[CPU] CTCLoss performance improvement.

This commit is contained in:
Nikolay Shchegolev 2020-10-05 11:58:54 +03:00 committed by Alexander Peskov
parent 8715b60d88
commit ff7fc01c76

View File

@ -60,6 +60,8 @@ public:
StatusCode execute(std::vector<Blob::Ptr>& inputs,
std::vector<Blob::Ptr>& outputs,
ResponseDesc *resp) noexcept override {
StatusCode returnCode = OK;
const float* logits = inputs[0]->cbuffer().as<const float*>() +
inputs[0]->getTensorDesc().getBlockingDesc().getOffsetPadding();
const int* logitsLength = inputs[1]->cbuffer().as<const int*>() +
@ -72,257 +74,210 @@ public:
outputs[0]->getTensorDesc().getBlockingDesc().getOffsetPadding();
const auto& logitsShape = inputs[0]->getTensorDesc().getDims();
const auto batchNum = logitsShape[0];
const auto maxTime = logitsShape[1];
const auto classesNum = logitsShape[2];
const size_t batchNum = logitsShape[0];
const size_t maxTime = logitsShape[1];
const size_t classesNum = logitsShape[2];
int blankIndex = classesNum - 1;
if (inputs.size() > 4) {
blankIndex = inputs[4]->cbuffer().as<const int*>()[0];
}
std::vector<int> targetD(maxTime);
std::vector<int> decodedTargetLenB(batchNum, 0);
std::vector<std::vector<int>> targetDB(batchNum);
std::vector<std::vector<std::vector<float>>> logProbabilitiesB(batchNum);
size_t workAmount2 = 0lu;
std::vector<std::string> errorMsgB(parallel_get_max_threads());
auto threadBody_1 = [&](const int ithr, const int nthr) {
size_t start(0lu), end(0lu);
splitter(batchNum, nthr, ithr, start, end);
if (start >= end)
return;
for (size_t b = start; b < end; b++) {
if (logitsLength[b] < 0 || labelsLength[b] < 0 || logitsLength[b] > maxTime || labelsLength[b] > logitsLength[b]) {
errorMsgB[ithr] = _logPrefix + ". Logit length cannot be greater than max sequence length. "
+ "Label length cannot be greater than a logit length"
+ " and both cannot be negative.\nMaxSeqLen: "
+ std::to_string(maxTime) + "; Logit len: " + std::to_string(logitsLength[b])
+ "; Label len: " + std::to_string(labelsLength[b]);
returnCode = GENERAL_ERROR;
return;
}
const size_t actualLogitLen = logitsLength[b];
const size_t actualTargetLen = labelsLength[b];
size_t decodedTargetLen = 0lu;
// Decoding target: merge repeated characters if preprocess_collapse_repeated == True,
// find unique elemnts if unique == True.
// Inserts blanks before each index and a blank at the end.
const int* target = &labels[b * maxTime];
targetDB[b].resize(actualTargetLen * 2 + 1);
auto& targetD = targetDB[b];
if (_unique) {
std::unordered_set<int> uniqVals;
for (size_t t = 0lu; t < actualTargetLen; t++) {
if (uniqVals.find(target[t]) != uniqVals.end()) {
continue;
}
uniqVals.insert(target[t]);
targetD[decodedTargetLen++] = blankIndex;
targetD[decodedTargetLen++] = target[t];
}
targetD[decodedTargetLen++] = blankIndex;
} else if (_preprocessCollapseRepeated) {
auto prevValue = target[0];
targetD[decodedTargetLen++] = blankIndex;
targetD[decodedTargetLen++] = target[0];
for (size_t t = 1lu; t < actualTargetLen; t++) {
if (target[t] == prevValue) {
continue;
}
targetD[decodedTargetLen++] = blankIndex;
targetD[decodedTargetLen++] = prevValue = target[t];
}
targetD[decodedTargetLen++] = blankIndex;
} else {
for (size_t t = 0lu; t < actualTargetLen; t++) {
targetD[decodedTargetLen++] = blankIndex;
targetD[decodedTargetLen++] = target[t];
}
targetD[decodedTargetLen++] = blankIndex;
}
decodedTargetLenB[b] = decodedTargetLen;
auto& logProbabilities = logProbabilitiesB[b];
logProbabilities.resize(actualLogitLen);
for (size_t ll = 0; ll < actualLogitLen; ll++) {
logProbabilities[ll].resize(decodedTargetLen);
}
workAmount2 += actualLogitLen;
} // for batch
}; // threadBody_1
parallel_nt(0, threadBody_1);
