(
|
||||||
|
new Precision(excelData.throughputInt8, excelData.throughputFP16, excelData.throughputFP32),
|
||||||
|
excelData.value,
|
||||||
|
excelData.efficiency,
|
||||||
|
excelData.latency);
|
||||||
|
this.price = excelData.price;
|
||||||
|
this.tdp = excelData.tdp;
|
||||||
|
this.sockets = excelData.sockets;
|
||||||
|
this.pricePerSocket = excelData.pricePerSocket;
|
||||||
|
this.tdpPerSocket = excelData.tdpPerSocket;
|
||||||
|
this.latency = excelData.latency;
|
||||||
|
}
|
||||||
|
networkModel = '';
|
||||||
|
platformName = '';
|
||||||
|
release = '';
|
||||||
|
ieType = '';
|
||||||
|
kpi = new KPI();
|
||||||
|
price = '';
|
||||||
|
tdp = '';
|
||||||
|
sockets = '';
|
||||||
|
pricePerSocket = '';
|
||||||
|
tdpPerSocket = '';
|
||||||
|
}
|
||||||
|
|
||||||
|
class KPI {
|
||||||
|
constructor(precisions, value, efficiency, latency) {
|
||||||
|
this.throughput = precisions;
|
||||||
|
this.value = value;
|
||||||
|
this.efficiency = efficiency;
|
||||||
|
this.latency = latency;
|
||||||
|
}
|
||||||
|
throughput = new Precision();
|
||||||
|
value = '';
|
||||||
|
efficiency = '';
|
||||||
|
latency = '';
|
||||||
|
}
|
||||||
|
|
||||||
|
class Precision {
|
||||||
|
constructor(int8, fp16, fp32) {
|
||||||
|
this.int8 = int8;
|
||||||
|
this.fp16 = fp16;
|
||||||
|
this.fp32 = fp32;
|
||||||
|
}
|
||||||
|
int8 = '';
|
||||||
|
fp16 = '';
|
||||||
|
fp32 = '';
|
||||||
|
}
|
||||||
|
|
||||||
|
class Modal {
|
||||||
|
static getIeTypeLabel(ietype) {
|
||||||
|
switch (ietype) {
|
||||||
|
case 'core':
|
||||||
|
return 'Client Platforms (Intel® Core™)';
|
||||||
|
case 'xeon':
|
||||||
|
return 'Server Platforms (Intel® Xeon®)';
|
||||||
|
case 'atom':
|
||||||
|
return 'Mobile Platforms (Intel® Atom™)';
|
||||||
|
case 'accel':
|
||||||
|
return 'Accelerator Platforms';
|
||||||
|
default:
|
||||||
|
return '';
|
||||||
|
}
|
||||||
|
}
|
||||||
|
static getCoreTypesLabels() {
|
||||||
|
return ['CPU', 'iGPU', 'CPU+iGPU'];
|
||||||
|
}
|
||||||
|
static getKpisLabels() {
|
||||||
|
return ['Throughput', 'Value', 'Efficiency', 'Latency'];
|
||||||
|
}
|
||||||
|
static getPrecisionsLabels() {
|
||||||
|
return ['INT8', 'FP16', 'FP32'];
|
||||||
|
}
|
||||||
|
static getCoreTypes(labels) {
|
||||||
|
return labels.map((label) => {
|
||||||
|
switch (label) {
|
||||||
|
case 'CPU':
|
||||||
|
return 'core';
|
||||||
|
case 'iGPU':
|
||||||
|
return 'core-iGPU';
|
||||||
|
case 'CPU+iGPU':
|
||||||
|
return 'core-CPU+iGPU';
|
||||||
|
default:
|
||||||
|
return '';
|
||||||
}
|
}
|
||||||
},
|
});
|
||||||
atom: {
|
}
|
||||||
throughput: {
|
static getPrecisions(labels) {
|
||||||
chartTitle: 'Throughput (higher is better)',
|
return labels.map((label) => {
|
||||||
datasets: [{ data: null, color: '#00C7FD', label: 'FPS (INT8)' }, { data: null, color: '#0068B5', label: 'FPS (FP32)' }],
|
switch (label) {
|
||||||
},
|
case 'INT8':
|
||||||
latency: {
|
return 'int8';
|
||||||
chartTitle: 'Latency (lower is better)',
|
case 'FP16':
|
||||||
datasets: [{ data: null, color: '#8F5DA2', label: 'Milliseconds' }],
|
return 'fp16';
|
||||||
},
|
case 'FP32':
|
||||||
value: {
|
return 'fp32';
|
||||||
chartTitle: 'Value (higher is better)',
|
default:
|
||||||
datasets: [{ data: null, color: '#00C7FD', label: 'FPS/$ (INT8)' }],
|
return '';
|
||||||
},
|
|
||||||
efficiency: {
|
|
||||||
chartTitle: 'Efficiency (higher is better)',
|
|
||||||
datasets: [{ data: null, color: '#00C7FD', label: 'FPS/TDP (INT8)' }],
|
|
||||||
}
|
|
||||||
},
|
|
||||||
xeon: {
|
|
||||||
throughput: {
|
|
||||||
chartTitle: 'Throughput (higher is better)',
|
|
||||||
datasets: [{ data: null, color: '#00C7FD', label: 'FPS (INT8)' }, { data: null, color: '#0068B5', label: 'FPS (FP32)' }],
|
|
||||||
},
|
|
||||||
latency: {
|
|
||||||
chartTitle: 'Latency (lower is better)',
|
|
||||||
datasets: [{ data: null, color: '#8F5DA2', label: 'Milliseconds' }],
|
|
||||||
},
|
|
||||||
value: {
|
|
||||||
chartTitle: 'Value (higher is better)',
|
|
||||||
datasets: [{ data: null, color: '#00C7FD', label: 'FPS/$ (INT8)' }],
|
|
||||||
},
|
|
||||||
efficiency: {
|
|
||||||
chartTitle: 'Efficiency (higher is better)',
|
|
||||||
datasets: [{ data: null, color: '#00C7FD', label: 'FPS/TDP (INT8)' }],
|
|
||||||
}
|
|
||||||
},
|
|
||||||
accel: {
|
|
||||||
throughput: {
|
|
||||||
chartTitle: 'Throughput (higher is better)',
|
|
||||||
datasets: [{ data: null, color: '#8BAE46', label: 'FPS (FP16)' }],
|
|
||||||
},
|
|
||||||
latency: {
|
|
||||||
chartTitle: 'Latency (lower is better)',
|
|
||||||
datasets: [{ data: null, color: '#8F5DA2', label: 'Milliseconds' }],
|
|
||||||
},
|
|
||||||
value: {
|
|
||||||
chartTitle: 'Value (higher is better)',
|
|
||||||
datasets: [{ data: null, color: '#8BAE46', label: 'FPS (FP16)' }]
|
|
||||||
},
|
|
||||||
efficiency: {
|
|
||||||
chartTitle: 'Efficiency (higher is better)',
|
|
||||||
datasets: [{ data: null, color: '#8BAE46', label: 'FPS (FP16)' }]
|
|
||||||
}
|
}
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
class Graph {
|
||||||
|
constructor(data) {
|
||||||
|
this.data = data;
|
||||||
|
}
|
||||||
|
data = new GraphData();
|
||||||
|
|
||||||
|
// functions to get unique keys
|
||||||
|
static getNetworkModels(graphDataArr) {
|
||||||
|
return Array.from(new Set(graphDataArr.map((obj) => obj.networkModel)));
|
||||||
|
}
|
||||||
|
static getIeTypes(graphDataArr) {
|
||||||
|
return Array.from(new Set(graphDataArr.map((obj) => obj.ieType)));
|
||||||
|
}
|
||||||
|
static getPlatforms(graphDataArr) {
|
||||||
|
return Array.from(new Set(graphDataArr.map((obj) => obj.platformName)));
|
||||||
|
}
|
||||||
|
static getCoreTypes(graphDataArr) {
|
||||||
|
return Array.from(new Set(graphDataArr.map((obj) => obj.ieType)));
|
||||||
|
}
|
||||||
|
|
||||||
|
// param: GraphData[]
|
||||||
|
static getPlatformNames(graphDataArr) {
|
||||||
|
return graphDataArr.map((data) => data.platformName);
|
||||||
|
}
|
||||||
|
|
||||||
|
// param: GraphData[], kpi: string
|
||||||
|
static getDatabyKPI(graphDataArr, kpi) {
