[TF FE] Support SegmentSum operation (#13354)
Signed-off-by: Kazantsev, Roman <roman.kazantsev@intel.com> Signed-off-by: Kazantsev, Roman <roman.kazantsev@intel.com>
This commit is contained in:
parent
cdb486d838
commit
f5febef8a6
48
src/frontends/tensorflow/src/op/segment_sum.cpp
Normal file
48
src/frontends/tensorflow/src/op/segment_sum.cpp
Normal file
@ -0,0 +1,48 @@
|
||||
// Copyright (C) 2018-2022 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "op_table.hpp"
|
||||
#include "openvino/opsets/opset9.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace ov;
|
||||
using namespace ov::opset9;
|
||||
|
||||
namespace ov {
|
||||
namespace frontend {
|
||||
namespace tensorflow {
|
||||
namespace op {
|
||||
OutputVector translate_segment_sum_op(const NodeContext& node) {
|
||||
default_op_checks(node, 2, {"SegmentSum"});
|
||||
auto data = node.get_input(0);
|
||||
auto segment_ids = node.get_input(1);
|
||||
|
||||
// compute SegmentSum using EmbeddingSegmentSum
|
||||
// for this prepare all the required inputs
|
||||
auto indices_type = segment_ids.get_element_type();
|
||||
// 1. compute a number of segments using segment_ids values
|
||||
// do not forget that segment ids are counting from zero
|
||||
auto reduction_axis = make_shared<Constant>(element::i32, Shape{1}, 0);
|
||||
auto num_segments_minus1 = make_shared<ReduceMax>(segment_ids, reduction_axis, false);
|
||||
auto one = make_shared<Constant>(indices_type, Shape{}, 1);
|
||||
auto num_segments = make_shared<Add>(num_segments_minus1, one);
|
||||
|
||||
// 2. generate indices input for EmbeddingSegmentSum
|
||||
// that will collect slices consequently from data for each segment
|
||||
auto squeeze_axis = make_shared<Constant>(element::i32, Shape{1}, 0);
|
||||
auto segment_ids_shape = make_shared<ShapeOf>(segment_ids, indices_type);
|
||||
auto num_indices = make_shared<Squeeze>(segment_ids_shape, squeeze_axis);
|
||||
auto indices = make_shared<Range>(make_shared<Constant>(indices_type, ov::Shape{}, 0),
|
||||
num_indices,
|
||||
make_shared<Constant>(indices_type, ov::Shape{}, 1),
|
||||
indices_type);
|
||||
|
||||
auto emb_segment_sum = make_shared<EmbeddingSegmentsSum>(data, indices, segment_ids, num_segments);
|
||||
set_node_name(node.get_name(), emb_segment_sum);
|
||||
return {emb_segment_sum};
|
||||
}
|
||||
} // namespace op
|
||||
} // namespace tensorflow
|
||||
} // namespace frontend
|
||||
} // namespace ov
|
@ -95,6 +95,7 @@ OP_CONVERTER(translate_roll_op);
|
||||
OP_CONVERTER(translate_round_op);
|
||||
OP_CONVERTER(translate_rsqrt_op);
|
||||
OP_CONVERTER(translate_scatter_nd_op);
|
||||
OP_CONVERTER(translate_segment_sum_op);
|
||||
OP_CONVERTER(translate_sparse_to_dense_op);
|
||||
OP_CONVERTER(translate_select_op);
|
||||
OP_CONVERTER(translate_shape_op);
|
||||
@ -274,6 +275,7 @@ const std::map<std::string, CreatorFunction> get_supported_ops() {
|
||||
{"Round", translate_round_op},
|
||||
{"Rsqrt", translate_rsqrt_op},
|
||||
{"ScatterNd", translate_scatter_nd_op},
|
||||
{"SegmentSum", translate_segment_sum_op},
|
||||
{"SparseToDense", translate_sparse_to_dense_op},
|
||||
{"Select", translate_select_op},
|
||||
{"SelectV2", translate_select_op},
|
||||
|
62
tests/layer_tests/tensorflow_tests/test_tf_SegmentSum.py