if (returnCode != OK) {
std::string resErr("");
for (auto& err : errorMsgB) {
if (!err.empty())
resErr += err + "\n";
resErr.copy(resp->msg, sizeof(resp->msg) - 1);
}
return returnCode;
}
const size_t TC = maxTime * classesNum;
for (size_t b = 0; b < batchNum; b++) {
const int actualLogitLen = logitsLength[b];
const int actualTargetLen = labelsLength[b];
if (actualLogitLen < 0 || actualTargetLen < 0 || actualLogitLen > maxTime || actualTargetLen > maxTime
|| actualTargetLen > actualLogitLen) {
std::string errorMsg = _logPrefix + ". Logit or label length cannot be greater than max sequence length. "
+ "Also a label length cannot be greater than a logit length"
+ " and both cannot be negative.\nMaxSeqLen: "
+ std::to_string(maxTime) + "; Logit len: " + std::to_string(actualLogitLen)
+ "; Label len: " + std::to_string(actualTargetLen);
errorMsg.copy(resp->msg, sizeof(resp->msg) - 1);
return GENERAL_ERROR;
auto threadBody_2 = [&](const int ithr, const int nthr) {
size_t start(0lu), end(0lu);
size_t sB(0lu), sT(0lu);
splitter(workAmount2, nthr, ithr, start, end);
if (start >= end)
return;
int64_t cw = 0, st = start;
for (; sB < batchNum; sB++) {
cw += logitsLength[sB];
if (cw >= st) {
sT = logitsLength[sB] + st - cw;
break;
}
}
size_t workCounter = start;
const int* target = &labels[b * maxTime];
// Decoding target: merge repeated characters if preprocess_collapse_repeated == True,
// find unique elemnts if unique == True
size_t decodedTargetLen = 0lu;
if (_unique) {
std::unordered_set<int> uniqVals;
for (size_t t = 0lu; t < actualTargetLen; t++) {
if (uniqVals.find(target[t]) != uniqVals.end()) {
continue;
for (size_t b = sB; b < batchNum; b++) {
const size_t actualLogitLen = logitsLength[b];
const size_t decodedTargetLen = decodedTargetLenB[b];
auto& logProbabilities = logProbabilitiesB[b];
auto& targetD = targetDB[b];
double expSum = 0.0;
size_t btcT = b * TC + sT * classesNum;
// logProbabilities = logSoftmax = logits[b][t][c] - ln(sum_c(exp(logits[b][t])))
for (size_t t = sT; t < actualLogitLen; t++) {
expSum = 0.0;
for (size_t c = 0lu; c < classesNum; c++) {
expSum += std::exp(logits[btcT + c]);
}
uniqVals.insert(target[t]);
targetD[decodedTargetLen++] = target[t];
}
} else if (_preprocessCollapseRepeated) {
int prevValue = target[0];
targetD[decodedTargetLen++] = target[0];
for (size_t t = 1lu; t < actualTargetLen; t++) {
if (target[t] == prevValue) {
continue;
for (size_t s = 0lu; s < decodedTargetLen; s++) {
logProbabilities[t][s] = logits[btcT + targetD[s]] - std::log(expSum);
}
targetD[decodedTargetLen++] = target[t];
prevValue = target[t];
}
} else {
std::copy(target, target + actualTargetLen, targetD.data());
decodedTargetLen = actualTargetLen;
}
const size_t BTC = b * TC;
std::vector<std::unordered_map<size_t, float>> logProbabilities(actualLogitLen);
float logProb = 0.f, kExp = 0.f;
for (size_t t = 0; t < actualLogitLen; t++) {
kExp = 0.f;
const size_t btcT = BTC + classesNum * t;
for (size_t c = 0; c < classesNum; c++) {
kExp += std::exp(logits[btcT + c]);
}
for (size_t s = 0; s < decodedTargetLen; s++) {
logProb = logits[btcT + targetD[s]] - std::log(kExp);
logProbabilities[t].insert({targetD[s], logProb});
}
logProb = logits[btcT + blankIndex] - std::log(kExp);
logProbabilities[t].insert({blankIndex, logProb});
}
const auto float_inf = std::numeric_limits<float>::infinity();
size_t work_amount = actualLogitLen - decodedTargetLen + 1lu;
std::vector<float> sumPerThread(parallel_get_max_threads(), -float_inf);
// Looking for aligned paths
auto thread_body = [&](const int ithr, const int nthr) {
size_t start0(0lu), end0(0lu);
splitter(work_amount, nthr, ithr, start0, end0);
if (start0 >= end0)
return;
if (ithr >= sumPerThread.size())