|
||||||
|
switch (kpi) {
|
||||||
|
case 'throughput':
|
||||||
|
return graphDataArr.map((data) => data.kpi.throughput);
|
||||||
|
case 'latency':
|
||||||
|
return graphDataArr.map((data) => data.kpi.latency);
|
||||||
|
case 'efficiency':
|
||||||
|
return graphDataArr.map((data) => data.kpi.efficiency);
|
||||||
|
case 'value':
|
||||||
|
return graphDataArr.map((data) => data.kpi.value);
|
||||||
|
default:
|
||||||
|
return [];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
var titleMapping = {
|
// this returns an object that is used to ender the chart
|
||||||
core: '<h3>Intel® Core™</h3>',
|
static getGraphConfig(kpi, precisions) {
|
||||||
atom: '<h3>Intel® Atom®</h3>',
|
switch (kpi) {
|
||||||
xeon: '<h3>Intel® Xeon®</h3>',
|
case 'throughput':
|
||||||
accel: '<h3>Intel® Movidius™ Vision Processing Units</h3>'
|
return {
|
||||||
|
chartTitle: 'Throughput',
|
||||||
|
chartSubtitle: '(higher is better)',
|
||||||
|
iconClass: 'throughput-icon',
|
||||||
|
datasets: precisions.map((precision) => this.getPrecisionConfig(precision)),
|
||||||
|
};
|
||||||
|
case 'latency':
|
||||||
|
return {
|
||||||
|
chartTitle: 'Latency',
|
||||||
|
chartSubtitle: '(lower is better)',
|
||||||
|
iconClass: 'latency-icon',
|
||||||
|
datasets: [{ data: null, color: '#8F5DA2', label: 'Milliseconds' }],
|
||||||
|
};
|
||||||
|
case 'value':
|
||||||
|
return {
|
||||||
|
chartTitle: 'Value',
|
||||||
|
chartSubtitle: '(higher is better)',
|
||||||
|
iconClass: 'value-icon',
|
||||||
|
datasets: [{ data: null, color: '#8BAE46', label: 'FPS/$ (INT8)' }],
|
||||||
|
};
|
||||||
|
case 'efficiency':
|
||||||
|
return {
|
||||||
|
chartTitle: 'Efficiency',
|
||||||
|
chartSubtitle: '(higher is better)',
|
||||||
|
iconClass: 'efficiency-icon',
|
||||||
|
datasets: [{ data: null, color: '#E96115', label: 'FPS/TDP (INT8)' }],
|
||||||
|
};
|
||||||
|
default:
|
||||||
|
return {};
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
var labelsMapping = {
|
static getPrecisionConfig(precision) {
|
||||||
core: null,
|
switch (precision) {
|
||||||
atom: null,
|
case 'int8':
|
||||||
xeon: null,
|
return { data: null, color: '#00C7FD', label: 'FPS (INT8)' };
|
||||||
accel: null
|
case 'fp16':
|
||||||
|
return { data: null, color: '#0068B5', label: 'FPS (FP16)' };
|
||||||
|
case 'fp32':
|
||||||
|
return { data: null, color: '#00C7FD', label: 'FPS (FP32)' };
|
||||||
|
default:
|
||||||
|
return {};
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
function getDataByLabelsAndIndex(data, labels, pos) {
|
static getGraphPlatformText(platform) {
|
||||||
return data.filter(item => labels.indexOf(item[2]) !== -1).map(item => parseFloat(item[pos]));
|
switch (platform) {
|
||||||
|
case 'atom':
|
||||||
|
return 'Mobile Platforms';
|
||||||
|
case 'core':
|
||||||
|
return 'Client Platforms';
|
||||||
|
case 'xeon':
|
||||||
|
return 'Server Platforms';
|
||||||
|
case 'accel':
|
||||||
|
return 'Accelerated Platforms';
|
||||||
|
default:
|
||||||
|
return '';
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
$(document).ready(function () {
|
||||||
|
|
||||||
|
$('#build-graphs-btn').on('click', showModal);
|
||||||
|
|
||||||
|
function clickBuildGraphs(graph, networkModels, ietype, platforms, kpis, precisions) {
|
||||||
|
renderData(graph, networkModels, ietype, platforms, kpis, precisions);
|
||||||
|
|
||||||
|
$('.edit-settings-btn').show();
|
||||||
|
$('.clear-all-btn').hide();
|
||||||
|
$('.modal-footer').show();
|
||||||
|
$('.configure-graphs-header h3').addClass('header-inactive');
|
||||||
|
$('.benchmark-graph-results-header h3').removeClass('header-inactive');
|
||||||
|
|
||||||
|
$('.edit-settings-btn').on('click', (event) => {
|
||||||
|
$('.configure-graphs-content').show();
|
||||||
|
$('.edit-settings-btn').hide();
|
||||||
|
$('.clear-all-btn').show();
|
||||||
|
$('.modal-footer').hide();
|
||||||
|
$('.configure-graphs-header h3').removeClass('header-inactive');
|
||||||
|
$('.benchmark-graph-results-header h3').addClass('header-inactive');
|
||||||
|
$('.chart-placeholder').empty();
|
||||||
|
});
|
||||||
|
|
||||||
|
$('.graph-chart-title-header').on('click', (event) => {
|
||||||
|
var parent = event.target.parentElement;
|
||||||
|
|
||||||
|
if ($(parent).children('.chart-wrap.container,.empty-chart-container').is(":visible")) {
|
||||||
|
$(parent).children('.chart-wrap.container,.empty-chart-container').hide();
|
||||||
|
$(parent).children('.chevron-right-btn').show();
|
||||||
|
$(parent).children('.chevron-down-btn').hide();
|
||||||
|
$
|
||||||
|
} else {
|
||||||
|
$(parent).children('.chart-wrap.container,.empty-chart-container').show();
|
||||||
|
$(parent).children('.chevron-down-btn').show();
|
||||||
|
$(parent).children('.chevron-right-btn').hide();
|
||||||
|
}
|
||||||
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
function getChartOptions(title, displayLabels) {
|
function hideModal() {
|
||||||
|
$('#graphModal').hide();
|
||||||
|
$('body').css('overflow', 'auto');
|
||||||
|
}
|
||||||
|
|
||||||
|
function showModal() {
|
||||||
|
$('body').css('overflow', 'hidden');
|
||||||
|
if ($('#graphModal').length) {
|
||||||
|
$('#graphModal').show();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const dataPath = '_static/benchmarks_files/benchmark-data.csv';
|
||||||
|
Papa.parse(dataPath, {
|
||||||
|
download: true,
|
||||||
|
complete: renderModal
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
function getSelectedNetworkModels() {
|
||||||
|
return $('.models-column-one input:checked, .models-column-two input:checked').map(function () {
|
||||||
|
return $(this).data('networkmodel');
|
||||||
|
}).get();
|
||||||
|
}
|
||||||
|
function getSelectedIeType() {
|
||||||
|
return $('.ietype-column input:checked').map(function () {
|
||||||
|
return $(this).data('ietype');
|
||||||
|
}).get().pop();
|
||||||
|
}
|
||||||
|
function getSelectedCoreTypes() {
|
||||||
|
return $('.client-platform-column .selected').map(function () {
|
||||||
|