Normal file
62
tests/layer_tests/tensorflow_tests/test_tf_SegmentSum.py
Normal file
@ -0,0 +1,62 @@
|
||||
# Copyright (C) 2018-2022 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import tensorflow as tf
|
||||
from common.tf_layer_test_class import CommonTFLayerTest
|
||||
|
||||
|
||||
class TestSegmentSum(CommonTFLayerTest):
|
||||
def _prepare_input(self, inputs_info):
|
||||
assert 'data' in inputs_info, "Test error: inputs_info must contain `data`"
|
||||
assert 'segment_ids' in inputs_info, "Test error: inputs_info must contain `segment_ids`"
|
||||
data_shape = inputs_info['data']
|
||||
segment_ids_shape = inputs_info['segment_ids']
|
||||
inputs_data = {}
|
||||
inputs_data['data'] = np.random.randint(-50, 50, data_shape)
|
||||
# segment_ids data must be sorted according to TensorFlow SegmentSum specification
|
||||
inputs_data['segment_ids'] = np.sort(np.random.randint(0, 20, segment_ids_shape))
|
||||
return inputs_data
|
||||
|
||||
def create_segment_sum_net(self, data_shape, segment_ids_shape, data_type, segment_ids_type):
|
||||
tf.compat.v1.reset_default_graph()
|
||||
# Create the graph and model
|
||||
with tf.compat.v1.Session() as sess:
|
||||
data = tf.compat.v1.placeholder(data_type, data_shape, 'data')
|
||||
segment_ids = tf.compat.v1.placeholder(segment_ids_type, segment_ids_shape, 'segment_ids')
|
||||
tf.math.segment_sum(data, segment_ids)
|
||||
tf.compat.v1.global_variables_initializer()
|
||||
|
||||
tf_net = sess.graph_def
|
||||
|
||||
return tf_net, None
|
||||
|
||||
test_data_basic = [
|
||||
dict(data_shape=[8], segment_ids_shape=[8], data_type=tf.float32, segment_ids_type=tf.int32),
|
||||
dict(data_shape=[3, 7], segment_ids_shape=[3], data_type=tf.float32, segment_ids_type=tf.int32),
|
||||
dict(data_shape=[4, 3, 2], segment_ids_shape=[4], data_type=tf.float32, segment_ids_type=tf.int32),
|
||||
]
|
||||
|
||||
@pytest.mark.parametrize("params", test_data_basic)
|
||||
@pytest.mark.nightly
|
||||
def test_segment_sum_basic(self, params, ie_device, precision, ir_version, temp_dir,
|
||||
use_new_frontend, use_old_api):
|
||||
self._test(*self.create_segment_sum_net(**params),
|
||||
ie_device, precision, ir_version, temp_dir=temp_dir,
|
||||
use_new_frontend=use_new_frontend, use_old_api=use_old_api)
|
||||
|
||||
test_data_different_types = [
|
||||
dict(data_shape=[2, 3], segment_ids_shape=[2], data_type=tf.int32, segment_ids_type=tf.int32),
|
||||
dict(data_shape=[3, 2], segment_ids_shape=[3], data_type=tf.float64, segment_ids_type=tf.int32),
|
||||
dict(data_shape=[3, 1, 2], segment_ids_shape=[3], data_type=tf.float32, segment_ids_type=tf.int64),
|
||||
dict(data_shape=[4, 2, 1], segment_ids_shape=[4], data_type=tf.float64, segment_ids_type=tf.int64),
|
||||
]
|
||||
|
||||
@pytest.mark.parametrize("params", test_data_different_types)
|
||||
@pytest.mark.nightly
|
||||
def test_segment_sum_different_types(self, params, ie_device, precision, ir_version, temp_dir,
|
||||
use_new_frontend, use_old_api):
|
||||
self._test(*self.create_segment_sum_net(**params),
|
||||
ie_device, precision, ir_version, temp_dir=temp_dir,
|
||||
use_new_frontend=use_new_frontend, use_old_api=use_old_api)
|
Loading…
Reference in New Issue
Block a user