sumPerThread.push_back(-float_inf);
std::function<void(size_t, size_t, size_t, float)> findPaths =
[&](size_t targetIdx, size_t start, size_t end, float prevLogProb) {
if (end > actualLogitLen) {
if (sumPerThread[ithr] == -float_inf) {
sumPerThread[ithr] = prevLogProb;
} else if (prevLogProb != -float_inf) {
if (sumPerThread[ithr] > prevLogProb)
sumPerThread[ithr] = sumPerThread[ithr] + std::log1pf(std::exp(prevLogProb - sumPerThread[ithr]));
else
sumPerThread[ithr] = prevLogProb + std::log1pf(std::exp(sumPerThread[ithr] - prevLogProb));
}
btcT += classesNum;
if (++workCounter >= end) {
return;
}
size_t nextIdx = targetIdx + 1;
int64_t st64 = start;
float newLogProb = prevLogProb;
if (!_ctcMergeRepeated) {
for (size_t pos = start; pos < end; pos++) {
newLogProb = prevLogProb;
for (size_t bl = start; bl < pos; bl++) {
auto lnProbIt = logProbabilities[bl].find(blankIndex);
if (lnProbIt != logProbabilities[bl].end())
newLogProb += lnProbIt->second;
}
auto lnProbIt = logProbabilities[pos].find(targetD[targetIdx]);
if (lnProbIt != logProbabilities[pos].end())
newLogProb += lnProbIt->second;
if (end == actualLogitLen) {
for (int64_t ble = pos + 1; ble < actualLogitLen; ble++) {
auto lnProbIt = logProbabilities[ble].find(blankIndex);
if (lnProbIt != logProbabilities[ble].end())
newLogProb += lnProbIt->second;
}
}
findPaths(nextIdx, pos + 1, end + 1, newLogProb);
}
} else {
for (size_t pos = start; pos < end; pos++) {
newLogProb = prevLogProb;
size_t next_start = pos + 1;
for (size_t bl = start; bl < pos; bl++) {
auto lnProbIt = logProbabilities[bl].find(blankIndex);
if (lnProbIt != logProbabilities[bl].end())
newLogProb += lnProbIt->second;
}
if (end == actualLogitLen) {
for (int64_t ble = pos + 1; ble < actualLogitLen; ble++) {
auto lnProbIt = logProbabilities[ble].find(blankIndex);
if (lnProbIt != logProbabilities[ble].end())
newLogProb += lnProbIt->second;
}
}
if (targetIdx < decodedTargetLen - 1
&& targetD[targetIdx] == targetD[targetIdx + 1]) {
auto lnProbIt = logProbabilities[next_start++].find(blankIndex);
if (lnProbIt != logProbabilities[next_start].end())
newLogProb += lnProbIt->second;
}
for (int64_t bl = pos; bl >= st64; bl--) {
newLogProb += logProbabilities[bl].find(targetD[targetIdx])->second;
findPaths(nextIdx, next_start, end + 1, newLogProb);
if (bl > 0) {
auto lnProbIt = logProbabilities[bl - 1].find(blankIndex);
if (lnProbIt != logProbabilities[bl - 1].end())
newLogProb -= lnProbIt->second;
}
}
}
}
}; // findPaths
// First tartget symbol
int64_t st64 = start0;
float newLogProb = 0.f;
if (!_ctcMergeRepeated) {
for (size_t pos = start0; pos < end0; pos++) {
newLogProb = 0.f;
for (size_t bl = 0; bl < pos; bl++) {
auto lnProbIt = logProbabilities[bl].find(blankIndex);
if (lnProbIt != logProbabilities[bl].end())
newLogProb += lnProbIt->second;
}
auto lnProbIt = logProbabilities[pos].find(targetD[0]);
if (lnProbIt != logProbabilities[pos].end())
newLogProb += lnProbIt->second;
if (work_amount == actualLogitLen) {
for (int64_t ble = pos + 1; ble < actualLogitLen; ble++) {
auto lnProbIt = logProbabilities[ble].find(blankIndex);
if (lnProbIt != logProbabilities[ble].end())
newLogProb += lnProbIt->second;
}
}
if (decodedTargetLen > 1) {
findPaths(1, pos + 1, work_amount + 1, newLogProb);
} else {
if (sumPerThread[ithr] == -float_inf)
sumPerThread[ithr] = newLogProb;
else if (newLogProb != -float_inf)
sumPerThread[ithr] = sumPerThread[ithr] + std::log1pf(std::exp(newLogProb - sumPerThread[ithr]));
}
}
} else {
for (size_t pos = start0; pos < end0; pos++) {
newLogProb = 0.f;
size_t next_start = pos + 1;
for (size_t bl = 0; bl < pos; bl++) {
auto lnProbIt = logProbabilities[bl].find(blankIndex);
if (lnProbIt != logProbabilities[bl].end())