return $(this).data('coretype');
|
||||||
|
}).get();
|
||||||
|
}
|
||||||
|
function getSelectedClientPlatforms() {
|
||||||
|
return $('.client-platform-column input:checked').map(function () {
|
||||||
|
return $(this).data('platform');
|
||||||
|
}).get();
|
||||||
|
}
|
||||||
|
function getSelectedKpis() {
|
||||||
|
return $('.kpi-column input:checked').map(function () {
|
||||||
|
return $(this).data('kpi');
|
||||||
|
}).get();
|
||||||
|
}
|
||||||
|
function getSelectedPrecisions() {
|
||||||
|
return $('.precisions-column .selected').map(function () {
|
||||||
|
return $(this).data('precision');
|
||||||
|
}).get();
|
||||||
|
}
|
||||||
|
|
||||||
|
function validateSelections() {
|
||||||
|
if (getSelectedNetworkModels().length > 0
|
||||||
|
&& getSelectedIeType()
|
||||||
|
&& getSelectedClientPlatforms().length > 0
|
||||||
|
&& getSelectedKpis().length > 0) {
|
||||||
|
if (getSelectedKpis().includes('Throughput')) {
|
||||||
|
if (getSelectedPrecisions().length > 0) {
|
||||||
|
$('#modal-build-graphs-btn').prop('disabled', false);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
$('#modal-build-graphs-btn').prop('disabled', true);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
$('#modal-build-graphs-btn').prop('disabled', false);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
$('#modal-build-graphs-btn').prop('disabled', true);
|
||||||
|
}
|
||||||
|
|
||||||
|
function renderModal(result) {
|
||||||
|
// remove header from csv line
|
||||||
|
result.data.shift();
|
||||||
|
var graph = new Graph(ExcelDataTransformer.transform(result.data));
|
||||||
|
|
||||||
|
var networkModels = Graph.getNetworkModels(graph.data);
|
||||||
|
var ieTypes = Graph.getIeTypes(graph.data);
|
||||||
|
|
||||||
|
fetch('_static/html/modal.html').then((response) => response.text()).then((text) => {
|
||||||
|
|
||||||
|
// generate and configure modal container
|
||||||
|
var modal = $('<div>');
|
||||||
|
modal.attr('id', 'graphModal');
|
||||||
|
modal.addClass('modal');
|
||||||
|
// generate and configure modal content from html import
|
||||||
|
var modalContent = $(text);
|
||||||
|
modalContent.attr('id', 'graphModalContent');
|
||||||
|
modalContent.addClass('modal-content');
|
||||||
|
modal.append(modalContent);
|
||||||
|
|
||||||
|
// hide edit settings button
|
||||||
|
$('.edit-settings-btn').hide();
|
||||||
|
|
||||||
|
const models = networkModels.map((networkModel) => createCheckMark(networkModel, 'networkmodel'));
|
||||||
|
modal.find('.models-column-one').append(models.slice(0, models.length / 2));
|
||||||
|
modal.find('.models-column-two').append(models.slice(models.length / 2));
|
||||||
|
|
||||||
|
const types = ieTypes.map((ieType) => {
|
||||||
|
var labelText = Modal.getIeTypeLabel(ieType);
|
||||||
|
if (labelText) {
|
||||||
|
const item = $('<label class="checkmark-container">');
|
||||||
|
const checkboxSpan = $('<span class="checkmark radiobutton">');
|
||||||
|
item.text(Modal.getIeTypeLabel(ieType));
|
||||||
|
const radio = $('<input type="radio" name="ietype"/>');
|
||||||
|
item.append(radio);
|
||||||
|
item.append(checkboxSpan);
|
||||||
|
radio.attr('data-ietype', ieType);
|
||||||
|
return item;
|
||||||
|
}
|
||||||
|
});
|
||||||
|
modal.find('.ietype-column').append(types);
|
||||||
|
modal.find('.ietype-column input').first().prop('checked', true);
|
||||||
|
|
||||||
|
const kpiLabels = Modal.getKpisLabels().map((kpi) => createCheckMark(kpi, 'kpi'));
|
||||||
|
modal.find('.kpi-column').append(kpiLabels);
|
||||||
|
|
||||||
|
$('body').prepend(modal);
|
||||||
|
|
||||||
|
var fPlatforms = filterClientPlatforms(graph.data, getSelectedNetworkModels(), getSelectedIeType(), Modal.getCoreTypes(getSelectedCoreTypes()));
|
||||||
|
renderClientPlatforms(modal, Graph.getPlatformNames(fPlatforms));
|
||||||
|
|
||||||
|
$('.clear-all-btn').on('click', () => {
|
||||||
|
$('.modal-content-grid-container input:checkbox').each((index, object) => $(object).prop('checked', false));
|
||||||
|
$('.precisions-column').empty();
|
||||||
|
modal.find('.ietype-column input').first().prop('checked', true);
|
||||||
|
validateSelections();
|
||||||
|
});
|
||||||
|
|
||||||
|
$('#modal-build-graphs-btn').on('click', () => {
|
||||||
|
$('.configure-graphs-content').hide();
|
||||||
|
clickBuildGraphs(graph, getSelectedNetworkModels(), getSelectedIeType(), getSelectedClientPlatforms(), getSelectedKpis(), Modal.getPrecisions(getSelectedPrecisions()));
|
||||||
|
});
|
||||||
|
|
||||||
|
$('.modal-close').on('click', hideModal);
|
||||||
|
$('.close-btn').on('click', hideModal);
|
||||||
|
modal.find('.ietype-column input').on('click', function (event) {
|
||||||
|
if (getSelectedIeType() === 'core') {
|
||||||
|
showCoreSelectorTypes(Modal.getCoreTypesLabels(), graph.data, modal);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
hideCoreSelectorTypes();
|
||||||
|
}
|
||||||
|
var fPlatforms = filterClientPlatforms(graph.data, getSelectedNetworkModels(), getSelectedIeType(), Modal.getCoreTypes(getSelectedCoreTypes()));
|
||||||
|
renderClientPlatforms(modal, Graph.getPlatformNames(fPlatforms));
|
||||||
|
});
|
||||||
|
modal.find('.kpi-column input').on('click', function (event) {
|
||||||
|
if (getSelectedKpis().includes('Throughput')) {
|
||||||
|
showPrecisionSelectorTypes(Modal.getPrecisionsLabels());
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
hidePrecisionSelectorTypes();
|
||||||
|
}
|
||||||
|
});
|
||||||
|
modal.find('input').on('click', validateSelections);
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
function showCoreSelectorTypes(coreTypes, graphDataArr, modal) {
|
||||||
|
if ($('.client-platform-column').find('.selectable-box-container').length) {
|
||||||
|
$('.client-platform-column').find('.selectable-box-container').show();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
var container = $('<div>');
|
||||||
|
container.addClass('selectable-box-container');
|
||||||
|
coreTypes.forEach((type) => {
|
||||||
|
var box = $('<div>' + type + '</div>');
|
||||||
|
box.attr('data-coretype', type);
|
||||||
|
box.addClass('selectable-box selected');
|
||||||
|
container.append(box);
|
||||||
|
});
|
||||||
|
$('.client-platform-column').prepend(container);
|
||||||
|
$('.client-platform-column .selectable-box').on('click', function () {
|
||||||
|
if ($(this).hasClass('selected')) {
|
||||||
|
$(this).removeClass('selected');
|
||||||
|
} else {
|
||||||
|
$(this).addClass('selected');
|
||||||
|
}
|
||||||
|
var fPlatforms = filterClientPlatforms(graphDataArr, getSelectedNetworkModels(), getSelectedIeType(), Modal.getCoreTypes(getSelectedCoreTypes()));
|
||||||
|
renderClientPlatforms(modal, Graph.getPlatformNames(fPlatforms));
|
||||||
|
validateSelections();
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
function hideCoreSelectorTypes() {
|
||||||
|
$('.client-platform-column').find('.selectable-box-container').hide();
|
||||||
|
}
|
||||||
|
|
||||||
|
function showPrecisionSelectorTypes(precisions) {
|
||||||
|
|
||||||
|
if ($('.precisions-column').find('.selectable-box-container').length) {
|
||||||
|
$('.precisions-column').find('.selectable-box-container').show();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
var container = $('<div>');
|
||||||
|
container.addClass('selectable-box-container');
|
||||||
|
precisions.forEach((prec) => {
|
||||||
|
var box = $('<div>' + prec + '</div>');
|
||||||
|
box.attr('data-precision', prec);
|
||||||
|
box.addClass('selectable-box');
|
||||||
|
container.append(box);
|
||||||
|
|
||||||
|
});
|
||||||
|
$('.precisions-column').prepend(container);
|
||||||
|
$('.precisions-column .selectable-box').on('click', function () {
|
||||||
|
if ($(this).hasClass('selected')) {
|
||||||
|
$(this).removeClass('selected');
|
||||||
|
} else {
|
||||||
|
$(this).addClass('selected');
|
||||||
|
}
|
||||||
|
validateSelections();
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
function hidePrecisionSelectorTypes() {
|
||||||
|
$('.precisions-column').find('.selectable-box-container').hide();
|
||||||
|
}
|
||||||
|
|
||||||
|
function filterClientPlatforms(data, networkModels, ietype, coreTypes) {
|
||||||
|
// No longer filtering on the network type, if at some point we want the network type as a filter, uncomment this
|
||||||
|
// var first = Filter.FilterByNetworkModel(data, networkModels);
|
||||||
|
var second = Filter.FilterByIeType(data, ietype);
|
||||||
|
if (ietype === 'core') {
|
||||||
|
second = Filter.FilterByCoreTypes(second, coreTypes);
|
||||||
|
}
|
||||||
|
const optionMap = new Map();
|
||||||
|
second.forEach(item => optionMap.set(item.platformName, item));
|
||||||
|
return Array.from(optionMap.values());
|
||||||
|
}
|
||||||
|
|
||||||
|
function renderClientPlatforms(modal, platformNames) {
|
||||||
|
$('.client-platform-column .checkmark-container').remove();
|
||||||
|
const clientPlatforms = platformNames.map((platform) => createCheckMark(platform, 'platform'));
|
||||||
|
selectAllCheckboxes(clientPlatforms);
|
||||||
|
modal.find('.client-platform-column').append(clientPlatforms);
|
||||||
|
modal.find('.client-platform-column input').on('click', validateSelections);
|
||||||
|
}
|
||||||
|
|
||||||
|
function createCheckMark(itemLabel, modelLabel) {
|
||||||
|
const item = $('<label class="checkmark-container">');
|
||||||
|
item.text(itemLabel);
|
||||||
|
const checkbox = $('<input type="checkbox"/>');
|
||||||
|
const checkboxSpan = $('<span class="checkmark">');
|
||||||
|
item.append(checkbox);
|
||||||
|
item.append(checkboxSpan);
|
||||||
|
checkbox.attr('data-' + modelLabel, itemLabel);
|
||||||
|
return item;
|
||||||
|
}
|
||||||
|
|
||||||
|
// receives a jquery list of items and selects all input checkboxes
|
||||||
|
function selectAllCheckboxes(items) {
|
||||||
|
items.forEach((item) => {
|
||||||
|
item.find(':input').attr('checked', true);
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
function getChartOptions(title) {
|
||||||
return {
|
return {
|
||||||
responsive: false,
|
responsive: true,
|
||||||
maintainAspectRatio:false,
|
maintainAspectRatio: false,
|
||||||
legend: { display: true, position: 'bottom' },
|
legend: { display: true, position: 'bottom' },
|
||||||
title: {
|
title: {
|
||||||
display: true,
|
display: false,
|
||||||
text: title
|
text: title
|
||||||
},
|
},
|
||||||
scales: {
|
scales: {
|
||||||
@ -124,7 +618,7 @@ $(document).ready(function () {
|
|||||||
}],
|
}],
|
||||||
yAxes: [{
|
yAxes: [{
|
||||||
ticks: {
|
ticks: {
|
||||||
display: displayLabels, //this will remove only the label
|
display: false, //this will remove only the label
|
||||||
beginAtZero: true
|
beginAtZero: true
|
||||||
}
|
}
|
||||||
}]
|
}]
|
||||||
@ -146,10 +640,11 @@ $(document).ready(function () {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
function getChartData(hwType, metric) {
|
// params: string[], Datasets[]
|
||||||
|
function getChartDataNew(labels, datasets) {
|
||||||
return {
|
return {
|
||||||
labels: labelsMapping[hwType],
|
labels: labels,
|
||||||
datasets: CONFIG[hwType][metric]['datasets'].map(function (item) {
|
datasets: datasets.map((item) => {
|
||||||
return {
|
return {
|
||||||
label: item.label,
|
label: item.label,
|
||||||
data: item.data,
|
data: item.data,
|
||||||
@ -158,132 +653,134 @@ $(document).ready(function () {
|
|||||||
barThickness: 12
|
barThickness: 12
|
||||||
}
|
}
|
||||||
})
|
})
|
||||||
};
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
function renderData(currentChart) {
|
function renderData(graph, networkModels, ietype, platforms, kpis, precisions) {
|
||||||
return function (result) {
|
|
||||||
var data = result.data;
|
|
||||||
// remove col names
|
|
||||||
data.shift(0);
|
|
||||||
|
|
||||||
var hwTypes = Object.keys(CONFIG);
|
$('.chart-placeholder').empty();
|
||||||
var chartName = data[1][0];
|
networkModels.forEach((networkModel) => {
|
||||||
|
// graph title
|
||||||
|
var chartName = networkModel;
|
||||||
var chartSlug = chartName.replace(')', '').replace(' (', '-');
|
var chartSlug = chartName.replace(')', '').replace(' (', '-');