newLogProb += lnProbIt->second;
}
if (work_amount == actualLogitLen) {
for (int64_t ble = pos + 1; ble < actualLogitLen; ble++) {
auto lnProbIt = logProbabilities[ble].find(blankIndex);
if (lnProbIt != logProbabilities[ble].end())
newLogProb += lnProbIt->second;
}
}
if (decodedTargetLen > 1
&& targetD[0] == targetD[1]) {
auto lnProbIt = logProbabilities[next_start++].find(blankIndex);
if (lnProbIt != logProbabilities[next_start].end())
newLogProb += lnProbIt->second;
}
for (int64_t bl = pos; bl >= 0; bl--) {
auto lnProbIt = logProbabilities[bl].find(targetD[0]);
if (lnProbIt != logProbabilities[bl].end())
newLogProb += lnProbIt->second;
if (decodedTargetLen > 1) {
findPaths(1, next_start, work_amount + 1, newLogProb);
} else {
if (sumPerThread[ithr] == -float_inf)
sumPerThread[ithr] = newLogProb;
else if (newLogProb != -float_inf)
sumPerThread[ithr] = sumPerThread[ithr] + std::log1pf(std::exp(newLogProb - sumPerThread[ithr]));
}
if (bl > 0) {
auto lnProbIt = logProbabilities[bl - 1].find(blankIndex);
if (lnProbIt != logProbabilities[bl - 1].end())
newLogProb -= lnProbIt->second;
}
}
}
}
}; // thread_body
sT = 0lu;
} // for batch
}; // threadBody_2
parallel_nt(0, thread_body);
parallel_nt(0, threadBody_2);
float res = -float_inf;
const auto float_inf = std::numeric_limits<float>::infinity();
for (auto sum : sumPerThread) {
if (res == -float_inf) {
res = sum;
} else if (sum != -float_inf) {
if (res > sum)
res = res + std::log1pf(std::exp(sum - res));
else
res = sum + std::log1pf(std::exp(res - sum));
}
auto sumLogs = [&float_inf](float log1, float log2) {
if (log1 == -float_inf) {
return log2;
} else if (log2 == -float_inf) {
return log1;
} else {
if (log1 > log2)
return log1 + std::log1pf(std::exp(log2 - log1));
else
return log2 + std::log1pf(std::exp(log1 - log2));
}
};
dstData[b] = -res;
} // for (size_t b = 0; b < batchNum; b++)
auto threadBody_3 = [&](const int ithr, const int nthr) {
size_t start(0lu), end(0lu);
splitter(batchNum, nthr, ithr, start, end);
if (start >= end)
return;
return OK;
// As per Connectionist Temporal Classification - Labeling Unsegmented Sequence Data with Recurrent Neural Networks:
// Graves et al., 2016, paragraph 4.1 (10)
for (size_t b = start; b < end; b++) {
auto& targetD = targetDB[b];
auto& logProbabilities = logProbabilitiesB[b];
const int actualLogitLen = logitsLength[b];
const int decodedTargetLen = decodedTargetLenB[b];
std::vector<std::vector<float>> logBwd(decodedTargetLen, std::vector<float>(actualLogitLen, -float_inf));
for (int s = decodedTargetLen - 2; s < decodedTargetLen; s++)
logBwd[s][actualLogitLen - 1] = 0.f;
for (int t = actualLogitLen - 2; t >= 0; t--) {
const int t_1 = t + 1;
for (int s = std::max(0, decodedTargetLen - (2 * (actualLogitLen - t)));
s < std::min(decodedTargetLen, 2 * (t_1)); s++) {
if (_ctcMergeRepeated || targetD[s] == blankIndex) {
logBwd[s][t] = sumLogs(logBwd[s][t],
logBwd[s][t_1] + logProbabilities[t_1][s]);
}
if (s + 1 < decodedTargetLen) {
logBwd[s][t] = sumLogs(logBwd[s][t],
logBwd[s + 1][t_1] + logProbabilities[t_1][s + 1]);
}
if (s + 2 < decodedTargetLen) {
if (targetD[s] != blankIndex && (!_ctcMergeRepeated || (targetD[s] != targetD[s + 2]))) {
logBwd[s][t] = sumLogs(logBwd[s][t],
logBwd[s + 2][t_1] + logProbabilities[t_1][s + 2]);
}
}
}
}
logBwd[0][0] += logProbabilities[0][0];
logBwd[1][0] += logProbabilities[0][(decodedTargetLen > 1) ? 1 : 0];
dstData[b] = -sumLogs(logBwd[0][0], logBwd[1][0]);
} // for batch
}; // threadBody_3
parallel_nt(0, threadBody_3);
return returnCode;
} // execute
protected:
@ -334,8 +289,6 @@ protected:
};
REG_FACTORY_FOR(CTCLossImpl, CTCLoss);
} // namespace Cpu
} // namespace Extensions
} // namespace InferenceEngine