|
||||||
var graphContainer = $('<div>');
|
|
||||||
var chartContainer = $('<div>');
|
var chartContainer = $('<div>');
|
||||||
graphContainer.attr('id', 'ov-graph-container-' + chartSlug);
|
|
||||||
|
var chevronDown = '<span class="chevron-down-btn"></span>';
|
||||||
|
var chevronRight = '<span style="display:none" class="chevron-right-btn"></span>';
|
||||||
|
$(chevronRight).hide();
|
||||||
|
var chartContainerHeader = $('<span class="graph-chart-title">' + networkModel + '</span>' + chevronDown + chevronRight);
|
||||||
|
chartContainerHeader.addClass('graph-chart-title-header');
|
||||||
|
chartContainer.prepend(chartContainerHeader);
|
||||||
|
chartContainer.attr('id', 'ov-chart-container-' + chartSlug);
|
||||||
|
|
||||||
chartContainer.addClass('chart-container');
|
chartContainer.addClass('chart-container');
|
||||||
chartContainer.addClass('container');
|
chartContainer.addClass('container');
|
||||||
|
|
||||||
hwTypes.forEach(function (hwType) {
|
var filteredNetworkModels = Filter.FilterByNetworkModel(graph.data, [networkModel]);
|
||||||
// add title
|
var filteredIeTypes = Filter.FilterByIeType(filteredNetworkModels, ietype);
|
||||||
var chartWrap = $('<div>');
|
var filteredGraphData = Filter.FilterByClientPlatforms(filteredIeTypes, platforms);
|
||||||
chartWrap.addClass('chart-wrap');
|
|
||||||
chartWrap.addClass('container');
|
|
||||||
chartContainer.append(chartWrap);
|
|
||||||
var labels = getLabels(data, hwType);
|
|
||||||
var int8Data = getDataByLabelsAndIndex(data, labels, 3);
|
|
||||||
var fp32Data = getDataByLabelsAndIndex(data, labels, 4);
|
|
||||||
var fp16Data = getDataByLabelsAndIndex(data, labels, 5);
|
|
||||||
var valueData = getDataByLabelsAndIndex(data, labels, 6);
|
|
||||||
var efficiencyData = getDataByLabelsAndIndex(data, labels, 7);
|
|
||||||
var latencyData = getDataByLabelsAndIndex(data, labels, 8);
|
|
||||||
|
|
||||||
labelsMapping[hwType] = labels
|
$('.chart-placeholder').append(chartContainer);
|
||||||
if (hwType === 'accel') {
|
if (filteredGraphData.length > 0) {
|
||||||
CONFIG[hwType].throughput.datasets[0].data = fp16Data;
|
createChartWithNewData(filteredGraphData, chartContainer, kpis, ietype, precisions);
|
||||||
}
|
} else {
|
||||||
else {
|
createEmptyChartContainer(chartContainer);
|
||||||
CONFIG[hwType].throughput.datasets[0].data = int8Data;
|
|
||||||
CONFIG[hwType].throughput.datasets[1].data = fp32Data;
|
|
||||||
}
|
|
||||||
CONFIG[hwType].latency.datasets[0].data = latencyData;
|
|
||||||
CONFIG[hwType].value.datasets[0].data = valueData;
|
|
||||||
CONFIG[hwType].efficiency.datasets[0].data = efficiencyData;
|
|
||||||
|
|
||||||
metrics = Object.keys(CONFIG[hwType]).filter((metric) => hasData(hwType, metric));
|
|
||||||
|
|
||||||
var througputLatency = $('<div>');
|
|
||||||
througputLatency.addClass('row');
|
|
||||||
var efficiencyValue = $('<div>');
|
|
||||||
efficiencyValue.addClass('row');
|
|
||||||
|
|
||||||
chartWrap.append(througputLatency);
|
|
||||||
chartWrap.append(efficiencyValue);
|
|
||||||
|
|
||||||
var displayWidth = $(window).width();
|
|
||||||
|
|
||||||
if (metrics.includes('throughput') && metrics.includes('latency')) {
|
|
||||||
processMetric(hwType, 'throughput', througputLatency, 'col-md-8', true);
|
|
||||||
if (displayWidth < 450) {
|
|
||||||
processMetric(hwType, 'latency', througputLatency, 'col-md-4', true);
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
processMetric(hwType, 'latency', througputLatency, 'col-md-4', false);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else if (metrics.includes('throughput')) {
|
|
||||||
processMetric(hwType, 'throughput', througputLatency, 'col-md-12', true);
|
|
||||||
}
|
|
||||||
else if (metrics.includes('latency')) {
|
|
||||||
processMetric(hwType, 'latency', througputLatency, 'col-md-12', true);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (metrics.includes('efficiency') && metrics.includes('value')) {
|
|
||||||
processMetric(hwType, 'efficiency', througputLatency, 'col-md-8', true);
|
|
||||||
if (displayWidth < 450) {
|
|
||||||
processMetric(hwType, 'value', througputLatency, 'col-md-4', true);
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
processMetric(hwType, 'value', througputLatency, 'col-md-4', false);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else if (metrics.includes('efficiency')) {
|
|
||||||
processMetric(hwType, 'efficiency', througputLatency, 'col-md-6', true);
|
|
||||||
}
|
|
||||||
else if (metrics.includes('value')) {
|
|
||||||
processMetric(hwType, 'value', througputLatency, 'col-md-6', true);
|
|
||||||
}
|
|
||||||
|
|
||||||
})
|
|
||||||
currentChart.append(chartContainer);
|
|
||||||
}
|
|
||||||
|
|
||||||
function processMetric(hwType, metric, container, widthClass, displayLabels) {
|
|
||||||
var chart = $('<div>');
|
|
||||||
chart.addClass('chart');
|
|
||||||
chart.addClass(widthClass);
|
|
||||||
chart.height(labelsMapping[hwType].length * 55 + 30);
|
|
||||||
var canvas = $('<canvas>');
|
|
||||||
chart.append(canvas);
|
|
||||||
container.append(chart);
|
|
||||||
var context = canvas.get(0).getContext('2d');
|
|
||||||
context.canvas.height = labelsMapping[hwType].length * 55 + 30;
|
|
||||||
if (widthClass === 'col-md-8') {
|
|
||||||
context.canvas.width = context.canvas.width * 1.5;
|
|
||||||
}
|
}
|
||||||
else if(widthClass === 'col-md-12') {
|
|
||||||
context.canvas.width = context.canvas.width * 2.5;
|
|
||||||
}
|
|
||||||
new Chart(context, {
|
|
||||||
type: 'horizontalBar',
|
|
||||||
data: getChartData(hwType, metric),
|
|
||||||
options: getChartOptions(CONFIG[hwType][metric].chartTitle, displayLabels)
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
function hasData(hwType, metric) {
|
})
|
||||||
var has = false;
|
};
|
||||||
CONFIG[hwType][metric]['datasets'].forEach(function (dataset) {
|
|
||||||
for (var i = 0; i < dataset.data.length; i++) {
|
function createEmptyChartContainer(chartContainer) {
|
||||||
if (dataset.data[i] > 0) {
|
chartContainer.append($('<div>').addClass('empty-chart-container').text('No data for this configuration.'));
|
||||||
has = true;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
})
|
|
||||||
return has;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
});
|
|
||||||
|
|
||||||
|
// this function should take the final data set and turn it into graphs
|
||||||
|
// params: GraphData, unused, chartContainer
|
||||||
|
function createChartWithNewData(model, chartContainer, kpis, ietype, precisions) {
|
||||||
|
var chartWrap = $('<div>');
|
||||||
|
chartWrap.addClass('chart-wrap');
|
||||||
|
chartWrap.addClass('container');
|
||||||
|
chartContainer.append(chartWrap);
|
||||||
|
var labels = Graph.getPlatformNames(model);
|
||||||
|
|
||||||
|
var graphConfigs = kpis.map((str) => {
|
||||||
|
var kpi = str.toLowerCase();
|
||||||
|
if (kpi === 'throughput') {
|
||||||
|
var throughputData = Graph.getDatabyKPI(model, kpi);
|
||||||
|
var config = Graph.getGraphConfig(kpi, precisions);
|
||||||
|
precisions.forEach((prec, index) => {
|
||||||
|
config.datasets[index].data = throughputData.map(tData => tData[prec]);
|
||||||
|
});
|
||||||
|
return config;
|
||||||
|
}
|
||||||
|
var config = Graph.getGraphConfig(kpi);
|
||||||
|
config.datasets[0].data = Graph.getDatabyKPI(model, kpi);
|
||||||
|
return config;
|
||||||
|
});
|
||||||
|
|
||||||
|
|
||||||
|
// get the kpi title's and create headers for the graphs
|
||||||
|
var chartColumnHeaderContainer = $('<div>');
|
||||||
|
chartColumnHeaderContainer.addClass('chart-column-header-container');
|
||||||
|
chartColumnHeaderContainer.append($('<div class="chart-column-title"></div>'));
|
||||||
|
graphConfigs.forEach((graphConfig) => {
|
||||||
|
var columnHeaderContainer = $('<div>');
|
||||||
|
columnHeaderContainer.addClass('chart-column-title');
|
||||||
|
var columnIcon = $('<div class="icon">');
|
||||||
|
columnIcon.addClass(graphConfig.iconClass);
|
||||||
|
columnHeaderContainer.append(columnIcon);
|
||||||
|
var columnHeader = $('<div class="chart-header">');
|
||||||
|
columnHeader.append($('<div class="title">' + graphConfig.chartTitle + '</div>'));
|
||||||
|
columnHeader.append($('<div class="title">' + Graph.getGraphPlatformText(ietype) + '</div>'));
|
||||||
|
columnHeader.append($('<div class="subtitle">' + graphConfig.chartSubtitle + '</div>'));
|
||||||
|
columnHeaderContainer.append(columnHeader);
|
||||||
|
chartColumnHeaderContainer.append(columnHeaderContainer);
|
||||||
|
});
|
||||||
|
|
||||||
|
// get the client platform labels and create labels for all the graphs
|
||||||
|
|
||||||
|
var labelsContainer = $('<div>');
|
||||||
|
labelsContainer.addClass('chart-labels-container');
|
||||||
|
|
||||||
|
labels.forEach((label) => {
|
||||||
|
labelsContainer.append($('<div class="title">' + label + '</div>'));
|
||||||
|
});
|
||||||
|
|
||||||
|
// get the legend and create legends for each graph
|
||||||
|
|
||||||
|
var graphClass = $('<div>');
|
||||||
|
graphClass.addClass('graph-row');
|
||||||
|
chartWrap.append(chartColumnHeaderContainer);
|
||||||
|
graphClass.append(labelsContainer);
|
||||||
|
chartWrap.append(graphClass);
|
||||||
|
|
||||||
|
graphConfigs.forEach((graphConfig) => {
|
||||||
|
processMetricNew(labels, graphConfig.datasets, graphConfig.chartTitle, graphClass, 'graph-row-column');
|
||||||
|
});
|
||||||
|
|
||||||
|
// might need this line for multiple graphs on a page
|
||||||
|
// var displayWidth = $(window).width();
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
function processMetricNew(labels, datasets, chartTitle, container, widthClass, displayLabels) {
|
||||||
|
// ratio for consistent chart label height
|
||||||
|
var heightRatio = ((labels.length * 55 + 20) / labels.length) + (labels.length * 55);
|
||||||
|
var chart = $('<div>');
|
||||||
|
chart.addClass('chart');
|
||||||
|
chart.addClass(widthClass);
|
||||||
|
chart.height(heightRatio);
|
||||||
|
var canvas = $('<canvas>');
|
||||||
|
chart.append(canvas);
|
||||||
|
container.append(chart);
|
||||||
|
var context = canvas.get(0).getContext('2d');
|
||||||
|
context.canvas.height = heightRatio;
|
||||||
|
new Chart(context, {
|
||||||
|
type: 'horizontalBar',
|
||||||
|
data: getChartDataNew(labels, datasets),
|
||||||
|
options: getChartOptions(chartTitle, displayLabels)
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
});
|
@ -12,177 +12,82 @@
|
|||||||
@endsphinxdirective
|
@endsphinxdirective
|
||||||
|
|
||||||
|
|
||||||
## Benchmark Setup Information
|
Click the "Benchmark Graphs" button to see the OpenVINO(R) benchmark graphs. Select the models, the hardware platforms (CPU SKUs),
|
||||||
|
precision and performance index from the lists and click the “Build Graphs” button.
|
||||||
This benchmark setup includes a single machine on which both the benchmark application and the OpenVINO™ installation reside. The presented performance benchmark numbers are based on release 2022.2 of the Intel® Distribution of OpenVINO™ toolkit.
|
|
||||||
|
|
||||||
The benchmark application loads the OpenVINO™ Runtime and executes inference on the specified hardware (CPU, GPU or VPU). It measures the time spent on actual inferencing (excluding any pre or post processing) and then reports on the inferences per second (or Frames Per Second - FPS). For additional information on the benchmark application, refer to the entry 5 in the [FAQ section](performance_benchmarks_faq.md).
|
|
||||||
|
|
||||||
Measuring inference performance involves many variables and is extremely use-case and application dependent. Below are four parameters used for measurements, which are key elements to consider for a successful deep learning inference application:
|
|
||||||
|
|
||||||
- **Throughput** - Measures the number of inferences delivered within a latency threshold (for example, number of FPS). When deploying a system with deep learning inference, select the throughput that delivers the best trade-off between latency and power for the price and performance that meets your requirements.
|
|
||||||
- **Value** - While throughput is important, what is more critical in edge AI deployments is the performance efficiency or performance-per-cost. Application performance in throughput per dollar of system cost is the best measure of value.
|
|
||||||
- **Efficiency** - System power is a key consideration from the edge to the data center. When selecting deep learning solutions, power efficiency (throughput/watt) is a critical factor to consider. Intel designs provide excellent power efficiency for running deep learning workloads.
|
|
||||||
- **Latency** - This parameter measures the synchronous execution of inference requests and is reported in milliseconds. Each inference request (i.e., preprocess, infer, postprocess) is allowed to complete before the next one is started. This performance metric is relevant in usage scenarios where a single image input needs to be acted upon as soon as possible. An example of that kind of a scenario would be real-time or near real-time applications, i.e., the response of an industrial robot to its environment or obstacle avoidance for autonomous vehicles.
|
|
||||||
|
|
||||||
For a listing of all platforms and configurations used for testing, refer to the following:
|
|
||||||
@sphinxdirective
|
|
||||||
* :download:`HW platforms (pdf) <_static/benchmarks_files/platform_list_22.2.pdf>`
|
|
||||||
* :download:`Configuration Details (xlsx) <_static/benchmarks_files/OV-2022.2-system-info-detailed.xlsx>`
|
|
||||||
|
|
||||||
@endsphinxdirective
|
|
||||||
|
|
||||||
|
|
||||||
## Benchmark Performance Results
|
|
||||||
|
|
||||||
Benchmark performance results below are based on testing as of September 20, 2022. They may not reflect all publicly available updates at the time of testing.
|
|
||||||
<!-- See configuration disclosure for details. No product can be absolutely secure. -->
|
|
||||||
Performance varies by use, configuration and other factors, which are elaborated further in [here](https://www.intel.com/PerformanceIndex). Used Intel optimizations (for Intel® compilers or other products) may not optimize to the same degree for non-Intel products.
|
|
||||||
|
|
||||||
### bert-base-cased_onnx [124]
|
|
||||||
|
|
||||||
@sphinxdirective
|
@sphinxdirective
|
||||||
|
|
||||||
|
|
||||||
.. raw:: html
|
.. raw:: html
|
||||||
|
|
||||||
<div class="chart-block" data-loadcsv="csv/bert-base-cased_onnx.csv"></div>
|
<section class="build-benchmark-section">
|
||||||
|
<div class="title">
|
||||||
|
<h3>Build benchmark graphs to your specifications</h3>
|
||||||
|
</div>
|
||||||
|
<div class="btn-container">
|
||||||
|
<button id="build-graphs-btn" class="configure-graphs-btn">Configure Graphs</button>
|
||||||
|
</div>
|
||||||
|
<img src="_static/images/sample-graph-image.png" class="sample-graph-image">
|
||||||
|
</section>
|
||||||
|
|
||||||
@endsphinxdirective
|
@endsphinxdirective
|
||||||
|
|
||||||
|
Measuring inference performance involves many variables and is extremely use-case and application dependent.
|
||||||
### bert-large-uncased-whole-word-masking-squad-0001_onnx [384]
|
Below are four parameters for measurements, which are key elements to consider for a successful deep learning inference application:
|
||||||
|
|
||||||
@sphinxdirective
|
@sphinxdirective
|
||||||
|
|
||||||
.. raw:: html
|
.. raw:: html
|
||||||
|
|
||||||
<div class="chart-block" data-loadcsv="csv/bert-large-uncased-whole-word-masking-squad-0001_onnx.csv"></div>
|
<div class="picker-options">
|
||||||
|
<span class="selectable option throughput selected" data-option="throughput">
|
||||||
|
Throughput
|
||||||
|
</span>
|
||||||
|
<span class="selectable option value" data-option="value">
|
||||||
|
Value
|
||||||
|
</span>
|
||||||
|
<span class="selectable option efficiency" data-option="efficiency">
|
||||||
|
Efficiency
|
||||||
|
</span>
|
||||||
|
<span class="selectable option latency" data-option="latency">
|
||||||
|
Latency
|
||||||
|
</span>
|
||||||
|
<p class="selectable throughput selected">
|
||||||
|
Measures the number of inferences delivered within a latency threshold. (for example, number of Frames Per Second - FPS). When deploying a system with deep learning inference, select the throughput that delivers the best trade-off between latency and power for the price and performance that meets your requirements.
|
||||||
|
</p>
|
||||||
|
<p class="selectable value">
|
||||||
|
While throughput is important, what is more critical in edge AI deployments is the performance efficiency or performance-per-cost. Application performance in throughput per dollar of system cost is the best measure of value.
|
||||||
|
<p class="selectable efficiency">
|
||||||
|
System power is a key consideration from the edge to the data center. When selecting deep learning solutions, power efficiency (throughput/watt) is a critical factor to consider. Intel designs provide excellent power efficiency for running deep learning workloads.
|
||||||
|
<p class="selectable latency">
|
||||||
|
This measures the synchronous execution of inference requests and is reported in milliseconds. Each inference request (for example: preprocess, infer, postprocess) is allowed to complete before the next is started. This performance metric is relevant in usage scenarios where a single image input needs to be acted upon as soon as possible. An example would be the healthcare sector where medical personnel only request analysis of a single ultra sound scanning image or in real-time or near real-time applications for example an industrial robot's response to actions in its environment or obstacle avoidance for autonomous vehicles.
|
||||||
|
</p>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<h3>Platform & Configurations </h3>
|
||||||
|
<p>For a listing of all platforms and configurations used for testing, refer to the following:</p>
|
||||||
|
<container class="platform-configurations">
|
||||||
|
<div>
|
||||||
|
<a href="https://docs.openvino.ai/latest/_downloads/33ee2a13abf3ae3058381800409edc4a/platform_list_22.2.pdf" target="_blank" class="pdf"><img src="_static/css/media/pdf-icon.svg"/>Hardware Platforms (PDF)</a>
|
||||||
|
</div>
|
||||||
|
<div>
|
||||||
|
<a href="https://docs.openvino.ai/latest/_downloads/fdd5a86ab44d348b13bf5be23d8c0dde/OV-2022.2-system-info-detailed.xlsx" class="xls"><img src="_static/css/media/xls-icon.svg"/>Configuration Details (XLSX)</a>
|
||||||
|
</div>
|
||||||
|
</container>
|
||||||
|
|
||||||
@endsphinxdirective
|
@endsphinxdirective
|
||||||
|
|
||||||
### deeplabv3_tf [513x513]
|
This benchmark setup includes a single machine on which both the benchmark application and the OpenVINO™ installation reside. The presented performance benchmark numbers are based on the release 2022.2 of the Intel® Distribution of OpenVINO™ toolkit.
|
||||||
|
The benchmark application loads the OpenVINO™ Runtime and executes inferences on the specified hardware (CPU, GPU or VPU).
|
||||||
@sphinxdirective
|
It measures the time spent on actual inferencing (excluding any pre or post processing) and then reports on the inferences per second (or Frames Per Second).
|
||||||
.. raw:: html
|
For additional information on the benchmark application, refer to the entry 5 of the ``FAQ section`` ADD LINK.
|
||||||
|
|
||||||
<div class="chart-block" data-loadcsv="csv/deeplabv3_tf.csv"></div>
|
|
||||||
|
|
||||||
@endsphinxdirective
|
|
||||||
|
|
||||||
### densenet-121_tf [224x224]
|
|
||||||
|
|
||||||
@sphinxdirective
|
|
||||||
.. raw:: html
|
|
||||||
|
|
||||||
<div class="chart-block" data-loadcsv="csv/densenet-121_tf.csv"></div>
|
|
||||||
|
|
||||||
@endsphinxdirective
|
|
||||||
|
|
||||||
### efficientdet-d0_tf [512x512]
|
|
||||||
|
|
||||||
@sphinxdirective
|
|
||||||
.. raw:: html
|
|
||||||
|
|
||||||
<div class="chart-block" data-loadcsv="csv/efficientdet-d0_tf.csv"></div>
|
|
||||||
|
|
||||||
@endsphinxdirective
|
|
||||||
|
|
||||||
### mask_rcnn_resnet50_atrous_coco_tf [600x1024]
|
|
||||||
|
|
||||||
@sphinxdirective
|
|
||||||
.. raw:: html
|
|
||||||
|
|
||||||
<div class="chart-block" data-loadcsv="csv/mask_rcnn_resnet50_atrous_coco_tf.csv"></div>
|
|
||||||
|
|
||||||
@endsphinxdirective
|
|
||||||
|
|
||||||
### ssd-resnet34-1200_onnx [1200x1200]
|
|
||||||
|
|
||||||
@sphinxdirective
|
|
||||||
.. raw:: html
|
|
||||||
|
|
||||||
<div class="chart-block" data-loadcsv="csv/ssd-resnet34-1200_onnx.csv"></div>
|
|
||||||
|
|
||||||
@endsphinxdirective
|
|
||||||
|
|
||||||
### resnet-50_tf [224x224]
|
|
||||||
|
|
||||||
@sphinxdirective
|
|
||||||
.. raw:: html
|
|
||||||
|
|
||||||
<div class="chart-block" data-loadcsv="csv/resnet-50_tf.csv"></div>
|
|
||||||
|
|
||||||
@endsphinxdirective
|
|
||||||
|
|
||||||
### resnet-50-pytorch_onnx [224x224]
|
|
||||||
|
|
||||||
@sphinxdirective
|
|
||||||
.. raw:: html
|
|
||||||
|
|
||||||
<div class="chart-block" data-loadcsv="csv/resnet-50-pytorch_onnx.csv"></div>
|
|
||||||
|
|
||||||
@endsphinxdirective
|
|
||||||
|
|
||||||
|
|
||||||
### yolo_v3_tiny_tf [416x416]
|
|
||||||
|
|
||||||
@sphinxdirective
|
|
||||||
.. raw:: html
|
|
||||||
|
|
||||||
<div class="chart-block" data-loadcsv="csv/yolo_v3_tiny_tf.csv"></div>
|
|
||||||
|
|
||||||
@endsphinxdirective
|
|
||||||
|
|
||||||
### yolo_v4_tf2 [608x608]
|
|
||||||
|
|
||||||
@sphinxdirective
|
|
||||||
.. raw:: html
|
|
||||||
|
|
||||||
<div class="chart-block" data-loadcsv="csv/yolo_v4_tf2.csv"></div>
|
|
||||||
|
|
||||||
@endsphinxdirective
|
|
||||||
|
|
||||||
### googlenet-v4_tf [224x224]
|
|
||||||
|
|
||||||
@sphinxdirective
|
|
||||||
.. raw:: html
|
|
||||||
|
|
||||||
<div class="chart-block" data-loadcsv="csv/googlenet-v4_tf.csv"></div>
|
|
||||||
|
|
||||||
@endsphinxdirective
|
|
||||||
|
|
||||||
### ssd_mobilenet_v1_coco_tf [300x300]
|
|
||||||
|
|
||||||
@sphinxdirective
|
|
||||||
.. raw:: html
|
|
||||||
|
|
||||||
<div class="chart-block" data-loadcsv="csv/ssd_mobilenet_v1_coco_tf.csv"></div>
|
|
||||||
|
|
||||||
@endsphinxdirective
|
|
||||||
|
|
||||||
### ssd_mobilenet_v2_coco_tf [300x300]
|
|
||||||
|
|
||||||
@sphinxdirective
|
|
||||||
.. raw:: html
|
|
||||||
|
|
||||||
<div class="chart-block" data-loadcsv="csv/ssd_mobilenet_v2_coco_tf.csv"></div>
|
|
||||||
|
|
||||||
@endsphinxdirective
|
|
||||||
|
|
||||||
### unet-camvid-onnx-0001_onnx [368x480]
|
|
||||||
|
|
||||||
@sphinxdirective
|
|
||||||
.. raw:: html
|
|
||||||
|
|
||||||
<div class="chart-block" data-loadcsv="csv/unet-camvid-onnx-0001_onnx.csv"></div>
|
|
||||||
|
|
||||||
@endsphinxdirective
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## Disclaimers
|
## Disclaimers
|
||||||
|
|
||||||
Intel® Distribution of OpenVINO™ toolkit performance benchmark numbers are based on release 2022.2.
|
Intel® Distribution of OpenVINO™ toolkit performance benchmark numbers are based on release 2022.2.
|
||||||
|
|
||||||
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer. Performance results are based on testing as of September 20, 2022 and may not reflect all publicly available updates. See configuration disclosure for details. No product can be absolutely secure.
|
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer. Performance results are based on testing as of March 17, 2022 and may not reflect all publicly available updates. See configuration disclosure for details. No product can be absolutely secure.
|
||||||
|
|
||||||
Performance varies by use, configuration and other factors. Learn more at [www.intel.com/PerformanceIndex](https://www.intel.com/PerformanceIndex).
|
Performance varies by use, configuration and other factors. Learn more at [www.intel.com/PerformanceIndex](https://www.intel.com/PerformanceIndex).
|
||||||
|
|
||||||
@ -190,4 +95,4 @@ Your costs and results may vary.
|
|||||||
|
|
||||||
Intel optimizations, for Intel compilers or other products, may not optimize to the same degree for non-Intel products.
|
Intel optimizations, for Intel compilers or other products, may not optimize to the same degree for non-Intel products.
|
||||||
|
|
||||||
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
|
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
|
@ -179,8 +179,4 @@ def setup(app):
|
|||||||
app.add_js_file('js/custom.js')
|
app.add_js_file('js/custom.js')
|
||||||
app.add_js_file('js/graphs.js')
|
app.add_js_file('js/graphs.js')
|
||||||
app.add_js_file('js/graphs_ov_tf.js')
|
app.add_js_file('js/graphs_ov_tf.js')
|
||||||
try:
|
|
||||||
shutil.copytree(os.path.join(app.srcdir, 'csv'), os.path.join(
|
|
||||||
app.outdir, 'csv'), dirs_exist_ok=True)
|
|
||||||
except FileNotFoundError:
|
|
||||||
logger.warning('csv directory not found.')
|
|